Properties

Label 448.3.o.b.95.2
Level $448$
Weight $3$
Character 448.95
Analytic conductor $12.207$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(95,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.95"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 34 x^{18} + 755 x^{16} - 9698 x^{14} + 89921 x^{12} - 522048 x^{10} + 2189920 x^{8} + \cdots + 7311616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 95.2
Root \(-2.85584 + 1.64882i\) of defining polynomial
Character \(\chi\) \(=\) 448.95
Dual form 448.3.o.b.415.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.20080 + 3.81190i) q^{3} +(3.13426 - 1.80957i) q^{5} +(4.05500 + 5.70587i) q^{7} +(-5.18704 - 8.98421i) q^{9} +(-1.85420 + 3.21157i) q^{11} +15.5806i q^{13} +15.9300i q^{15} +(14.3108 - 24.7871i) q^{17} +(15.0096 + 25.9974i) q^{19} +(-30.6744 + 2.89977i) q^{21} +(11.3062 - 6.52765i) q^{23} +(-5.95093 + 10.3073i) q^{25} +6.04813 q^{27} +8.55364i q^{29} +(-13.2292 - 7.63786i) q^{31} +(-8.16146 - 14.1361i) q^{33} +(23.0346 + 10.5459i) q^{35} +(-30.2785 + 17.4813i) q^{37} +(-59.3918 - 34.2899i) q^{39} -0.875858 q^{41} -33.4932 q^{43} +(-32.5151 - 18.7726i) q^{45} +(-76.1422 + 43.9607i) q^{47} +(-16.1139 + 46.2746i) q^{49} +(62.9905 + 109.103i) q^{51} +(-19.2041 - 11.0875i) q^{53} +13.4212i q^{55} -132.132 q^{57} +(48.9999 - 84.8704i) q^{59} +(-34.7686 + 20.0736i) q^{61} +(30.2293 - 66.0276i) q^{63} +(28.1942 + 48.8338i) q^{65} +(-7.33119 + 12.6980i) q^{67} +57.4642i q^{69} +112.733i q^{71} +(56.4171 - 97.7174i) q^{73} +(-26.1936 - 45.3686i) q^{75} +(-25.8436 + 2.44310i) q^{77} +(56.0478 - 32.3592i) q^{79} +(33.3726 - 57.8031i) q^{81} -58.2311 q^{83} -103.586i q^{85} +(-32.6056 - 18.8248i) q^{87} +(-22.2291 - 38.5019i) q^{89} +(-88.9011 + 63.1795i) q^{91} +(58.2295 - 33.6188i) q^{93} +(94.0881 + 54.3218i) q^{95} +166.677 q^{97} +38.4713 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 28 q^{9} + 46 q^{17} - 114 q^{21} + 36 q^{25} + 94 q^{33} + 114 q^{37} - 160 q^{41} - 708 q^{45} - 92 q^{49} - 6 q^{53} + 308 q^{57} + 90 q^{61} + 212 q^{65} + 314 q^{73} - 198 q^{77} - 322 q^{81}+ \cdots - 224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.20080 + 3.81190i −0.733600 + 1.27063i 0.221735 + 0.975107i \(0.428828\pi\)
−0.955335 + 0.295525i \(0.904505\pi\)
\(4\) 0 0
\(5\) 3.13426 1.80957i 0.626853 0.361914i −0.152679 0.988276i \(-0.548790\pi\)
0.779532 + 0.626362i \(0.215457\pi\)
\(6\) 0 0
\(7\) 4.05500 + 5.70587i 0.579286 + 0.815124i
\(8\) 0 0
\(9\) −5.18704 8.98421i −0.576337 0.998246i
\(10\) 0 0
\(11\) −1.85420 + 3.21157i −0.168564 + 0.291961i −0.937915 0.346865i \(-0.887246\pi\)
0.769351 + 0.638826i \(0.220580\pi\)
\(12\) 0 0
\(13\) 15.5806i 1.19851i 0.800558 + 0.599255i \(0.204537\pi\)
−0.800558 + 0.599255i \(0.795463\pi\)
\(14\) 0 0
\(15\) 15.9300i 1.06200i
\(16\) 0 0
\(17\) 14.3108 24.7871i 0.841814 1.45806i −0.0465463 0.998916i \(-0.514822\pi\)
0.888360 0.459148i \(-0.151845\pi\)
\(18\) 0 0
\(19\) 15.0096 + 25.9974i 0.789979 + 1.36828i 0.925979 + 0.377575i \(0.123242\pi\)
−0.136000 + 0.990709i \(0.543425\pi\)
\(20\) 0 0
\(21\) −30.6744 + 2.89977i −1.46069 + 0.138085i
\(22\) 0 0
\(23\) 11.3062 6.52765i 0.491575 0.283811i −0.233653 0.972320i \(-0.575068\pi\)
0.725228 + 0.688509i \(0.241735\pi\)
\(24\) 0 0
\(25\) −5.95093 + 10.3073i −0.238037 + 0.412292i
\(26\) 0 0
\(27\) 6.04813 0.224005
\(28\) 0 0
\(29\) 8.55364i 0.294953i 0.989066 + 0.147476i \(0.0471151\pi\)
−0.989066 + 0.147476i \(0.952885\pi\)
\(30\) 0 0
\(31\) −13.2292 7.63786i −0.426747 0.246383i 0.271213 0.962519i \(-0.412575\pi\)
−0.697960 + 0.716137i \(0.745909\pi\)
\(32\) 0 0
\(33\) −8.16146 14.1361i −0.247317 0.428365i
\(34\) 0 0
\(35\) 23.0346 + 10.5459i 0.658132 + 0.301311i
\(36\) 0 0
\(37\) −30.2785 + 17.4813i −0.818337 + 0.472467i −0.849843 0.527037i \(-0.823303\pi\)
0.0315058 + 0.999504i \(0.489970\pi\)
\(38\) 0 0
\(39\) −59.3918 34.2899i −1.52287 0.879227i
\(40\) 0 0
\(41\) −0.875858 −0.0213624 −0.0106812 0.999943i \(-0.503400\pi\)
−0.0106812 + 0.999943i \(0.503400\pi\)
\(42\) 0 0
\(43\) −33.4932 −0.778912 −0.389456 0.921045i \(-0.627337\pi\)
−0.389456 + 0.921045i \(0.627337\pi\)
\(44\) 0 0
\(45\) −32.5151 18.7726i −0.722557 0.417169i
\(46\) 0 0
\(47\) −76.1422 + 43.9607i −1.62005 + 0.935335i −0.633142 + 0.774036i \(0.718235\pi\)
−0.986906 + 0.161299i \(0.948432\pi\)
\(48\) 0 0
\(49\) −16.1139 + 46.2746i −0.328855 + 0.944380i
\(50\) 0 0
\(51\) 62.9905 + 109.103i 1.23511 + 2.13927i
\(52\) 0 0
\(53\) −19.2041 11.0875i −0.362341 0.209198i 0.307766 0.951462i \(-0.400419\pi\)
−0.670107 + 0.742264i \(0.733752\pi\)
\(54\) 0 0
\(55\) 13.4212i 0.244022i
\(56\) 0 0
\(57\) −132.132 −2.31811
\(58\) 0 0
\(59\) 48.9999 84.8704i 0.830507 1.43848i −0.0671290 0.997744i \(-0.521384\pi\)
0.897636 0.440737i \(-0.145283\pi\)
\(60\) 0 0
\(61\) −34.7686 + 20.0736i −0.569977 + 0.329076i −0.757140 0.653253i \(-0.773404\pi\)
0.187163 + 0.982329i \(0.440071\pi\)
\(62\) 0 0
\(63\) 30.2293 66.0276i 0.479830 1.04806i
\(64\) 0 0
\(65\) 28.1942 + 48.8338i 0.433757 + 0.751290i
\(66\) 0 0
\(67\) −7.33119 + 12.6980i −0.109421 + 0.189522i −0.915536 0.402237i \(-0.868233\pi\)
0.806115 + 0.591759i \(0.201566\pi\)
\(68\) 0 0
\(69\) 57.4642i 0.832815i
\(70\) 0 0
\(71\) 112.733i 1.58779i 0.608055 + 0.793895i \(0.291950\pi\)
−0.608055 + 0.793895i \(0.708050\pi\)
\(72\) 0 0
\(73\) 56.4171 97.7174i 0.772838 1.33859i −0.163164 0.986599i \(-0.552170\pi\)
0.936002 0.351995i \(-0.114497\pi\)
\(74\) 0 0
\(75\) −26.1936 45.3686i −0.349248 0.604915i
\(76\) 0 0
\(77\) −25.8436 + 2.44310i −0.335631 + 0.0317286i
\(78\) 0 0
\(79\) 56.0478 32.3592i 0.709466 0.409611i −0.101397 0.994846i \(-0.532331\pi\)
0.810863 + 0.585235i \(0.198998\pi\)
\(80\) 0 0
\(81\) 33.3726 57.8031i 0.412008 0.713618i
\(82\) 0 0
\(83\) −58.2311 −0.701580 −0.350790 0.936454i \(-0.614087\pi\)
−0.350790 + 0.936454i \(0.614087\pi\)
\(84\) 0 0
\(85\) 103.586i 1.21866i
\(86\) 0 0
\(87\) −32.6056 18.8248i −0.374777 0.216377i
\(88\) 0 0
\(89\) −22.2291 38.5019i −0.249765 0.432606i 0.713696 0.700456i \(-0.247020\pi\)
−0.963461 + 0.267850i \(0.913687\pi\)
\(90\) 0 0
\(91\) −88.9011 + 63.1795i −0.976935 + 0.694281i
\(92\) 0 0
\(93\) 58.2295 33.6188i 0.626123 0.361492i
\(94\) 0 0
\(95\) 94.0881 + 54.3218i 0.990401 + 0.571808i
\(96\) 0 0
\(97\) 166.677 1.71832 0.859159 0.511708i \(-0.170987\pi\)
0.859159 + 0.511708i \(0.170987\pi\)
\(98\) 0 0
\(99\) 38.4713 0.388599
\(100\) 0 0
\(101\) 99.2204 + 57.2849i 0.982380 + 0.567178i 0.902988 0.429666i \(-0.141369\pi\)
0.0793924 + 0.996843i \(0.474702\pi\)
\(102\) 0 0
\(103\) 17.3025 9.98959i 0.167985 0.0969863i −0.413650 0.910436i \(-0.635746\pi\)
0.581635 + 0.813450i \(0.302413\pi\)
\(104\) 0 0
\(105\) −90.8944 + 64.5961i −0.865661 + 0.615201i
\(106\) 0 0
\(107\) 18.5115 + 32.0628i 0.173005 + 0.299653i 0.939469 0.342634i \(-0.111319\pi\)
−0.766464 + 0.642287i \(0.777986\pi\)
\(108\) 0 0
\(109\) 116.968 + 67.5313i 1.07310 + 0.619553i 0.929026 0.370014i \(-0.120647\pi\)
0.144072 + 0.989567i \(0.453980\pi\)
\(110\) 0 0
\(111\) 153.891i 1.38641i
\(112\) 0 0
\(113\) 87.7541 0.776585 0.388293 0.921536i \(-0.373065\pi\)
0.388293 + 0.921536i \(0.373065\pi\)
\(114\) 0 0
\(115\) 23.6245 40.9188i 0.205430 0.355815i
\(116\) 0 0
\(117\) 139.980 80.8174i 1.19641 0.690747i
\(118\) 0 0
\(119\) 199.462 18.8560i 1.67615 0.158453i
\(120\) 0 0
\(121\) 53.6239 + 92.8793i 0.443172 + 0.767597i
\(122\) 0 0
\(123\) 1.92759 3.33868i 0.0156715 0.0271438i
\(124\) 0 0
\(125\) 133.553i 1.06842i
\(126\) 0 0
\(127\) 209.424i 1.64901i 0.565853 + 0.824506i \(0.308547\pi\)
−0.565853 + 0.824506i \(0.691453\pi\)
\(128\) 0 0
\(129\) 73.7118 127.673i 0.571410 0.989711i
\(130\) 0 0
\(131\) −76.5681 132.620i −0.584489 1.01236i −0.994939 0.100481i \(-0.967962\pi\)
0.410450 0.911883i \(-0.365372\pi\)
\(132\) 0 0
\(133\) −87.4738 + 191.062i −0.657697 + 1.43656i
\(134\) 0 0
\(135\) 18.9564 10.9445i 0.140418 0.0810703i
\(136\) 0 0
\(137\) −74.8701 + 129.679i −0.546497 + 0.946561i 0.452014 + 0.892011i \(0.350706\pi\)
−0.998511 + 0.0545502i \(0.982628\pi\)
\(138\) 0 0
\(139\) 4.60976 0.0331637 0.0165819 0.999863i \(-0.494722\pi\)
0.0165819 + 0.999863i \(0.494722\pi\)
\(140\) 0 0
\(141\) 386.995i 2.74465i
\(142\) 0 0
\(143\) −50.0384 28.8897i −0.349919 0.202026i
\(144\) 0 0
\(145\) 15.4784 + 26.8093i 0.106747 + 0.184892i
\(146\) 0 0
\(147\) −140.931 163.266i −0.958712 1.11065i
\(148\) 0 0
\(149\) 228.911 132.162i 1.53632 0.886992i 0.537266 0.843413i \(-0.319457\pi\)
0.999050 0.0435793i \(-0.0138761\pi\)
\(150\) 0 0
\(151\) −134.864 77.8638i −0.893139 0.515654i −0.0181710 0.999835i \(-0.505784\pi\)
−0.874968 + 0.484181i \(0.839118\pi\)
\(152\) 0 0
\(153\) −296.923 −1.94067
\(154\) 0 0
\(155\) −55.2849 −0.356677
\(156\) 0 0
\(157\) −136.001 78.5200i −0.866246 0.500128i −0.000147402 1.00000i \(-0.500047\pi\)
−0.866099 + 0.499872i \(0.833380\pi\)
\(158\) 0 0
\(159\) 84.5287 48.8027i 0.531627 0.306935i
\(160\) 0 0
\(161\) 83.0927 + 38.0422i 0.516104 + 0.236287i
\(162\) 0 0
\(163\) −68.2863 118.275i −0.418934 0.725615i 0.576898 0.816816i \(-0.304263\pi\)
−0.995833 + 0.0912008i \(0.970929\pi\)
\(164\) 0 0
\(165\) −51.1603 29.5374i −0.310063 0.179015i
\(166\) 0 0
\(167\) 95.3243i 0.570804i −0.958408 0.285402i \(-0.907873\pi\)
0.958408 0.285402i \(-0.0921272\pi\)
\(168\) 0 0
\(169\) −73.7564 −0.436428
\(170\) 0 0
\(171\) 155.711 269.699i 0.910589 1.57719i
\(172\) 0 0
\(173\) 57.9376 33.4503i 0.334900 0.193354i −0.323115 0.946360i \(-0.604730\pi\)
0.658014 + 0.753005i \(0.271397\pi\)
\(174\) 0 0
\(175\) −82.9432 + 7.84094i −0.473961 + 0.0448054i
\(176\) 0 0
\(177\) 215.678 + 373.565i 1.21852 + 2.11054i
\(178\) 0 0
\(179\) 60.9834 105.626i 0.340689 0.590091i −0.643872 0.765134i \(-0.722673\pi\)
0.984561 + 0.175042i \(0.0560062\pi\)
\(180\) 0 0
\(181\) 185.859i 1.02685i −0.858136 0.513423i \(-0.828377\pi\)
0.858136 0.513423i \(-0.171623\pi\)
\(182\) 0 0
\(183\) 176.712i 0.965641i
\(184\) 0 0
\(185\) −63.2671 + 109.582i −0.341984 + 0.592334i
\(186\) 0 0
\(187\) 53.0704 + 91.9206i 0.283799 + 0.491554i
\(188\) 0 0
\(189\) 24.5252 + 34.5098i 0.129763 + 0.182592i
\(190\) 0 0
\(191\) −95.0890 + 54.8997i −0.497848 + 0.287433i −0.727825 0.685763i \(-0.759468\pi\)
0.229976 + 0.973196i \(0.426135\pi\)
\(192\) 0 0
\(193\) −10.9970 + 19.0474i −0.0569794 + 0.0986912i −0.893108 0.449842i \(-0.851480\pi\)
0.836129 + 0.548533i \(0.184814\pi\)
\(194\) 0 0
\(195\) −248.199 −1.27282
\(196\) 0 0
\(197\) 336.582i 1.70854i 0.519830 + 0.854270i \(0.325995\pi\)
−0.519830 + 0.854270i \(0.674005\pi\)
\(198\) 0 0
\(199\) 200.150 + 115.556i 1.00578 + 0.580686i 0.909952 0.414713i \(-0.136118\pi\)
0.0958246 + 0.995398i \(0.469451\pi\)
\(200\) 0 0
\(201\) −32.2689 55.8915i −0.160542 0.278067i
\(202\) 0 0
\(203\) −48.8059 + 34.6850i −0.240423 + 0.170862i
\(204\) 0 0
\(205\) −2.74517 + 1.58493i −0.0133911 + 0.00773134i
\(206\) 0 0
\(207\) −117.292 67.7183i −0.566626 0.327142i
\(208\) 0 0
\(209\) −111.323 −0.532648
\(210\) 0 0
\(211\) 63.2914 0.299959 0.149980 0.988689i \(-0.452079\pi\)
0.149980 + 0.988689i \(0.452079\pi\)
\(212\) 0 0
\(213\) −429.727 248.103i −2.01750 1.16480i
\(214\) 0 0
\(215\) −104.977 + 60.6082i −0.488263 + 0.281899i
\(216\) 0 0
\(217\) −10.0636 106.455i −0.0463763 0.490578i
\(218\) 0 0
\(219\) 248.326 + 430.113i 1.13391 + 1.96398i
\(220\) 0 0
\(221\) 386.199 + 222.972i 1.74751 + 1.00892i
\(222\) 0 0
\(223\) 128.029i 0.574121i −0.957912 0.287061i \(-0.907322\pi\)
0.957912 0.287061i \(-0.0926782\pi\)
\(224\) 0 0
\(225\) 123.471 0.548759
\(226\) 0 0
\(227\) 198.452 343.728i 0.874236 1.51422i 0.0166626 0.999861i \(-0.494696\pi\)
0.857574 0.514361i \(-0.171971\pi\)
\(228\) 0 0
\(229\) 180.192 104.034i 0.786864 0.454296i −0.0519935 0.998647i \(-0.516558\pi\)
0.838857 + 0.544351i \(0.183224\pi\)
\(230\) 0 0
\(231\) 47.5638 103.890i 0.205904 0.449740i
\(232\) 0 0
\(233\) −74.0856 128.320i −0.317964 0.550729i 0.662099 0.749416i \(-0.269666\pi\)
−0.980063 + 0.198687i \(0.936332\pi\)
\(234\) 0 0
\(235\) −159.100 + 275.569i −0.677021 + 1.17263i
\(236\) 0 0
\(237\) 284.865i 1.20196i
\(238\) 0 0
\(239\) 13.6048i 0.0569240i −0.999595 0.0284620i \(-0.990939\pi\)
0.999595 0.0284620i \(-0.00906096\pi\)
\(240\) 0 0
\(241\) 145.570 252.135i 0.604026 1.04620i −0.388179 0.921584i \(-0.626896\pi\)
0.992205 0.124620i \(-0.0397711\pi\)
\(242\) 0 0
\(243\) 174.109 + 301.566i 0.716500 + 1.24101i
\(244\) 0 0
\(245\) 33.2319 + 174.196i 0.135640 + 0.711005i
\(246\) 0 0
\(247\) −405.056 + 233.859i −1.63990 + 0.946798i
\(248\) 0 0
\(249\) 128.155 221.971i 0.514679 0.891450i
\(250\) 0 0
\(251\) −122.061 −0.486300 −0.243150 0.969989i \(-0.578181\pi\)
−0.243150 + 0.969989i \(0.578181\pi\)
\(252\) 0 0
\(253\) 48.4144i 0.191361i
\(254\) 0 0
\(255\) 394.858 + 227.971i 1.54846 + 0.894005i
\(256\) 0 0
\(257\) 176.424 + 305.575i 0.686473 + 1.18901i 0.972971 + 0.230925i \(0.0741753\pi\)
−0.286499 + 0.958081i \(0.592491\pi\)
\(258\) 0 0
\(259\) −222.525 101.878i −0.859170 0.393353i
\(260\) 0 0
\(261\) 76.8477 44.3680i 0.294436 0.169992i
\(262\) 0 0
\(263\) 364.152 + 210.243i 1.38461 + 0.799404i 0.992701 0.120601i \(-0.0384821\pi\)
0.391907 + 0.920005i \(0.371815\pi\)
\(264\) 0 0
\(265\) −80.2542 −0.302846
\(266\) 0 0
\(267\) 195.687 0.732910
\(268\) 0 0
\(269\) −246.913 142.556i −0.917894 0.529946i −0.0349314 0.999390i \(-0.511121\pi\)
−0.882963 + 0.469443i \(0.844455\pi\)
\(270\) 0 0
\(271\) 149.590 86.3658i 0.551993 0.318693i −0.197933 0.980216i \(-0.563423\pi\)
0.749925 + 0.661523i \(0.230089\pi\)
\(272\) 0 0
\(273\) −45.1803 477.927i −0.165496 1.75065i
\(274\) 0 0
\(275\) −22.0685 38.2237i −0.0802489 0.138995i
\(276\) 0 0
\(277\) −343.551 198.349i −1.24026 0.716063i −0.271110 0.962548i \(-0.587391\pi\)
−0.969146 + 0.246486i \(0.920724\pi\)
\(278\) 0 0
\(279\) 158.471i 0.567998i
\(280\) 0 0
\(281\) 184.273 0.655774 0.327887 0.944717i \(-0.393663\pi\)
0.327887 + 0.944717i \(0.393663\pi\)
\(282\) 0 0
\(283\) −27.8791 + 48.2881i −0.0985129 + 0.170629i −0.911069 0.412253i \(-0.864742\pi\)
0.812556 + 0.582883i \(0.198075\pi\)
\(284\) 0 0
\(285\) −414.138 + 239.103i −1.45312 + 0.838957i
\(286\) 0 0
\(287\) −3.55161 4.99753i −0.0123749 0.0174130i
\(288\) 0 0
\(289\) −265.100 459.166i −0.917300 1.58881i
\(290\) 0 0
\(291\) −366.822 + 635.355i −1.26056 + 2.18335i
\(292\) 0 0
\(293\) 313.145i 1.06875i 0.845246 + 0.534377i \(0.179454\pi\)
−0.845246 + 0.534377i \(0.820546\pi\)
\(294\) 0 0
\(295\) 354.675i 1.20229i
\(296\) 0 0
\(297\) −11.2145 + 19.4240i −0.0377591 + 0.0654007i
\(298\) 0 0
\(299\) 101.705 + 176.158i 0.340150 + 0.589158i
\(300\) 0 0
\(301\) −135.815 191.108i −0.451213 0.634910i
\(302\) 0 0
\(303\) −436.728 + 252.145i −1.44135 + 0.832163i
\(304\) 0 0
\(305\) −72.6493 + 125.832i −0.238194 + 0.412565i
\(306\) 0 0
\(307\) −18.7354 −0.0610272 −0.0305136 0.999534i \(-0.509714\pi\)
−0.0305136 + 0.999534i \(0.509714\pi\)
\(308\) 0 0
\(309\) 87.9403i 0.284597i
\(310\) 0 0
\(311\) 192.773 + 111.298i 0.619849 + 0.357870i 0.776810 0.629735i \(-0.216836\pi\)
−0.156961 + 0.987605i \(0.550170\pi\)
\(312\) 0 0
\(313\) −41.0509 71.1022i −0.131153 0.227164i 0.792968 0.609263i \(-0.208535\pi\)
−0.924121 + 0.382099i \(0.875201\pi\)
\(314\) 0 0
\(315\) −24.7348 261.650i −0.0785231 0.830634i
\(316\) 0 0
\(317\) 123.479 71.2906i 0.389523 0.224891i −0.292430 0.956287i \(-0.594464\pi\)
0.681954 + 0.731395i \(0.261131\pi\)
\(318\) 0 0
\(319\) −27.4706 15.8602i −0.0861148 0.0497184i
\(320\) 0 0
\(321\) −162.960 −0.507664
\(322\) 0 0
\(323\) 859.199 2.66006
\(324\) 0 0
\(325\) −160.594 92.7193i −0.494137 0.285290i
\(326\) 0 0
\(327\) −514.845 + 297.246i −1.57445 + 0.909008i
\(328\) 0 0
\(329\) −559.591 256.197i −1.70088 0.778713i
\(330\) 0 0
\(331\) 104.981 + 181.832i 0.317163 + 0.549342i 0.979895 0.199514i \(-0.0639365\pi\)
−0.662732 + 0.748857i \(0.730603\pi\)
\(332\) 0 0
\(333\) 314.111 + 181.352i 0.943276 + 0.544601i
\(334\) 0 0
\(335\) 53.0651i 0.158403i
\(336\) 0 0
\(337\) 422.518 1.25376 0.626881 0.779115i \(-0.284331\pi\)
0.626881 + 0.779115i \(0.284331\pi\)
\(338\) 0 0
\(339\) −193.129 + 334.510i −0.569703 + 0.986754i
\(340\) 0 0
\(341\) 49.0591 28.3243i 0.143868 0.0830624i
\(342\) 0 0
\(343\) −329.379 + 95.6999i −0.960289 + 0.279008i
\(344\) 0 0
\(345\) 103.985 + 180.108i 0.301407 + 0.522052i
\(346\) 0 0
\(347\) 210.317 364.280i 0.606101 1.04980i −0.385775 0.922593i \(-0.626066\pi\)
0.991876 0.127205i \(-0.0406006\pi\)
\(348\) 0 0
\(349\) 256.210i 0.734126i 0.930196 + 0.367063i \(0.119637\pi\)
−0.930196 + 0.367063i \(0.880363\pi\)
\(350\) 0 0
\(351\) 94.2337i 0.268472i
\(352\) 0 0
\(353\) −230.942 + 400.003i −0.654226 + 1.13315i 0.327862 + 0.944726i \(0.393672\pi\)
−0.982087 + 0.188426i \(0.939661\pi\)
\(354\) 0 0
\(355\) 203.998 + 353.335i 0.574643 + 0.995311i
\(356\) 0 0
\(357\) −367.100 + 801.828i −1.02829 + 2.24602i
\(358\) 0 0
\(359\) 103.906 59.9900i 0.289431 0.167103i −0.348254 0.937400i \(-0.613225\pi\)
0.637685 + 0.770297i \(0.279892\pi\)
\(360\) 0 0
\(361\) −270.076 + 467.786i −0.748133 + 1.29581i
\(362\) 0 0
\(363\) −472.061 −1.30044
\(364\) 0 0
\(365\) 408.363i 1.11880i
\(366\) 0 0
\(367\) −280.223 161.787i −0.763551 0.440836i 0.0670185 0.997752i \(-0.478651\pi\)
−0.830569 + 0.556916i \(0.811985\pi\)
\(368\) 0 0
\(369\) 4.54311 + 7.86890i 0.0123120 + 0.0213249i
\(370\) 0 0
\(371\) −14.6089 154.536i −0.0393770 0.416539i
\(372\) 0 0
\(373\) 395.712 228.465i 1.06089 0.612506i 0.135213 0.990817i \(-0.456828\pi\)
0.925679 + 0.378311i \(0.123495\pi\)
\(374\) 0 0
\(375\) −509.090 293.923i −1.35757 0.783795i
\(376\) 0 0
\(377\) −133.271 −0.353504
\(378\) 0 0
\(379\) 82.7835 0.218426 0.109213 0.994018i \(-0.465167\pi\)
0.109213 + 0.994018i \(0.465167\pi\)
\(380\) 0 0
\(381\) −798.304 460.901i −2.09529 1.20971i
\(382\) 0 0
\(383\) 531.521 306.874i 1.38778 0.801237i 0.394718 0.918802i \(-0.370842\pi\)
0.993065 + 0.117565i \(0.0375088\pi\)
\(384\) 0 0
\(385\) −76.5798 + 54.4231i −0.198909 + 0.141359i
\(386\) 0 0
\(387\) 173.731 + 300.910i 0.448916 + 0.777546i
\(388\) 0 0
\(389\) −390.184 225.273i −1.00304 0.579108i −0.0938970 0.995582i \(-0.529932\pi\)
−0.909148 + 0.416474i \(0.863266\pi\)
\(390\) 0 0
\(391\) 373.664i 0.955663i
\(392\) 0 0
\(393\) 674.044 1.71512
\(394\) 0 0
\(395\) 117.112 202.845i 0.296487 0.513531i
\(396\) 0 0
\(397\) −511.270 + 295.182i −1.28783 + 0.743532i −0.978268 0.207346i \(-0.933517\pi\)
−0.309567 + 0.950878i \(0.600184\pi\)
\(398\) 0 0
\(399\) −535.798 753.931i −1.34285 1.88955i
\(400\) 0 0
\(401\) −27.6472 47.8864i −0.0689457 0.119417i 0.829492 0.558519i \(-0.188630\pi\)
−0.898437 + 0.439101i \(0.855297\pi\)
\(402\) 0 0
\(403\) 119.003 206.119i 0.295292 0.511461i
\(404\) 0 0
\(405\) 241.560i 0.596445i
\(406\) 0 0
\(407\) 129.655i 0.318564i
\(408\) 0 0
\(409\) 46.3157 80.2212i 0.113241 0.196140i −0.803834 0.594854i \(-0.797210\pi\)
0.917075 + 0.398714i \(0.130543\pi\)
\(410\) 0 0
\(411\) −329.548 570.794i −0.801821 1.38879i
\(412\) 0 0
\(413\) 682.954 64.5623i 1.65364 0.156325i
\(414\) 0 0
\(415\) −182.512 + 105.373i −0.439787 + 0.253911i
\(416\) 0 0
\(417\) −10.1452 + 17.5719i −0.0243289 + 0.0421389i
\(418\) 0 0
\(419\) 342.855 0.818270 0.409135 0.912474i \(-0.365830\pi\)
0.409135 + 0.912474i \(0.365830\pi\)
\(420\) 0 0
\(421\) 147.685i 0.350795i 0.984498 + 0.175398i \(0.0561211\pi\)
−0.984498 + 0.175398i \(0.943879\pi\)
\(422\) 0 0
\(423\) 789.905 + 456.052i 1.86739 + 1.07814i
\(424\) 0 0
\(425\) 170.325 + 295.012i 0.400766 + 0.694147i
\(426\) 0 0
\(427\) −255.524 116.986i −0.598418 0.273973i
\(428\) 0 0
\(429\) 220.249 127.161i 0.513401 0.296412i
\(430\) 0 0
\(431\) −68.9402 39.8027i −0.159954 0.0923495i 0.417886 0.908499i \(-0.362771\pi\)
−0.577840 + 0.816150i \(0.696104\pi\)
\(432\) 0 0
\(433\) −487.810 −1.12658 −0.563291 0.826259i \(-0.690465\pi\)
−0.563291 + 0.826259i \(0.690465\pi\)
\(434\) 0 0
\(435\) −136.259 −0.313240
\(436\) 0 0
\(437\) 339.404 + 195.955i 0.776668 + 0.448409i
\(438\) 0 0
\(439\) 241.116 139.208i 0.549239 0.317103i −0.199576 0.979882i \(-0.563956\pi\)
0.748815 + 0.662779i \(0.230623\pi\)
\(440\) 0 0
\(441\) 499.325 95.2575i 1.13226 0.216003i
\(442\) 0 0
\(443\) −100.954 174.857i −0.227887 0.394712i 0.729295 0.684200i \(-0.239848\pi\)
−0.957182 + 0.289488i \(0.906515\pi\)
\(444\) 0 0
\(445\) −139.344 80.4501i −0.313132 0.180787i
\(446\) 0 0
\(447\) 1163.45i 2.60279i
\(448\) 0 0
\(449\) −277.311 −0.617619 −0.308809 0.951124i \(-0.599931\pi\)
−0.308809 + 0.951124i \(0.599931\pi\)
\(450\) 0 0
\(451\) 1.62402 2.81288i 0.00360093 0.00623699i
\(452\) 0 0
\(453\) 593.617 342.725i 1.31041 0.756567i
\(454\) 0 0
\(455\) −164.312 + 358.894i −0.361125 + 0.788778i
\(456\) 0 0
\(457\) −18.9532 32.8279i −0.0414731 0.0718335i 0.844544 0.535487i \(-0.179872\pi\)
−0.886017 + 0.463653i \(0.846538\pi\)
\(458\) 0 0
\(459\) 86.5537 149.915i 0.188570 0.326613i
\(460\) 0 0
\(461\) 220.061i 0.477356i 0.971099 + 0.238678i \(0.0767140\pi\)
−0.971099 + 0.238678i \(0.923286\pi\)
\(462\) 0 0
\(463\) 73.1168i 0.157920i −0.996878 0.0789598i \(-0.974840\pi\)
0.996878 0.0789598i \(-0.0251599\pi\)
\(464\) 0 0
\(465\) 121.671 210.740i 0.261658 0.453205i
\(466\) 0 0
\(467\) −158.591 274.688i −0.339595 0.588196i 0.644761 0.764384i \(-0.276957\pi\)
−0.984357 + 0.176188i \(0.943623\pi\)
\(468\) 0 0
\(469\) −102.181 + 9.65958i −0.217870 + 0.0205961i
\(470\) 0 0
\(471\) 598.621 345.614i 1.27096 0.733787i
\(472\) 0 0
\(473\) 62.1032 107.566i 0.131296 0.227412i
\(474\) 0 0
\(475\) −357.284 −0.752177
\(476\) 0 0
\(477\) 230.045i 0.482274i
\(478\) 0 0
\(479\) 426.647 + 246.325i 0.890704 + 0.514248i 0.874173 0.485615i \(-0.161404\pi\)
0.0165316 + 0.999863i \(0.494738\pi\)
\(480\) 0 0
\(481\) −272.369 471.758i −0.566257 0.980785i
\(482\) 0 0
\(483\) −327.883 + 233.017i −0.678847 + 0.482438i
\(484\) 0 0
\(485\) 522.409 301.613i 1.07713 0.621883i
\(486\) 0 0
\(487\) 23.4016 + 13.5109i 0.0480525 + 0.0277432i 0.523834 0.851820i \(-0.324501\pi\)
−0.475781 + 0.879564i \(0.657835\pi\)
\(488\) 0 0
\(489\) 601.137 1.22932
\(490\) 0 0
\(491\) −140.587 −0.286327 −0.143164 0.989699i \(-0.545728\pi\)
−0.143164 + 0.989699i \(0.545728\pi\)
\(492\) 0 0
\(493\) 212.020 + 122.410i 0.430060 + 0.248295i
\(494\) 0 0
\(495\) 120.579 69.6164i 0.243594 0.140639i
\(496\) 0 0
\(497\) −643.240 + 457.133i −1.29425 + 0.919785i
\(498\) 0 0
\(499\) 332.243 + 575.463i 0.665819 + 1.15323i 0.979063 + 0.203559i \(0.0652509\pi\)
−0.313244 + 0.949673i \(0.601416\pi\)
\(500\) 0 0
\(501\) 363.366 + 209.790i 0.725282 + 0.418742i
\(502\) 0 0
\(503\) 678.934i 1.34977i −0.737923 0.674885i \(-0.764193\pi\)
0.737923 0.674885i \(-0.235807\pi\)
\(504\) 0 0
\(505\) 414.644 0.821077
\(506\) 0 0
\(507\) 162.323 281.152i 0.320164 0.554540i
\(508\) 0 0
\(509\) 103.197 59.5809i 0.202745 0.117055i −0.395190 0.918599i \(-0.629321\pi\)
0.597935 + 0.801544i \(0.295988\pi\)
\(510\) 0 0
\(511\) 786.334 74.3353i 1.53881 0.145470i
\(512\) 0 0
\(513\) 90.7800 + 157.236i 0.176959 + 0.306502i
\(514\) 0 0
\(515\) 36.1537 62.6200i 0.0702013 0.121592i
\(516\) 0 0
\(517\) 326.048i 0.630655i
\(518\) 0 0
\(519\) 294.470i 0.567379i
\(520\) 0 0
\(521\) 302.941 524.710i 0.581461 1.00712i −0.413845 0.910347i \(-0.635815\pi\)
0.995306 0.0967732i \(-0.0308522\pi\)
\(522\) 0 0
\(523\) 18.9269 + 32.7823i 0.0361891 + 0.0626813i 0.883553 0.468332i \(-0.155145\pi\)
−0.847364 + 0.531013i \(0.821811\pi\)
\(524\) 0 0
\(525\) 152.652 333.427i 0.290767 0.635099i
\(526\) 0 0
\(527\) −378.641 + 218.608i −0.718483 + 0.414816i
\(528\) 0 0
\(529\) −179.280 + 310.521i −0.338903 + 0.586997i
\(530\) 0 0
\(531\) −1016.66 −1.91461
\(532\) 0 0
\(533\) 13.6464i 0.0256031i
\(534\) 0 0
\(535\) 116.040 + 66.9956i 0.216897 + 0.125225i
\(536\) 0 0
\(537\) 268.424 + 464.925i 0.499859 + 0.865782i
\(538\) 0 0
\(539\) −118.736 137.554i −0.220289 0.255201i
\(540\) 0 0
\(541\) 514.014 296.766i 0.950118 0.548551i 0.0570004 0.998374i \(-0.481846\pi\)
0.893118 + 0.449823i \(0.148513\pi\)
\(542\) 0 0
\(543\) 708.476 + 409.039i 1.30474 + 0.753294i
\(544\) 0 0
\(545\) 488.810 0.896899
\(546\) 0 0
\(547\) −532.191 −0.972926 −0.486463 0.873701i \(-0.661713\pi\)
−0.486463 + 0.873701i \(0.661713\pi\)
\(548\) 0 0
\(549\) 360.692 + 208.246i 0.656998 + 0.379318i
\(550\) 0 0
\(551\) −222.372 + 128.387i −0.403579 + 0.233007i
\(552\) 0 0
\(553\) 411.912 + 188.585i 0.744867 + 0.341022i
\(554\) 0 0
\(555\) −278.477 482.335i −0.501759 0.869073i
\(556\) 0 0
\(557\) 797.199 + 460.263i 1.43124 + 0.826325i 0.997215 0.0745774i \(-0.0237608\pi\)
0.434022 + 0.900902i \(0.357094\pi\)
\(558\) 0 0
\(559\) 521.846i 0.933534i
\(560\) 0 0
\(561\) −467.189 −0.832779
\(562\) 0 0
\(563\) 399.420 691.815i 0.709449 1.22880i −0.255613 0.966779i \(-0.582277\pi\)
0.965062 0.262023i \(-0.0843895\pi\)
\(564\) 0 0
\(565\) 275.045 158.797i 0.486804 0.281057i
\(566\) 0 0
\(567\) 465.143 43.9718i 0.820358 0.0775516i
\(568\) 0 0
\(569\) −138.724 240.277i −0.243803 0.422279i 0.717992 0.696052i \(-0.245062\pi\)
−0.961794 + 0.273773i \(0.911728\pi\)
\(570\) 0 0
\(571\) −348.159 + 603.029i −0.609735 + 1.05609i 0.381549 + 0.924349i \(0.375391\pi\)
−0.991284 + 0.131744i \(0.957942\pi\)
\(572\) 0 0
\(573\) 483.293i 0.843443i
\(574\) 0 0
\(575\) 155.382i 0.270230i
\(576\) 0 0
\(577\) −227.366 + 393.809i −0.394048 + 0.682512i −0.992979 0.118289i \(-0.962259\pi\)
0.598931 + 0.800801i \(0.295592\pi\)
\(578\) 0 0
\(579\) −48.4045 83.8390i −0.0836001 0.144800i
\(580\) 0 0
\(581\) −236.127 332.259i −0.406415 0.571875i
\(582\) 0 0
\(583\) 71.2166 41.1169i 0.122155 0.0705264i
\(584\) 0 0
\(585\) 292.489 506.606i 0.499981 0.865993i
\(586\) 0 0
\(587\) 659.220 1.12303 0.561517 0.827466i \(-0.310218\pi\)
0.561517 + 0.827466i \(0.310218\pi\)
\(588\) 0 0
\(589\) 458.565i 0.778548i
\(590\) 0 0
\(591\) −1283.02 740.750i −2.17093 1.25338i
\(592\) 0 0
\(593\) 200.964 + 348.080i 0.338894 + 0.586982i 0.984225 0.176921i \(-0.0566138\pi\)
−0.645331 + 0.763903i \(0.723280\pi\)
\(594\) 0 0
\(595\) 591.046 420.040i 0.993355 0.705950i
\(596\) 0 0
\(597\) −880.978 + 508.633i −1.47568 + 0.851982i
\(598\) 0 0
\(599\) −139.863 80.7499i −0.233494 0.134808i 0.378689 0.925524i \(-0.376375\pi\)
−0.612183 + 0.790716i \(0.709708\pi\)
\(600\) 0 0
\(601\) 645.091 1.07336 0.536681 0.843785i \(-0.319678\pi\)
0.536681 + 0.843785i \(0.319678\pi\)
\(602\) 0 0
\(603\) 152.109 0.252253
\(604\) 0 0
\(605\) 336.143 + 194.072i 0.555608 + 0.320780i
\(606\) 0 0
\(607\) 219.907 126.963i 0.362285 0.209165i −0.307798 0.951452i \(-0.599592\pi\)
0.670083 + 0.742287i \(0.266259\pi\)
\(608\) 0 0
\(609\) −24.8036 262.378i −0.0407284 0.430834i
\(610\) 0 0
\(611\) −684.936 1186.34i −1.12101 1.94164i
\(612\) 0 0
\(613\) −775.160 447.539i −1.26454 0.730080i −0.290587 0.956849i \(-0.593851\pi\)
−0.973949 + 0.226768i \(0.927184\pi\)
\(614\) 0 0
\(615\) 13.9524i 0.0226869i
\(616\) 0 0
\(617\) −847.857 −1.37416 −0.687080 0.726582i \(-0.741108\pi\)
−0.687080 + 0.726582i \(0.741108\pi\)
\(618\) 0 0
\(619\) −25.3118 + 43.8414i −0.0408915 + 0.0708261i −0.885747 0.464169i \(-0.846353\pi\)
0.844855 + 0.534995i \(0.179686\pi\)
\(620\) 0 0
\(621\) 68.3815 39.4801i 0.110115 0.0635750i
\(622\) 0 0
\(623\) 129.548 282.962i 0.207942 0.454192i
\(624\) 0 0
\(625\) 92.8998 + 160.907i 0.148640 + 0.257451i
\(626\) 0 0
\(627\) 245.000 424.353i 0.390750 0.676799i
\(628\) 0 0
\(629\) 1000.69i 1.59092i
\(630\) 0 0
\(631\) 412.200i 0.653248i −0.945154 0.326624i \(-0.894089\pi\)
0.945154 0.326624i \(-0.105911\pi\)
\(632\) 0 0
\(633\) −139.292 + 241.260i −0.220050 + 0.381138i
\(634\) 0 0
\(635\) 378.968 + 656.392i 0.596800 + 1.03369i
\(636\) 0 0
\(637\) −720.988 251.065i −1.13185 0.394137i
\(638\) 0 0
\(639\) 1012.82 584.751i 1.58500 0.915103i
\(640\) 0 0
\(641\) −11.1639 + 19.3365i −0.0174164 + 0.0301661i −0.874602 0.484841i \(-0.838877\pi\)
0.857186 + 0.515007i \(0.172211\pi\)
\(642\) 0 0
\(643\) 707.978 1.10105 0.550527 0.834817i \(-0.314427\pi\)
0.550527 + 0.834817i \(0.314427\pi\)
\(644\) 0 0
\(645\) 533.546i 0.827204i
\(646\) 0 0
\(647\) −297.181 171.577i −0.459321 0.265189i 0.252438 0.967613i \(-0.418768\pi\)
−0.711759 + 0.702424i \(0.752101\pi\)
\(648\) 0 0
\(649\) 181.712 + 314.734i 0.279987 + 0.484952i
\(650\) 0 0
\(651\) 427.945 + 195.925i 0.657366 + 0.300961i
\(652\) 0 0
\(653\) −1097.53 + 633.659i −1.68075 + 0.970381i −0.719584 + 0.694405i \(0.755668\pi\)
−0.961165 + 0.275976i \(0.910999\pi\)
\(654\) 0 0
\(655\) −479.969 277.110i −0.732777 0.423069i
\(656\) 0 0
\(657\) −1170.55 −1.78166
\(658\) 0 0
\(659\) −391.748 −0.594458 −0.297229 0.954806i \(-0.596062\pi\)
−0.297229 + 0.954806i \(0.596062\pi\)
\(660\) 0 0
\(661\) −192.013 110.859i −0.290489 0.167714i 0.347674 0.937616i \(-0.386972\pi\)
−0.638162 + 0.769902i \(0.720305\pi\)
\(662\) 0 0
\(663\) −1699.89 + 981.433i −2.56394 + 1.48029i
\(664\) 0 0
\(665\) 71.5744 + 757.129i 0.107631 + 1.13854i
\(666\) 0 0
\(667\) 55.8351 + 96.7093i 0.0837109 + 0.144991i
\(668\) 0 0
\(669\) 488.034 + 281.766i 0.729497 + 0.421175i
\(670\) 0 0
\(671\) 148.882i 0.221881i
\(672\) 0 0
\(673\) −749.039 −1.11298 −0.556492 0.830853i \(-0.687853\pi\)
−0.556492 + 0.830853i \(0.687853\pi\)
\(674\) 0 0
\(675\) −35.9920 + 62.3399i −0.0533214 + 0.0923554i
\(676\) 0 0
\(677\) 555.738 320.856i 0.820884 0.473938i −0.0298372 0.999555i \(-0.509499\pi\)
0.850721 + 0.525617i \(0.176166\pi\)
\(678\) 0 0
\(679\) 675.875 + 951.037i 0.995398 + 1.40064i
\(680\) 0 0
\(681\) 873.505 + 1512.95i 1.28268 + 2.22167i
\(682\) 0 0
\(683\) −142.757 + 247.262i −0.209014 + 0.362023i −0.951404 0.307945i \(-0.900359\pi\)
0.742390 + 0.669968i \(0.233692\pi\)
\(684\) 0 0
\(685\) 541.930i 0.791139i
\(686\) 0 0
\(687\) 915.830i 1.33309i
\(688\) 0 0
\(689\) 172.750 299.212i 0.250726 0.434270i
\(690\) 0 0
\(691\) −584.960 1013.18i −0.846541 1.46625i −0.884276 0.466964i \(-0.845348\pi\)
0.0377355 0.999288i \(-0.487986\pi\)
\(692\) 0 0
\(693\) 156.001 + 219.512i 0.225110 + 0.316756i
\(694\) 0 0
\(695\) 14.4482 8.34167i 0.0207888 0.0120024i
\(696\) 0 0
\(697\) −12.5343 + 21.7100i −0.0179832 + 0.0311477i
\(698\) 0 0
\(699\) 652.190 0.933033
\(700\) 0 0
\(701\) 779.001i 1.11127i −0.831426 0.555635i \(-0.812475\pi\)
0.831426 0.555635i \(-0.187525\pi\)
\(702\) 0 0
\(703\) −908.935 524.774i −1.29294 0.746478i
\(704\) 0 0
\(705\) −700.294 1212.94i −0.993325 1.72049i
\(706\) 0 0
\(707\) 75.4787 + 798.429i 0.106759 + 1.12932i
\(708\) 0 0
\(709\) −220.696 + 127.419i −0.311278 + 0.179716i −0.647498 0.762067i \(-0.724185\pi\)
0.336220 + 0.941783i \(0.390851\pi\)
\(710\) 0 0
\(711\) −581.444 335.697i −0.817784 0.472148i
\(712\) 0 0
\(713\) −199.429 −0.279704
\(714\) 0 0
\(715\) −209.111 −0.292463
\(716\) 0 0
\(717\) 51.8602 + 29.9415i 0.0723295 + 0.0417594i
\(718\) 0 0
\(719\) 178.500 103.057i 0.248262 0.143334i −0.370706 0.928750i \(-0.620884\pi\)
0.618968 + 0.785416i \(0.287551\pi\)
\(720\) 0 0
\(721\) 127.161 + 58.2179i 0.176367 + 0.0807460i
\(722\) 0 0
\(723\) 640.742 + 1109.80i 0.886227 + 1.53499i
\(724\) 0 0
\(725\) −88.1650 50.9021i −0.121607 0.0702097i
\(726\) 0 0
\(727\) 76.0393i 0.104593i −0.998632 0.0522966i \(-0.983346\pi\)
0.998632 0.0522966i \(-0.0166541\pi\)
\(728\) 0 0
\(729\) −932.013 −1.27848
\(730\) 0 0
\(731\) −479.316 + 830.199i −0.655699 + 1.13570i
\(732\) 0 0
\(733\) 257.623 148.739i 0.351464 0.202918i −0.313866 0.949467i \(-0.601624\pi\)
0.665330 + 0.746550i \(0.268291\pi\)
\(734\) 0 0
\(735\) −737.154 256.694i −1.00293 0.349244i
\(736\) 0 0
\(737\) −27.1870 47.0893i −0.0368888 0.0638932i
\(738\) 0 0
\(739\) 266.147 460.979i 0.360144 0.623788i −0.627840 0.778342i \(-0.716061\pi\)
0.987984 + 0.154554i \(0.0493942\pi\)
\(740\) 0 0
\(741\) 2058.71i 2.77828i
\(742\) 0 0
\(743\) 187.452i 0.252291i −0.992012 0.126145i \(-0.959739\pi\)
0.992012 0.126145i \(-0.0402606\pi\)
\(744\) 0 0
\(745\) 478.312 828.460i 0.642029 1.11203i
\(746\) 0 0
\(747\) 302.047 + 523.161i 0.404347 + 0.700349i
\(748\) 0 0
\(749\) −107.882 + 235.639i −0.144035 + 0.314605i
\(750\) 0 0
\(751\) −399.197 + 230.476i −0.531554 + 0.306893i −0.741649 0.670788i \(-0.765956\pi\)
0.210095 + 0.977681i \(0.432623\pi\)
\(752\) 0 0
\(753\) 268.632 465.285i 0.356749 0.617908i
\(754\) 0 0
\(755\) −563.599 −0.746489
\(756\) 0 0
\(757\) 1381.08i 1.82441i 0.409735 + 0.912205i \(0.365621\pi\)
−0.409735 + 0.912205i \(0.634379\pi\)
\(758\) 0 0
\(759\) −184.551 106.550i −0.243150 0.140382i
\(760\) 0 0
\(761\) −341.816 592.043i −0.449167 0.777980i 0.549165 0.835714i \(-0.314946\pi\)
−0.998332 + 0.0577337i \(0.981613\pi\)
\(762\) 0 0
\(763\) 88.9793 + 941.242i 0.116618 + 1.23361i
\(764\) 0 0
\(765\) −930.636 + 537.303i −1.21652 + 0.702357i
\(766\) 0 0
\(767\) 1322.33 + 763.450i 1.72404 + 0.995372i
\(768\) 0 0
\(769\) 592.828 0.770907 0.385454 0.922727i \(-0.374045\pi\)
0.385454 + 0.922727i \(0.374045\pi\)
\(770\) 0 0
\(771\) −1553.09 −2.01439
\(772\) 0 0
\(773\) 43.9419 + 25.3699i 0.0568459 + 0.0328200i 0.528154 0.849149i \(-0.322885\pi\)
−0.471308 + 0.881969i \(0.656218\pi\)
\(774\) 0 0
\(775\) 157.452 90.9047i 0.203163 0.117296i
\(776\) 0 0
\(777\) 878.083 624.029i 1.13009 0.803126i
\(778\) 0 0
\(779\) −13.1463 22.7700i −0.0168758 0.0292298i
\(780\) 0 0
\(781\) −362.051 209.030i −0.463573 0.267644i
\(782\) 0 0
\(783\) 51.7335i 0.0660708i
\(784\) 0 0
\(785\) −568.349 −0.724012
\(786\) 0 0
\(787\) −216.453 + 374.908i −0.275036 + 0.476376i −0.970144 0.242529i \(-0.922023\pi\)
0.695109 + 0.718905i \(0.255356\pi\)
\(788\) 0 0
\(789\) −1602.85 + 925.407i −2.03150 + 1.17289i
\(790\) 0 0
\(791\) 355.843 + 500.714i 0.449865 + 0.633013i
\(792\) 0 0
\(793\) −312.760 541.717i −0.394401 0.683123i
\(794\) 0 0
\(795\) 176.623 305.921i 0.222168 0.384806i
\(796\) 0 0
\(797\) 526.301i 0.660352i 0.943919 + 0.330176i \(0.107108\pi\)
−0.943919 + 0.330176i \(0.892892\pi\)
\(798\) 0 0
\(799\) 2516.46i 3.14951i
\(800\) 0 0
\(801\) −230.606 + 399.422i −0.287898 + 0.498654i
\(802\) 0 0
\(803\) 209.218 + 362.376i 0.260545 + 0.451277i
\(804\) 0 0
\(805\) 329.274 31.1276i 0.409036 0.0386678i
\(806\) 0 0
\(807\) 1086.81 627.472i 1.34673 0.777537i
\(808\) 0 0
\(809\) 391.649 678.356i 0.484115 0.838511i −0.515719 0.856758i \(-0.672475\pi\)
0.999834 + 0.0182466i \(0.00580838\pi\)
\(810\) 0 0
\(811\) 1526.43 1.88216 0.941079 0.338188i \(-0.109814\pi\)
0.941079 + 0.338188i \(0.109814\pi\)
\(812\) 0 0
\(813\) 760.295i 0.935173i
\(814\) 0 0
\(815\) −428.054 247.137i −0.525220 0.303236i
\(816\) 0 0
\(817\) −502.720 870.736i −0.615324 1.06577i
\(818\) 0 0
\(819\) 1028.75 + 470.992i 1.25611 + 0.575082i
\(820\) 0 0
\(821\) −311.578 + 179.890i −0.379511 + 0.219111i −0.677605 0.735426i \(-0.736982\pi\)
0.298095 + 0.954536i \(0.403649\pi\)
\(822\) 0 0
\(823\) 199.591 + 115.234i 0.242516 + 0.140017i 0.616333 0.787486i \(-0.288618\pi\)
−0.373817 + 0.927503i \(0.621951\pi\)
\(824\) 0 0
\(825\) 194.273 0.235482
\(826\) 0 0
\(827\) 515.503 0.623340 0.311670 0.950190i \(-0.399112\pi\)
0.311670 + 0.950190i \(0.399112\pi\)
\(828\) 0 0
\(829\) 1014.52 + 585.733i 1.22379 + 0.706554i 0.965723 0.259573i \(-0.0835820\pi\)
0.258064 + 0.966128i \(0.416915\pi\)
\(830\) 0 0
\(831\) 1512.17 873.054i 1.81970 1.05061i
\(832\) 0 0
\(833\) 916.410 + 1061.65i 1.10013 + 1.27448i
\(834\) 0 0
\(835\) −172.496 298.772i −0.206582 0.357810i
\(836\) 0 0
\(837\) −80.0116 46.1947i −0.0955934 0.0551909i
\(838\) 0 0
\(839\) 564.433i 0.672745i 0.941729 + 0.336372i \(0.109200\pi\)
−0.941729 + 0.336372i \(0.890800\pi\)
\(840\) 0 0
\(841\) 767.835 0.913003
\(842\) 0 0
\(843\) −405.547 + 702.428i −0.481076 + 0.833248i
\(844\) 0 0
\(845\) −231.172 + 133.467i −0.273576 + 0.157949i
\(846\) 0 0
\(847\) −312.512 + 682.596i −0.368963 + 0.805899i
\(848\) 0 0
\(849\) −122.713 212.545i −0.144538 0.250347i
\(850\) 0 0
\(851\) −228.223 + 395.294i −0.268183 + 0.464506i
\(852\) 0 0
\(853\) 462.894i 0.542666i 0.962486 + 0.271333i \(0.0874644\pi\)
−0.962486 + 0.271333i \(0.912536\pi\)
\(854\) 0 0
\(855\) 1127.08i 1.31822i
\(856\) 0 0
\(857\) 423.274 733.131i 0.493902 0.855463i −0.506074 0.862490i \(-0.668904\pi\)
0.999975 + 0.00702758i \(0.00223697\pi\)
\(858\) 0 0
\(859\) −94.2748 163.289i −0.109749 0.190092i 0.805919 0.592025i \(-0.201672\pi\)
−0.915669 + 0.401934i \(0.868338\pi\)
\(860\) 0 0
\(861\) 26.8665 2.53979i 0.0312038 0.00294982i
\(862\) 0 0
\(863\) −678.004 + 391.446i −0.785636 + 0.453587i −0.838424 0.545018i \(-0.816523\pi\)
0.0527878 + 0.998606i \(0.483189\pi\)
\(864\) 0 0
\(865\) 121.061 209.684i 0.139955 0.242409i
\(866\) 0 0
\(867\) 2333.73 2.69173
\(868\) 0 0
\(869\) 240.002i 0.276182i
\(870\) 0 0
\(871\) −197.843 114.225i −0.227144 0.131142i
\(872\) 0 0
\(873\) −864.559 1497.46i −0.990331 1.71530i
\(874\) 0 0
\(875\) −762.035 + 541.557i −0.870897 + 0.618922i
\(876\) 0 0
\(877\) −57.9190 + 33.4395i −0.0660421 + 0.0381295i −0.532657 0.846331i \(-0.678807\pi\)
0.466615 + 0.884460i \(0.345473\pi\)
\(878\) 0 0
\(879\) −1193.68 689.170i −1.35799 0.784038i
\(880\) 0 0
\(881\) 1077.23 1.22274 0.611369 0.791345i \(-0.290619\pi\)
0.611369 + 0.791345i \(0.290619\pi\)
\(882\) 0 0
\(883\) −50.4655 −0.0571524 −0.0285762 0.999592i \(-0.509097\pi\)
−0.0285762 + 0.999592i \(0.509097\pi\)
\(884\) 0 0
\(885\) 1351.98 + 780.568i 1.52767 + 0.881998i
\(886\) 0 0
\(887\) −798.495 + 461.011i −0.900220 + 0.519742i −0.877272 0.479994i \(-0.840639\pi\)
−0.0229484 + 0.999737i \(0.507305\pi\)
\(888\) 0 0
\(889\) −1194.95 + 849.217i −1.34415 + 0.955250i
\(890\) 0 0
\(891\) 123.759 + 214.357i 0.138899 + 0.240581i
\(892\) 0 0
\(893\) −2285.73 1319.67i −2.55961 1.47779i
\(894\) 0 0
\(895\) 441.414i 0.493200i
\(896\) 0 0
\(897\) −895.329 −0.998137
\(898\) 0 0
\(899\) 65.3315 113.157i 0.0726713 0.125870i
\(900\) 0 0
\(901\) −549.653 + 317.342i −0.610048 + 0.352211i
\(902\) 0 0
\(903\) 1027.39 97.1228i 1.13775 0.107556i
\(904\) 0 0
\(905\) −336.325 582.532i −0.371630 0.643682i
\(906\) 0 0
\(907\) −130.121 + 225.376i −0.143463 + 0.248485i −0.928798 0.370585i \(-0.879157\pi\)
0.785336 + 0.619070i \(0.212490\pi\)
\(908\) 0 0
\(909\) 1188.56i 1.30754i
\(910\) 0 0
\(911\) 143.580i 0.157607i −0.996890 0.0788034i \(-0.974890\pi\)
0.996890 0.0788034i \(-0.0251099\pi\)
\(912\) 0 0
\(913\) 107.972 187.014i 0.118261 0.204834i
\(914\) 0 0
\(915\) −319.773 553.863i −0.349479 0.605315i
\(916\) 0 0
\(917\) 446.227 974.661i 0.486617 1.06288i
\(918\) 0 0
\(919\) −511.111 + 295.090i −0.556160 + 0.321099i −0.751603 0.659616i \(-0.770719\pi\)
0.195443 + 0.980715i \(0.437386\pi\)
\(920\) 0 0
\(921\) 41.2328 71.4173i 0.0447696 0.0775432i
\(922\) 0 0
\(923\) −1756.45 −1.90298
\(924\) 0 0
\(925\) 416.119i 0.449859i
\(926\) 0 0
\(927\) −179.497 103.633i −0.193632 0.111794i
\(928\) 0 0
\(929\) 771.734 + 1336.68i 0.830715 + 1.43884i 0.897472 + 0.441071i \(0.145401\pi\)
−0.0667570 + 0.997769i \(0.521265\pi\)
\(930\) 0 0
\(931\) −1444.88 + 275.644i −1.55197 + 0.296073i
\(932\) 0 0
\(933\) −848.509 + 489.887i −0.909442 + 0.525067i
\(934\) 0 0
\(935\) 332.673 + 192.069i 0.355800 + 0.205421i
\(936\) 0 0
\(937\) 430.049 0.458964 0.229482 0.973313i \(-0.426297\pi\)
0.229482 + 0.973313i \(0.426297\pi\)
\(938\) 0 0
\(939\) 361.379 0.384855
\(940\) 0 0
\(941\) 570.055 + 329.122i 0.605797 + 0.349757i 0.771319 0.636449i \(-0.219597\pi\)
−0.165522 + 0.986206i \(0.552931\pi\)
\(942\) 0 0
\(943\) −9.90265 + 5.71730i −0.0105012 + 0.00606288i
\(944\) 0 0
\(945\) 139.316 + 63.7829i 0.147425 + 0.0674952i
\(946\) 0 0
\(947\) 210.844 + 365.192i 0.222644 + 0.385630i 0.955610 0.294635i \(-0.0951980\pi\)
−0.732966 + 0.680265i \(0.761865\pi\)
\(948\) 0 0
\(949\) 1522.50 + 879.015i 1.60432 + 0.926254i
\(950\) 0 0
\(951\) 627.585i 0.659921i
\(952\) 0 0
\(953\) 872.394 0.915419 0.457709 0.889102i \(-0.348670\pi\)
0.457709 + 0.889102i \(0.348670\pi\)
\(954\) 0 0
\(955\) −198.689 + 344.140i −0.208052 + 0.360356i
\(956\) 0 0
\(957\) 120.915 69.8101i 0.126348 0.0729469i
\(958\) 0 0
\(959\) −1043.53 + 98.6489i −1.08814 + 0.102866i
\(960\) 0 0
\(961\) −363.826 630.165i −0.378591 0.655739i
\(962\) 0 0
\(963\) 192.040 332.622i 0.199418 0.345402i
\(964\) 0 0
\(965\) 79.5994i 0.0824865i
\(966\) 0 0
\(967\) 1130.71i 1.16930i −0.811286 0.584649i \(-0.801232\pi\)
0.811286 0.584649i \(-0.198768\pi\)
\(968\) 0 0
\(969\) −1890.93 + 3275.18i −1.95142 + 3.37996i
\(970\) 0 0
\(971\) −194.294 336.527i −0.200097 0.346578i 0.748463 0.663177i \(-0.230792\pi\)
−0.948559 + 0.316599i \(0.897459\pi\)
\(972\) 0 0
\(973\) 18.6926 + 26.3027i 0.0192113 + 0.0270326i
\(974\) 0 0
\(975\) 706.872 408.113i 0.724997 0.418577i
\(976\) 0 0
\(977\) −235.013 + 407.055i −0.240546 + 0.416638i −0.960870 0.277000i \(-0.910660\pi\)
0.720324 + 0.693638i \(0.243993\pi\)
\(978\) 0 0
\(979\) 164.869 0.168405
\(980\) 0 0
\(981\) 1401.15i 1.42829i
\(982\) 0 0
\(983\) −1025.30 591.957i −1.04303 0.602195i −0.122341 0.992488i \(-0.539040\pi\)
−0.920691 + 0.390293i \(0.872374\pi\)
\(984\) 0 0
\(985\) 609.069 + 1054.94i 0.618344 + 1.07100i
\(986\) 0 0
\(987\) 2208.14 1569.27i 2.23723 1.58993i
\(988\) 0 0
\(989\) −378.682 + 218.632i −0.382894 + 0.221064i
\(990\) 0 0
\(991\) 875.407 + 505.417i 0.883357 + 0.510007i 0.871764 0.489926i \(-0.162976\pi\)
0.0115934 + 0.999933i \(0.496310\pi\)
\(992\) 0 0
\(993\) −924.168 −0.930683
\(994\) 0 0
\(995\) 836.429 0.840632
\(996\) 0 0
\(997\) 518.411 + 299.305i 0.519971 + 0.300205i 0.736923 0.675977i \(-0.236278\pi\)
−0.216952 + 0.976182i \(0.569611\pi\)
\(998\) 0 0
\(999\) −183.128 + 105.729i −0.183311 + 0.105835i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.o.b.95.2 yes 20
4.3 odd 2 inner 448.3.o.b.95.9 yes 20
7.2 even 3 448.3.o.a.415.2 yes 20
8.3 odd 2 448.3.o.a.95.2 20
8.5 even 2 448.3.o.a.95.9 yes 20
28.23 odd 6 448.3.o.a.415.9 yes 20
56.37 even 6 inner 448.3.o.b.415.9 yes 20
56.51 odd 6 inner 448.3.o.b.415.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.3.o.a.95.2 20 8.3 odd 2
448.3.o.a.95.9 yes 20 8.5 even 2
448.3.o.a.415.2 yes 20 7.2 even 3
448.3.o.a.415.9 yes 20 28.23 odd 6
448.3.o.b.95.2 yes 20 1.1 even 1 trivial
448.3.o.b.95.9 yes 20 4.3 odd 2 inner
448.3.o.b.415.2 yes 20 56.51 odd 6 inner
448.3.o.b.415.9 yes 20 56.37 even 6 inner