Properties

Label 448.3.o.b.415.9
Level $448$
Weight $3$
Character 448.415
Analytic conductor $12.207$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(95,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.95"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 34 x^{18} + 755 x^{16} - 9698 x^{14} + 89921 x^{12} - 522048 x^{10} + 2189920 x^{8} + \cdots + 7311616 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.9
Root \(2.85584 + 1.64882i\) of defining polynomial
Character \(\chi\) \(=\) 448.415
Dual form 448.3.o.b.95.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.20080 + 3.81190i) q^{3} +(3.13426 + 1.80957i) q^{5} +(-4.05500 + 5.70587i) q^{7} +(-5.18704 + 8.98421i) q^{9} +(1.85420 + 3.21157i) q^{11} -15.5806i q^{13} +15.9300i q^{15} +(14.3108 + 24.7871i) q^{17} +(-15.0096 + 25.9974i) q^{19} +(-30.6744 - 2.89977i) q^{21} +(-11.3062 - 6.52765i) q^{23} +(-5.95093 - 10.3073i) q^{25} -6.04813 q^{27} -8.55364i q^{29} +(13.2292 - 7.63786i) q^{31} +(-8.16146 + 14.1361i) q^{33} +(-23.0346 + 10.5459i) q^{35} +(-30.2785 - 17.4813i) q^{37} +(59.3918 - 34.2899i) q^{39} -0.875858 q^{41} +33.4932 q^{43} +(-32.5151 + 18.7726i) q^{45} +(76.1422 + 43.9607i) q^{47} +(-16.1139 - 46.2746i) q^{49} +(-62.9905 + 109.103i) q^{51} +(-19.2041 + 11.0875i) q^{53} +13.4212i q^{55} -132.132 q^{57} +(-48.9999 - 84.8704i) q^{59} +(-34.7686 - 20.0736i) q^{61} +(-30.2293 - 66.0276i) q^{63} +(28.1942 - 48.8338i) q^{65} +(7.33119 + 12.6980i) q^{67} -57.4642i q^{69} +112.733i q^{71} +(56.4171 + 97.7174i) q^{73} +(26.1936 - 45.3686i) q^{75} +(-25.8436 - 2.44310i) q^{77} +(-56.0478 - 32.3592i) q^{79} +(33.3726 + 57.8031i) q^{81} +58.2311 q^{83} +103.586i q^{85} +(32.6056 - 18.8248i) q^{87} +(-22.2291 + 38.5019i) q^{89} +(88.9011 + 63.1795i) q^{91} +(58.2295 + 33.6188i) q^{93} +(-94.0881 + 54.3218i) q^{95} +166.677 q^{97} -38.4713 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 28 q^{9} + 46 q^{17} - 114 q^{21} + 36 q^{25} + 94 q^{33} + 114 q^{37} - 160 q^{41} - 708 q^{45} - 92 q^{49} - 6 q^{53} + 308 q^{57} + 90 q^{61} + 212 q^{65} + 314 q^{73} - 198 q^{77} - 322 q^{81}+ \cdots - 224 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.20080 + 3.81190i 0.733600 + 1.27063i 0.955335 + 0.295525i \(0.0954947\pi\)
−0.221735 + 0.975107i \(0.571172\pi\)
\(4\) 0 0
\(5\) 3.13426 + 1.80957i 0.626853 + 0.361914i 0.779532 0.626362i \(-0.215457\pi\)
−0.152679 + 0.988276i \(0.548790\pi\)
\(6\) 0 0
\(7\) −4.05500 + 5.70587i −0.579286 + 0.815124i
\(8\) 0 0
\(9\) −5.18704 + 8.98421i −0.576337 + 0.998246i
\(10\) 0 0
\(11\) 1.85420 + 3.21157i 0.168564 + 0.291961i 0.937915 0.346865i \(-0.112754\pi\)
−0.769351 + 0.638826i \(0.779420\pi\)
\(12\) 0 0
\(13\) 15.5806i 1.19851i −0.800558 0.599255i \(-0.795463\pi\)
0.800558 0.599255i \(-0.204537\pi\)
\(14\) 0 0
\(15\) 15.9300i 1.06200i
\(16\) 0 0
\(17\) 14.3108 + 24.7871i 0.841814 + 1.45806i 0.888360 + 0.459148i \(0.151845\pi\)
−0.0465463 + 0.998916i \(0.514822\pi\)
\(18\) 0 0
\(19\) −15.0096 + 25.9974i −0.789979 + 1.36828i 0.136000 + 0.990709i \(0.456575\pi\)
−0.925979 + 0.377575i \(0.876758\pi\)
\(20\) 0 0
\(21\) −30.6744 2.89977i −1.46069 0.138085i
\(22\) 0 0
\(23\) −11.3062 6.52765i −0.491575 0.283811i 0.233653 0.972320i \(-0.424932\pi\)
−0.725228 + 0.688509i \(0.758265\pi\)
\(24\) 0 0
\(25\) −5.95093 10.3073i −0.238037 0.412292i
\(26\) 0 0
\(27\) −6.04813 −0.224005
\(28\) 0 0
\(29\) 8.55364i 0.294953i −0.989066 0.147476i \(-0.952885\pi\)
0.989066 0.147476i \(-0.0471151\pi\)
\(30\) 0 0
\(31\) 13.2292 7.63786i 0.426747 0.246383i −0.271213 0.962519i \(-0.587425\pi\)
0.697960 + 0.716137i \(0.254091\pi\)
\(32\) 0 0
\(33\) −8.16146 + 14.1361i −0.247317 + 0.428365i
\(34\) 0 0
\(35\) −23.0346 + 10.5459i −0.658132 + 0.301311i
\(36\) 0 0
\(37\) −30.2785 17.4813i −0.818337 0.472467i 0.0315058 0.999504i \(-0.489970\pi\)
−0.849843 + 0.527037i \(0.823303\pi\)
\(38\) 0 0
\(39\) 59.3918 34.2899i 1.52287 0.879227i
\(40\) 0 0
\(41\) −0.875858 −0.0213624 −0.0106812 0.999943i \(-0.503400\pi\)
−0.0106812 + 0.999943i \(0.503400\pi\)
\(42\) 0 0
\(43\) 33.4932 0.778912 0.389456 0.921045i \(-0.372663\pi\)
0.389456 + 0.921045i \(0.372663\pi\)
\(44\) 0 0
\(45\) −32.5151 + 18.7726i −0.722557 + 0.417169i
\(46\) 0 0
\(47\) 76.1422 + 43.9607i 1.62005 + 0.935335i 0.986906 + 0.161299i \(0.0515682\pi\)
0.633142 + 0.774036i \(0.281765\pi\)
\(48\) 0 0
\(49\) −16.1139 46.2746i −0.328855 0.944380i
\(50\) 0 0
\(51\) −62.9905 + 109.103i −1.23511 + 2.13927i
\(52\) 0 0
\(53\) −19.2041 + 11.0875i −0.362341 + 0.209198i −0.670107 0.742264i \(-0.733752\pi\)
0.307766 + 0.951462i \(0.400419\pi\)
\(54\) 0 0
\(55\) 13.4212i 0.244022i
\(56\) 0 0
\(57\) −132.132 −2.31811
\(58\) 0 0
\(59\) −48.9999 84.8704i −0.830507 1.43848i −0.897636 0.440737i \(-0.854717\pi\)
0.0671290 0.997744i \(-0.478616\pi\)
\(60\) 0 0
\(61\) −34.7686 20.0736i −0.569977 0.329076i 0.187163 0.982329i \(-0.440071\pi\)
−0.757140 + 0.653253i \(0.773404\pi\)
\(62\) 0 0
\(63\) −30.2293 66.0276i −0.479830 1.04806i
\(64\) 0 0
\(65\) 28.1942 48.8338i 0.433757 0.751290i
\(66\) 0 0
\(67\) 7.33119 + 12.6980i 0.109421 + 0.189522i 0.915536 0.402237i \(-0.131767\pi\)
−0.806115 + 0.591759i \(0.798434\pi\)
\(68\) 0 0
\(69\) 57.4642i 0.832815i
\(70\) 0 0
\(71\) 112.733i 1.58779i 0.608055 + 0.793895i \(0.291950\pi\)
−0.608055 + 0.793895i \(0.708050\pi\)
\(72\) 0 0
\(73\) 56.4171 + 97.7174i 0.772838 + 1.33859i 0.936002 + 0.351995i \(0.114497\pi\)
−0.163164 + 0.986599i \(0.552170\pi\)
\(74\) 0 0
\(75\) 26.1936 45.3686i 0.349248 0.604915i
\(76\) 0 0
\(77\) −25.8436 2.44310i −0.335631 0.0317286i
\(78\) 0 0
\(79\) −56.0478 32.3592i −0.709466 0.409611i 0.101397 0.994846i \(-0.467669\pi\)
−0.810863 + 0.585235i \(0.801002\pi\)
\(80\) 0 0
\(81\) 33.3726 + 57.8031i 0.412008 + 0.713618i
\(82\) 0 0
\(83\) 58.2311 0.701580 0.350790 0.936454i \(-0.385913\pi\)
0.350790 + 0.936454i \(0.385913\pi\)
\(84\) 0 0
\(85\) 103.586i 1.21866i
\(86\) 0 0
\(87\) 32.6056 18.8248i 0.374777 0.216377i
\(88\) 0 0
\(89\) −22.2291 + 38.5019i −0.249765 + 0.432606i −0.963461 0.267850i \(-0.913687\pi\)
0.713696 + 0.700456i \(0.247020\pi\)
\(90\) 0 0
\(91\) 88.9011 + 63.1795i 0.976935 + 0.694281i
\(92\) 0 0
\(93\) 58.2295 + 33.6188i 0.626123 + 0.361492i
\(94\) 0 0
\(95\) −94.0881 + 54.3218i −0.990401 + 0.571808i
\(96\) 0 0
\(97\) 166.677 1.71832 0.859159 0.511708i \(-0.170987\pi\)
0.859159 + 0.511708i \(0.170987\pi\)
\(98\) 0 0
\(99\) −38.4713 −0.388599
\(100\) 0 0
\(101\) 99.2204 57.2849i 0.982380 0.567178i 0.0793924 0.996843i \(-0.474702\pi\)
0.902988 + 0.429666i \(0.141369\pi\)
\(102\) 0 0
\(103\) −17.3025 9.98959i −0.167985 0.0969863i 0.413650 0.910436i \(-0.364254\pi\)
−0.581635 + 0.813450i \(0.697587\pi\)
\(104\) 0 0
\(105\) −90.8944 64.5961i −0.865661 0.615201i
\(106\) 0 0
\(107\) −18.5115 + 32.0628i −0.173005 + 0.299653i −0.939469 0.342634i \(-0.888681\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(108\) 0 0
\(109\) 116.968 67.5313i 1.07310 0.619553i 0.144072 0.989567i \(-0.453980\pi\)
0.929026 + 0.370014i \(0.120647\pi\)
\(110\) 0 0
\(111\) 153.891i 1.38641i
\(112\) 0 0
\(113\) 87.7541 0.776585 0.388293 0.921536i \(-0.373065\pi\)
0.388293 + 0.921536i \(0.373065\pi\)
\(114\) 0 0
\(115\) −23.6245 40.9188i −0.205430 0.355815i
\(116\) 0 0
\(117\) 139.980 + 80.8174i 1.19641 + 0.690747i
\(118\) 0 0
\(119\) −199.462 18.8560i −1.67615 0.158453i
\(120\) 0 0
\(121\) 53.6239 92.8793i 0.443172 0.767597i
\(122\) 0 0
\(123\) −1.92759 3.33868i −0.0156715 0.0271438i
\(124\) 0 0
\(125\) 133.553i 1.06842i
\(126\) 0 0
\(127\) 209.424i 1.64901i 0.565853 + 0.824506i \(0.308547\pi\)
−0.565853 + 0.824506i \(0.691453\pi\)
\(128\) 0 0
\(129\) 73.7118 + 127.673i 0.571410 + 0.989711i
\(130\) 0 0
\(131\) 76.5681 132.620i 0.584489 1.01236i −0.410450 0.911883i \(-0.634628\pi\)
0.994939 0.100481i \(-0.0320383\pi\)
\(132\) 0 0
\(133\) −87.4738 191.062i −0.657697 1.43656i
\(134\) 0 0
\(135\) −18.9564 10.9445i −0.140418 0.0810703i
\(136\) 0 0
\(137\) −74.8701 129.679i −0.546497 0.946561i −0.998511 0.0545502i \(-0.982628\pi\)
0.452014 0.892011i \(-0.350706\pi\)
\(138\) 0 0
\(139\) −4.60976 −0.0331637 −0.0165819 0.999863i \(-0.505278\pi\)
−0.0165819 + 0.999863i \(0.505278\pi\)
\(140\) 0 0
\(141\) 386.995i 2.74465i
\(142\) 0 0
\(143\) 50.0384 28.8897i 0.349919 0.202026i
\(144\) 0 0
\(145\) 15.4784 26.8093i 0.106747 0.184892i
\(146\) 0 0
\(147\) 140.931 163.266i 0.958712 1.11065i
\(148\) 0 0
\(149\) 228.911 + 132.162i 1.53632 + 0.886992i 0.999050 + 0.0435793i \(0.0138761\pi\)
0.537266 + 0.843413i \(0.319457\pi\)
\(150\) 0 0
\(151\) 134.864 77.8638i 0.893139 0.515654i 0.0181710 0.999835i \(-0.494216\pi\)
0.874968 + 0.484181i \(0.160882\pi\)
\(152\) 0 0
\(153\) −296.923 −1.94067
\(154\) 0 0
\(155\) 55.2849 0.356677
\(156\) 0 0
\(157\) −136.001 + 78.5200i −0.866246 + 0.500128i −0.866099 0.499872i \(-0.833380\pi\)
−0.000147402 1.00000i \(0.500047\pi\)
\(158\) 0 0
\(159\) −84.5287 48.8027i −0.531627 0.306935i
\(160\) 0 0
\(161\) 83.0927 38.0422i 0.516104 0.236287i
\(162\) 0 0
\(163\) 68.2863 118.275i 0.418934 0.725615i −0.576898 0.816816i \(-0.695737\pi\)
0.995833 + 0.0912008i \(0.0290705\pi\)
\(164\) 0 0
\(165\) −51.1603 + 29.5374i −0.310063 + 0.179015i
\(166\) 0 0
\(167\) 95.3243i 0.570804i −0.958408 0.285402i \(-0.907873\pi\)
0.958408 0.285402i \(-0.0921272\pi\)
\(168\) 0 0
\(169\) −73.7564 −0.436428
\(170\) 0 0
\(171\) −155.711 269.699i −0.910589 1.57719i
\(172\) 0 0
\(173\) 57.9376 + 33.4503i 0.334900 + 0.193354i 0.658014 0.753005i \(-0.271397\pi\)
−0.323115 + 0.946360i \(0.604730\pi\)
\(174\) 0 0
\(175\) 82.9432 + 7.84094i 0.473961 + 0.0448054i
\(176\) 0 0
\(177\) 215.678 373.565i 1.21852 2.11054i
\(178\) 0 0
\(179\) −60.9834 105.626i −0.340689 0.590091i 0.643872 0.765134i \(-0.277327\pi\)
−0.984561 + 0.175042i \(0.943994\pi\)
\(180\) 0 0
\(181\) 185.859i 1.02685i 0.858136 + 0.513423i \(0.171623\pi\)
−0.858136 + 0.513423i \(0.828377\pi\)
\(182\) 0 0
\(183\) 176.712i 0.965641i
\(184\) 0 0
\(185\) −63.2671 109.582i −0.341984 0.592334i
\(186\) 0 0
\(187\) −53.0704 + 91.9206i −0.283799 + 0.491554i
\(188\) 0 0
\(189\) 24.5252 34.5098i 0.129763 0.182592i
\(190\) 0 0
\(191\) 95.0890 + 54.8997i 0.497848 + 0.287433i 0.727825 0.685763i \(-0.240532\pi\)
−0.229976 + 0.973196i \(0.573865\pi\)
\(192\) 0 0
\(193\) −10.9970 19.0474i −0.0569794 0.0986912i 0.836129 0.548533i \(-0.184814\pi\)
−0.893108 + 0.449842i \(0.851480\pi\)
\(194\) 0 0
\(195\) 248.199 1.27282
\(196\) 0 0
\(197\) 336.582i 1.70854i −0.519830 0.854270i \(-0.674005\pi\)
0.519830 0.854270i \(-0.325995\pi\)
\(198\) 0 0
\(199\) −200.150 + 115.556i −1.00578 + 0.580686i −0.909952 0.414713i \(-0.863882\pi\)
−0.0958246 + 0.995398i \(0.530549\pi\)
\(200\) 0 0
\(201\) −32.2689 + 55.8915i −0.160542 + 0.278067i
\(202\) 0 0
\(203\) 48.8059 + 34.6850i 0.240423 + 0.170862i
\(204\) 0 0
\(205\) −2.74517 1.58493i −0.0133911 0.00773134i
\(206\) 0 0
\(207\) 117.292 67.7183i 0.566626 0.327142i
\(208\) 0 0
\(209\) −111.323 −0.532648
\(210\) 0 0
\(211\) −63.2914 −0.299959 −0.149980 0.988689i \(-0.547921\pi\)
−0.149980 + 0.988689i \(0.547921\pi\)
\(212\) 0 0
\(213\) −429.727 + 248.103i −2.01750 + 1.16480i
\(214\) 0 0
\(215\) 104.977 + 60.6082i 0.488263 + 0.281899i
\(216\) 0 0
\(217\) −10.0636 + 106.455i −0.0463763 + 0.490578i
\(218\) 0 0
\(219\) −248.326 + 430.113i −1.13391 + 1.96398i
\(220\) 0 0
\(221\) 386.199 222.972i 1.74751 1.00892i
\(222\) 0 0
\(223\) 128.029i 0.574121i −0.957912 0.287061i \(-0.907322\pi\)
0.957912 0.287061i \(-0.0926782\pi\)
\(224\) 0 0
\(225\) 123.471 0.548759
\(226\) 0 0
\(227\) −198.452 343.728i −0.874236 1.51422i −0.857574 0.514361i \(-0.828029\pi\)
−0.0166626 0.999861i \(-0.505304\pi\)
\(228\) 0 0
\(229\) 180.192 + 104.034i 0.786864 + 0.454296i 0.838857 0.544351i \(-0.183224\pi\)
−0.0519935 + 0.998647i \(0.516558\pi\)
\(230\) 0 0
\(231\) −47.5638 103.890i −0.205904 0.449740i
\(232\) 0 0
\(233\) −74.0856 + 128.320i −0.317964 + 0.550729i −0.980063 0.198687i \(-0.936332\pi\)
0.662099 + 0.749416i \(0.269666\pi\)
\(234\) 0 0
\(235\) 159.100 + 275.569i 0.677021 + 1.17263i
\(236\) 0 0
\(237\) 284.865i 1.20196i
\(238\) 0 0
\(239\) 13.6048i 0.0569240i −0.999595 0.0284620i \(-0.990939\pi\)
0.999595 0.0284620i \(-0.00906096\pi\)
\(240\) 0 0
\(241\) 145.570 + 252.135i 0.604026 + 1.04620i 0.992205 + 0.124620i \(0.0397711\pi\)
−0.388179 + 0.921584i \(0.626896\pi\)
\(242\) 0 0
\(243\) −174.109 + 301.566i −0.716500 + 1.24101i
\(244\) 0 0
\(245\) 33.2319 174.196i 0.135640 0.711005i
\(246\) 0 0
\(247\) 405.056 + 233.859i 1.63990 + 0.946798i
\(248\) 0 0
\(249\) 128.155 + 221.971i 0.514679 + 0.891450i
\(250\) 0 0
\(251\) 122.061 0.486300 0.243150 0.969989i \(-0.421819\pi\)
0.243150 + 0.969989i \(0.421819\pi\)
\(252\) 0 0
\(253\) 48.4144i 0.191361i
\(254\) 0 0
\(255\) −394.858 + 227.971i −1.54846 + 0.894005i
\(256\) 0 0
\(257\) 176.424 305.575i 0.686473 1.18901i −0.286499 0.958081i \(-0.592491\pi\)
0.972971 0.230925i \(-0.0741753\pi\)
\(258\) 0 0
\(259\) 222.525 101.878i 0.859170 0.393353i
\(260\) 0 0
\(261\) 76.8477 + 44.3680i 0.294436 + 0.169992i
\(262\) 0 0
\(263\) −364.152 + 210.243i −1.38461 + 0.799404i −0.992701 0.120601i \(-0.961518\pi\)
−0.391907 + 0.920005i \(0.628185\pi\)
\(264\) 0 0
\(265\) −80.2542 −0.302846
\(266\) 0 0
\(267\) −195.687 −0.732910
\(268\) 0 0
\(269\) −246.913 + 142.556i −0.917894 + 0.529946i −0.882963 0.469443i \(-0.844455\pi\)
−0.0349314 + 0.999390i \(0.511121\pi\)
\(270\) 0 0
\(271\) −149.590 86.3658i −0.551993 0.318693i 0.197933 0.980216i \(-0.436577\pi\)
−0.749925 + 0.661523i \(0.769911\pi\)
\(272\) 0 0
\(273\) −45.1803 + 477.927i −0.165496 + 1.75065i
\(274\) 0 0
\(275\) 22.0685 38.2237i 0.0802489 0.138995i
\(276\) 0 0
\(277\) −343.551 + 198.349i −1.24026 + 0.716063i −0.969146 0.246486i \(-0.920724\pi\)
−0.271110 + 0.962548i \(0.587391\pi\)
\(278\) 0 0
\(279\) 158.471i 0.567998i
\(280\) 0 0
\(281\) 184.273 0.655774 0.327887 0.944717i \(-0.393663\pi\)
0.327887 + 0.944717i \(0.393663\pi\)
\(282\) 0 0
\(283\) 27.8791 + 48.2881i 0.0985129 + 0.170629i 0.911069 0.412253i \(-0.135258\pi\)
−0.812556 + 0.582883i \(0.801925\pi\)
\(284\) 0 0
\(285\) −414.138 239.103i −1.45312 0.838957i
\(286\) 0 0
\(287\) 3.55161 4.99753i 0.0123749 0.0174130i
\(288\) 0 0
\(289\) −265.100 + 459.166i −0.917300 + 1.58881i
\(290\) 0 0
\(291\) 366.822 + 635.355i 1.26056 + 2.18335i
\(292\) 0 0
\(293\) 313.145i 1.06875i −0.845246 0.534377i \(-0.820546\pi\)
0.845246 0.534377i \(-0.179454\pi\)
\(294\) 0 0
\(295\) 354.675i 1.20229i
\(296\) 0 0
\(297\) −11.2145 19.4240i −0.0377591 0.0654007i
\(298\) 0 0
\(299\) −101.705 + 176.158i −0.340150 + 0.589158i
\(300\) 0 0
\(301\) −135.815 + 191.108i −0.451213 + 0.634910i
\(302\) 0 0
\(303\) 436.728 + 252.145i 1.44135 + 0.832163i
\(304\) 0 0
\(305\) −72.6493 125.832i −0.238194 0.412565i
\(306\) 0 0
\(307\) 18.7354 0.0610272 0.0305136 0.999534i \(-0.490286\pi\)
0.0305136 + 0.999534i \(0.490286\pi\)
\(308\) 0 0
\(309\) 87.9403i 0.284597i
\(310\) 0 0
\(311\) −192.773 + 111.298i −0.619849 + 0.357870i −0.776810 0.629735i \(-0.783164\pi\)
0.156961 + 0.987605i \(0.449830\pi\)
\(312\) 0 0
\(313\) −41.0509 + 71.1022i −0.131153 + 0.227164i −0.924121 0.382099i \(-0.875201\pi\)
0.792968 + 0.609263i \(0.208535\pi\)
\(314\) 0 0
\(315\) 24.7348 261.650i 0.0785231 0.830634i
\(316\) 0 0
\(317\) 123.479 + 71.2906i 0.389523 + 0.224891i 0.681954 0.731395i \(-0.261131\pi\)
−0.292430 + 0.956287i \(0.594464\pi\)
\(318\) 0 0
\(319\) 27.4706 15.8602i 0.0861148 0.0497184i
\(320\) 0 0
\(321\) −162.960 −0.507664
\(322\) 0 0
\(323\) −859.199 −2.66006
\(324\) 0 0
\(325\) −160.594 + 92.7193i −0.494137 + 0.285290i
\(326\) 0 0
\(327\) 514.845 + 297.246i 1.57445 + 0.909008i
\(328\) 0 0
\(329\) −559.591 + 256.197i −1.70088 + 0.778713i
\(330\) 0 0
\(331\) −104.981 + 181.832i −0.317163 + 0.549342i −0.979895 0.199514i \(-0.936064\pi\)
0.662732 + 0.748857i \(0.269397\pi\)
\(332\) 0 0
\(333\) 314.111 181.352i 0.943276 0.544601i
\(334\) 0 0
\(335\) 53.0651i 0.158403i
\(336\) 0 0
\(337\) 422.518 1.25376 0.626881 0.779115i \(-0.284331\pi\)
0.626881 + 0.779115i \(0.284331\pi\)
\(338\) 0 0
\(339\) 193.129 + 334.510i 0.569703 + 0.986754i
\(340\) 0 0
\(341\) 49.0591 + 28.3243i 0.143868 + 0.0830624i
\(342\) 0 0
\(343\) 329.379 + 95.6999i 0.960289 + 0.279008i
\(344\) 0 0
\(345\) 103.985 180.108i 0.301407 0.522052i
\(346\) 0 0
\(347\) −210.317 364.280i −0.606101 1.04980i −0.991876 0.127205i \(-0.959399\pi\)
0.385775 0.922593i \(-0.373934\pi\)
\(348\) 0 0
\(349\) 256.210i 0.734126i −0.930196 0.367063i \(-0.880363\pi\)
0.930196 0.367063i \(-0.119637\pi\)
\(350\) 0 0
\(351\) 94.2337i 0.268472i
\(352\) 0 0
\(353\) −230.942 400.003i −0.654226 1.13315i −0.982087 0.188426i \(-0.939661\pi\)
0.327862 0.944726i \(-0.393672\pi\)
\(354\) 0 0
\(355\) −203.998 + 353.335i −0.574643 + 0.995311i
\(356\) 0 0
\(357\) −367.100 801.828i −1.02829 2.24602i
\(358\) 0 0
\(359\) −103.906 59.9900i −0.289431 0.167103i 0.348254 0.937400i \(-0.386775\pi\)
−0.637685 + 0.770297i \(0.720108\pi\)
\(360\) 0 0
\(361\) −270.076 467.786i −0.748133 1.29581i
\(362\) 0 0
\(363\) 472.061 1.30044
\(364\) 0 0
\(365\) 408.363i 1.11880i
\(366\) 0 0
\(367\) 280.223 161.787i 0.763551 0.440836i −0.0670185 0.997752i \(-0.521349\pi\)
0.830569 + 0.556916i \(0.188015\pi\)
\(368\) 0 0
\(369\) 4.54311 7.86890i 0.0123120 0.0213249i
\(370\) 0 0
\(371\) 14.6089 154.536i 0.0393770 0.416539i
\(372\) 0 0
\(373\) 395.712 + 228.465i 1.06089 + 0.612506i 0.925679 0.378311i \(-0.123495\pi\)
0.135213 + 0.990817i \(0.456828\pi\)
\(374\) 0 0
\(375\) 509.090 293.923i 1.35757 0.783795i
\(376\) 0 0
\(377\) −133.271 −0.353504
\(378\) 0 0
\(379\) −82.7835 −0.218426 −0.109213 0.994018i \(-0.534833\pi\)
−0.109213 + 0.994018i \(0.534833\pi\)
\(380\) 0 0
\(381\) −798.304 + 460.901i −2.09529 + 1.20971i
\(382\) 0 0
\(383\) −531.521 306.874i −1.38778 0.801237i −0.394718 0.918802i \(-0.629158\pi\)
−0.993065 + 0.117565i \(0.962491\pi\)
\(384\) 0 0
\(385\) −76.5798 54.4231i −0.198909 0.141359i
\(386\) 0 0
\(387\) −173.731 + 300.910i −0.448916 + 0.777546i
\(388\) 0 0
\(389\) −390.184 + 225.273i −1.00304 + 0.579108i −0.909148 0.416474i \(-0.863266\pi\)
−0.0938970 + 0.995582i \(0.529932\pi\)
\(390\) 0 0
\(391\) 373.664i 0.955663i
\(392\) 0 0
\(393\) 674.044 1.71512
\(394\) 0 0
\(395\) −117.112 202.845i −0.296487 0.513531i
\(396\) 0 0
\(397\) −511.270 295.182i −1.28783 0.743532i −0.309567 0.950878i \(-0.600184\pi\)
−0.978268 + 0.207346i \(0.933517\pi\)
\(398\) 0 0
\(399\) 535.798 753.931i 1.34285 1.88955i
\(400\) 0 0
\(401\) −27.6472 + 47.8864i −0.0689457 + 0.119417i −0.898437 0.439101i \(-0.855297\pi\)
0.829492 + 0.558519i \(0.188630\pi\)
\(402\) 0 0
\(403\) −119.003 206.119i −0.295292 0.511461i
\(404\) 0 0
\(405\) 241.560i 0.596445i
\(406\) 0 0
\(407\) 129.655i 0.318564i
\(408\) 0 0
\(409\) 46.3157 + 80.2212i 0.113241 + 0.196140i 0.917075 0.398714i \(-0.130543\pi\)
−0.803834 + 0.594854i \(0.797210\pi\)
\(410\) 0 0
\(411\) 329.548 570.794i 0.801821 1.38879i
\(412\) 0 0
\(413\) 682.954 + 64.5623i 1.65364 + 0.156325i
\(414\) 0 0
\(415\) 182.512 + 105.373i 0.439787 + 0.253911i
\(416\) 0 0
\(417\) −10.1452 17.5719i −0.0243289 0.0421389i
\(418\) 0 0
\(419\) −342.855 −0.818270 −0.409135 0.912474i \(-0.634170\pi\)
−0.409135 + 0.912474i \(0.634170\pi\)
\(420\) 0 0
\(421\) 147.685i 0.350795i −0.984498 0.175398i \(-0.943879\pi\)
0.984498 0.175398i \(-0.0561211\pi\)
\(422\) 0 0
\(423\) −789.905 + 456.052i −1.86739 + 1.07814i
\(424\) 0 0
\(425\) 170.325 295.012i 0.400766 0.694147i
\(426\) 0 0
\(427\) 255.524 116.986i 0.598418 0.273973i
\(428\) 0 0
\(429\) 220.249 + 127.161i 0.513401 + 0.296412i
\(430\) 0 0
\(431\) 68.9402 39.8027i 0.159954 0.0923495i −0.417886 0.908499i \(-0.637229\pi\)
0.577840 + 0.816150i \(0.303896\pi\)
\(432\) 0 0
\(433\) −487.810 −1.12658 −0.563291 0.826259i \(-0.690465\pi\)
−0.563291 + 0.826259i \(0.690465\pi\)
\(434\) 0 0
\(435\) 136.259 0.313240
\(436\) 0 0
\(437\) 339.404 195.955i 0.776668 0.448409i
\(438\) 0 0
\(439\) −241.116 139.208i −0.549239 0.317103i 0.199576 0.979882i \(-0.436044\pi\)
−0.748815 + 0.662779i \(0.769377\pi\)
\(440\) 0 0
\(441\) 499.325 + 95.2575i 1.13226 + 0.216003i
\(442\) 0 0
\(443\) 100.954 174.857i 0.227887 0.394712i −0.729295 0.684200i \(-0.760152\pi\)
0.957182 + 0.289488i \(0.0934849\pi\)
\(444\) 0 0
\(445\) −139.344 + 80.4501i −0.313132 + 0.180787i
\(446\) 0 0
\(447\) 1163.45i 2.60279i
\(448\) 0 0
\(449\) −277.311 −0.617619 −0.308809 0.951124i \(-0.599931\pi\)
−0.308809 + 0.951124i \(0.599931\pi\)
\(450\) 0 0
\(451\) −1.62402 2.81288i −0.00360093 0.00623699i
\(452\) 0 0
\(453\) 593.617 + 342.725i 1.31041 + 0.756567i
\(454\) 0 0
\(455\) 164.312 + 358.894i 0.361125 + 0.788778i
\(456\) 0 0
\(457\) −18.9532 + 32.8279i −0.0414731 + 0.0718335i −0.886017 0.463653i \(-0.846538\pi\)
0.844544 + 0.535487i \(0.179872\pi\)
\(458\) 0 0
\(459\) −86.5537 149.915i −0.188570 0.326613i
\(460\) 0 0
\(461\) 220.061i 0.477356i −0.971099 0.238678i \(-0.923286\pi\)
0.971099 0.238678i \(-0.0767140\pi\)
\(462\) 0 0
\(463\) 73.1168i 0.157920i −0.996878 0.0789598i \(-0.974840\pi\)
0.996878 0.0789598i \(-0.0251599\pi\)
\(464\) 0 0
\(465\) 121.671 + 210.740i 0.261658 + 0.453205i
\(466\) 0 0
\(467\) 158.591 274.688i 0.339595 0.588196i −0.644761 0.764384i \(-0.723043\pi\)
0.984357 + 0.176188i \(0.0563765\pi\)
\(468\) 0 0
\(469\) −102.181 9.65958i −0.217870 0.0205961i
\(470\) 0 0
\(471\) −598.621 345.614i −1.27096 0.733787i
\(472\) 0 0
\(473\) 62.1032 + 107.566i 0.131296 + 0.227412i
\(474\) 0 0
\(475\) 357.284 0.752177
\(476\) 0 0
\(477\) 230.045i 0.482274i
\(478\) 0 0
\(479\) −426.647 + 246.325i −0.890704 + 0.514248i −0.874173 0.485615i \(-0.838596\pi\)
−0.0165316 + 0.999863i \(0.505262\pi\)
\(480\) 0 0
\(481\) −272.369 + 471.758i −0.566257 + 0.980785i
\(482\) 0 0
\(483\) 327.883 + 233.017i 0.678847 + 0.482438i
\(484\) 0 0
\(485\) 522.409 + 301.613i 1.07713 + 0.621883i
\(486\) 0 0
\(487\) −23.4016 + 13.5109i −0.0480525 + 0.0277432i −0.523834 0.851820i \(-0.675499\pi\)
0.475781 + 0.879564i \(0.342165\pi\)
\(488\) 0 0
\(489\) 601.137 1.22932
\(490\) 0 0
\(491\) 140.587 0.286327 0.143164 0.989699i \(-0.454272\pi\)
0.143164 + 0.989699i \(0.454272\pi\)
\(492\) 0 0
\(493\) 212.020 122.410i 0.430060 0.248295i
\(494\) 0 0
\(495\) −120.579 69.6164i −0.243594 0.140639i
\(496\) 0 0
\(497\) −643.240 457.133i −1.29425 0.919785i
\(498\) 0 0
\(499\) −332.243 + 575.463i −0.665819 + 1.15323i 0.313244 + 0.949673i \(0.398584\pi\)
−0.979063 + 0.203559i \(0.934749\pi\)
\(500\) 0 0
\(501\) 363.366 209.790i 0.725282 0.418742i
\(502\) 0 0
\(503\) 678.934i 1.34977i −0.737923 0.674885i \(-0.764193\pi\)
0.737923 0.674885i \(-0.235807\pi\)
\(504\) 0 0
\(505\) 414.644 0.821077
\(506\) 0 0
\(507\) −162.323 281.152i −0.320164 0.554540i
\(508\) 0 0
\(509\) 103.197 + 59.5809i 0.202745 + 0.117055i 0.597935 0.801544i \(-0.295988\pi\)
−0.395190 + 0.918599i \(0.629321\pi\)
\(510\) 0 0
\(511\) −786.334 74.3353i −1.53881 0.145470i
\(512\) 0 0
\(513\) 90.7800 157.236i 0.176959 0.306502i
\(514\) 0 0
\(515\) −36.1537 62.6200i −0.0702013 0.121592i
\(516\) 0 0
\(517\) 326.048i 0.630655i
\(518\) 0 0
\(519\) 294.470i 0.567379i
\(520\) 0 0
\(521\) 302.941 + 524.710i 0.581461 + 1.00712i 0.995306 + 0.0967732i \(0.0308522\pi\)
−0.413845 + 0.910347i \(0.635815\pi\)
\(522\) 0 0
\(523\) −18.9269 + 32.7823i −0.0361891 + 0.0626813i −0.883553 0.468332i \(-0.844855\pi\)
0.847364 + 0.531013i \(0.178189\pi\)
\(524\) 0 0
\(525\) 152.652 + 333.427i 0.290767 + 0.635099i
\(526\) 0 0
\(527\) 378.641 + 218.608i 0.718483 + 0.414816i
\(528\) 0 0
\(529\) −179.280 310.521i −0.338903 0.586997i
\(530\) 0 0
\(531\) 1016.66 1.91461
\(532\) 0 0
\(533\) 13.6464i 0.0256031i
\(534\) 0 0
\(535\) −116.040 + 66.9956i −0.216897 + 0.125225i
\(536\) 0 0
\(537\) 268.424 464.925i 0.499859 0.865782i
\(538\) 0 0
\(539\) 118.736 137.554i 0.220289 0.255201i
\(540\) 0 0
\(541\) 514.014 + 296.766i 0.950118 + 0.548551i 0.893118 0.449823i \(-0.148513\pi\)
0.0570004 + 0.998374i \(0.481846\pi\)
\(542\) 0 0
\(543\) −708.476 + 409.039i −1.30474 + 0.753294i
\(544\) 0 0
\(545\) 488.810 0.896899
\(546\) 0 0
\(547\) 532.191 0.972926 0.486463 0.873701i \(-0.338287\pi\)
0.486463 + 0.873701i \(0.338287\pi\)
\(548\) 0 0
\(549\) 360.692 208.246i 0.656998 0.379318i
\(550\) 0 0
\(551\) 222.372 + 128.387i 0.403579 + 0.233007i
\(552\) 0 0
\(553\) 411.912 188.585i 0.744867 0.341022i
\(554\) 0 0
\(555\) 278.477 482.335i 0.501759 0.869073i
\(556\) 0 0
\(557\) 797.199 460.263i 1.43124 0.826325i 0.434022 0.900902i \(-0.357094\pi\)
0.997215 + 0.0745774i \(0.0237608\pi\)
\(558\) 0 0
\(559\) 521.846i 0.933534i
\(560\) 0 0
\(561\) −467.189 −0.832779
\(562\) 0 0
\(563\) −399.420 691.815i −0.709449 1.22880i −0.965062 0.262023i \(-0.915610\pi\)
0.255613 0.966779i \(-0.417723\pi\)
\(564\) 0 0
\(565\) 275.045 + 158.797i 0.486804 + 0.281057i
\(566\) 0 0
\(567\) −465.143 43.9718i −0.820358 0.0775516i
\(568\) 0 0
\(569\) −138.724 + 240.277i −0.243803 + 0.422279i −0.961794 0.273773i \(-0.911728\pi\)
0.717992 + 0.696052i \(0.245062\pi\)
\(570\) 0 0
\(571\) 348.159 + 603.029i 0.609735 + 1.05609i 0.991284 + 0.131744i \(0.0420576\pi\)
−0.381549 + 0.924349i \(0.624609\pi\)
\(572\) 0 0
\(573\) 483.293i 0.843443i
\(574\) 0 0
\(575\) 155.382i 0.270230i
\(576\) 0 0
\(577\) −227.366 393.809i −0.394048 0.682512i 0.598931 0.800801i \(-0.295592\pi\)
−0.992979 + 0.118289i \(0.962259\pi\)
\(578\) 0 0
\(579\) 48.4045 83.8390i 0.0836001 0.144800i
\(580\) 0 0
\(581\) −236.127 + 332.259i −0.406415 + 0.571875i
\(582\) 0 0
\(583\) −71.2166 41.1169i −0.122155 0.0705264i
\(584\) 0 0
\(585\) 292.489 + 506.606i 0.499981 + 0.865993i
\(586\) 0 0
\(587\) −659.220 −1.12303 −0.561517 0.827466i \(-0.689782\pi\)
−0.561517 + 0.827466i \(0.689782\pi\)
\(588\) 0 0
\(589\) 458.565i 0.778548i
\(590\) 0 0
\(591\) 1283.02 740.750i 2.17093 1.25338i
\(592\) 0 0
\(593\) 200.964 348.080i 0.338894 0.586982i −0.645331 0.763903i \(-0.723280\pi\)
0.984225 + 0.176921i \(0.0566138\pi\)
\(594\) 0 0
\(595\) −591.046 420.040i −0.993355 0.705950i
\(596\) 0 0
\(597\) −880.978 508.633i −1.47568 0.851982i
\(598\) 0 0
\(599\) 139.863 80.7499i 0.233494 0.134808i −0.378689 0.925524i \(-0.623625\pi\)
0.612183 + 0.790716i \(0.290292\pi\)
\(600\) 0 0
\(601\) 645.091 1.07336 0.536681 0.843785i \(-0.319678\pi\)
0.536681 + 0.843785i \(0.319678\pi\)
\(602\) 0 0
\(603\) −152.109 −0.252253
\(604\) 0 0
\(605\) 336.143 194.072i 0.555608 0.320780i
\(606\) 0 0
\(607\) −219.907 126.963i −0.362285 0.209165i 0.307798 0.951452i \(-0.400408\pi\)
−0.670083 + 0.742287i \(0.733741\pi\)
\(608\) 0 0
\(609\) −24.8036 + 262.378i −0.0407284 + 0.430834i
\(610\) 0 0
\(611\) 684.936 1186.34i 1.12101 1.94164i
\(612\) 0 0
\(613\) −775.160 + 447.539i −1.26454 + 0.730080i −0.973949 0.226768i \(-0.927184\pi\)
−0.290587 + 0.956849i \(0.593851\pi\)
\(614\) 0 0
\(615\) 13.9524i 0.0226869i
\(616\) 0 0
\(617\) −847.857 −1.37416 −0.687080 0.726582i \(-0.741108\pi\)
−0.687080 + 0.726582i \(0.741108\pi\)
\(618\) 0 0
\(619\) 25.3118 + 43.8414i 0.0408915 + 0.0708261i 0.885747 0.464169i \(-0.153647\pi\)
−0.844855 + 0.534995i \(0.820314\pi\)
\(620\) 0 0
\(621\) 68.3815 + 39.4801i 0.110115 + 0.0635750i
\(622\) 0 0
\(623\) −129.548 282.962i −0.207942 0.454192i
\(624\) 0 0
\(625\) 92.8998 160.907i 0.148640 0.257451i
\(626\) 0 0
\(627\) −245.000 424.353i −0.390750 0.676799i
\(628\) 0 0
\(629\) 1000.69i 1.59092i
\(630\) 0 0
\(631\) 412.200i 0.653248i −0.945154 0.326624i \(-0.894089\pi\)
0.945154 0.326624i \(-0.105911\pi\)
\(632\) 0 0
\(633\) −139.292 241.260i −0.220050 0.381138i
\(634\) 0 0
\(635\) −378.968 + 656.392i −0.596800 + 1.03369i
\(636\) 0 0
\(637\) −720.988 + 251.065i −1.13185 + 0.394137i
\(638\) 0 0
\(639\) −1012.82 584.751i −1.58500 0.915103i
\(640\) 0 0
\(641\) −11.1639 19.3365i −0.0174164 0.0301661i 0.857186 0.515007i \(-0.172211\pi\)
−0.874602 + 0.484841i \(0.838877\pi\)
\(642\) 0 0
\(643\) −707.978 −1.10105 −0.550527 0.834817i \(-0.685573\pi\)
−0.550527 + 0.834817i \(0.685573\pi\)
\(644\) 0 0
\(645\) 533.546i 0.827204i
\(646\) 0 0
\(647\) 297.181 171.577i 0.459321 0.265189i −0.252438 0.967613i \(-0.581232\pi\)
0.711759 + 0.702424i \(0.247899\pi\)
\(648\) 0 0
\(649\) 181.712 314.734i 0.279987 0.484952i
\(650\) 0 0
\(651\) −427.945 + 195.925i −0.657366 + 0.300961i
\(652\) 0 0
\(653\) −1097.53 633.659i −1.68075 0.970381i −0.961165 0.275976i \(-0.910999\pi\)
−0.719584 0.694405i \(-0.755668\pi\)
\(654\) 0 0
\(655\) 479.969 277.110i 0.732777 0.423069i
\(656\) 0 0
\(657\) −1170.55 −1.78166
\(658\) 0 0
\(659\) 391.748 0.594458 0.297229 0.954806i \(-0.403938\pi\)
0.297229 + 0.954806i \(0.403938\pi\)
\(660\) 0 0
\(661\) −192.013 + 110.859i −0.290489 + 0.167714i −0.638162 0.769902i \(-0.720305\pi\)
0.347674 + 0.937616i \(0.386972\pi\)
\(662\) 0 0
\(663\) 1699.89 + 981.433i 2.56394 + 1.48029i
\(664\) 0 0
\(665\) 71.5744 757.129i 0.107631 1.13854i
\(666\) 0 0
\(667\) −55.8351 + 96.7093i −0.0837109 + 0.144991i
\(668\) 0 0
\(669\) 488.034 281.766i 0.729497 0.421175i
\(670\) 0 0
\(671\) 148.882i 0.221881i
\(672\) 0 0
\(673\) −749.039 −1.11298 −0.556492 0.830853i \(-0.687853\pi\)
−0.556492 + 0.830853i \(0.687853\pi\)
\(674\) 0 0
\(675\) 35.9920 + 62.3399i 0.0533214 + 0.0923554i
\(676\) 0 0
\(677\) 555.738 + 320.856i 0.820884 + 0.473938i 0.850721 0.525617i \(-0.176166\pi\)
−0.0298372 + 0.999555i \(0.509499\pi\)
\(678\) 0 0
\(679\) −675.875 + 951.037i −0.995398 + 1.40064i
\(680\) 0 0
\(681\) 873.505 1512.95i 1.28268 2.22167i
\(682\) 0 0
\(683\) 142.757 + 247.262i 0.209014 + 0.362023i 0.951404 0.307945i \(-0.0996412\pi\)
−0.742390 + 0.669968i \(0.766308\pi\)
\(684\) 0 0
\(685\) 541.930i 0.791139i
\(686\) 0 0
\(687\) 915.830i 1.33309i
\(688\) 0 0
\(689\) 172.750 + 299.212i 0.250726 + 0.434270i
\(690\) 0 0
\(691\) 584.960 1013.18i 0.846541 1.46625i −0.0377355 0.999288i \(-0.512014\pi\)
0.884276 0.466964i \(-0.154652\pi\)
\(692\) 0 0
\(693\) 156.001 219.512i 0.225110 0.316756i
\(694\) 0 0
\(695\) −14.4482 8.34167i −0.0207888 0.0120024i
\(696\) 0 0
\(697\) −12.5343 21.7100i −0.0179832 0.0311477i
\(698\) 0 0
\(699\) −652.190 −0.933033
\(700\) 0 0
\(701\) 779.001i 1.11127i 0.831426 + 0.555635i \(0.187525\pi\)
−0.831426 + 0.555635i \(0.812475\pi\)
\(702\) 0 0
\(703\) 908.935 524.774i 1.29294 0.746478i
\(704\) 0 0
\(705\) −700.294 + 1212.94i −0.993325 + 1.72049i
\(706\) 0 0
\(707\) −75.4787 + 798.429i −0.106759 + 1.12932i
\(708\) 0 0
\(709\) −220.696 127.419i −0.311278 0.179716i 0.336220 0.941783i \(-0.390851\pi\)
−0.647498 + 0.762067i \(0.724185\pi\)
\(710\) 0 0
\(711\) 581.444 335.697i 0.817784 0.472148i
\(712\) 0 0
\(713\) −199.429 −0.279704
\(714\) 0 0
\(715\) 209.111 0.292463
\(716\) 0 0
\(717\) 51.8602 29.9415i 0.0723295 0.0417594i
\(718\) 0 0
\(719\) −178.500 103.057i −0.248262 0.143334i 0.370706 0.928750i \(-0.379116\pi\)
−0.618968 + 0.785416i \(0.712449\pi\)
\(720\) 0 0
\(721\) 127.161 58.2179i 0.176367 0.0807460i
\(722\) 0 0
\(723\) −640.742 + 1109.80i −0.886227 + 1.53499i
\(724\) 0 0
\(725\) −88.1650 + 50.9021i −0.121607 + 0.0702097i
\(726\) 0 0
\(727\) 76.0393i 0.104593i −0.998632 0.0522966i \(-0.983346\pi\)
0.998632 0.0522966i \(-0.0166541\pi\)
\(728\) 0 0
\(729\) −932.013 −1.27848
\(730\) 0 0
\(731\) 479.316 + 830.199i 0.655699 + 1.13570i
\(732\) 0 0
\(733\) 257.623 + 148.739i 0.351464 + 0.202918i 0.665330 0.746550i \(-0.268291\pi\)
−0.313866 + 0.949467i \(0.601624\pi\)
\(734\) 0 0
\(735\) 737.154 256.694i 1.00293 0.349244i
\(736\) 0 0
\(737\) −27.1870 + 47.0893i −0.0368888 + 0.0638932i
\(738\) 0 0
\(739\) −266.147 460.979i −0.360144 0.623788i 0.627840 0.778342i \(-0.283939\pi\)
−0.987984 + 0.154554i \(0.950606\pi\)
\(740\) 0 0
\(741\) 2058.71i 2.77828i
\(742\) 0 0
\(743\) 187.452i 0.252291i −0.992012 0.126145i \(-0.959739\pi\)
0.992012 0.126145i \(-0.0402606\pi\)
\(744\) 0 0
\(745\) 478.312 + 828.460i 0.642029 + 1.11203i
\(746\) 0 0
\(747\) −302.047 + 523.161i −0.404347 + 0.700349i
\(748\) 0 0
\(749\) −107.882 235.639i −0.144035 0.314605i
\(750\) 0 0
\(751\) 399.197 + 230.476i 0.531554 + 0.306893i 0.741649 0.670788i \(-0.234044\pi\)
−0.210095 + 0.977681i \(0.567377\pi\)
\(752\) 0 0
\(753\) 268.632 + 465.285i 0.356749 + 0.617908i
\(754\) 0 0
\(755\) 563.599 0.746489
\(756\) 0 0
\(757\) 1381.08i 1.82441i −0.409735 0.912205i \(-0.634379\pi\)
0.409735 0.912205i \(-0.365621\pi\)
\(758\) 0 0
\(759\) 184.551 106.550i 0.243150 0.140382i
\(760\) 0 0
\(761\) −341.816 + 592.043i −0.449167 + 0.777980i −0.998332 0.0577337i \(-0.981613\pi\)
0.549165 + 0.835714i \(0.314946\pi\)
\(762\) 0 0
\(763\) −88.9793 + 941.242i −0.116618 + 1.23361i
\(764\) 0 0
\(765\) −930.636 537.303i −1.21652 0.702357i
\(766\) 0 0
\(767\) −1322.33 + 763.450i −1.72404 + 0.995372i
\(768\) 0 0
\(769\) 592.828 0.770907 0.385454 0.922727i \(-0.374045\pi\)
0.385454 + 0.922727i \(0.374045\pi\)
\(770\) 0 0
\(771\) 1553.09 2.01439
\(772\) 0 0
\(773\) 43.9419 25.3699i 0.0568459 0.0328200i −0.471308 0.881969i \(-0.656218\pi\)
0.528154 + 0.849149i \(0.322885\pi\)
\(774\) 0 0
\(775\) −157.452 90.9047i −0.203163 0.117296i
\(776\) 0 0
\(777\) 878.083 + 624.029i 1.13009 + 0.803126i
\(778\) 0 0
\(779\) 13.1463 22.7700i 0.0168758 0.0292298i
\(780\) 0 0
\(781\) −362.051 + 209.030i −0.463573 + 0.267644i
\(782\) 0 0
\(783\) 51.7335i 0.0660708i
\(784\) 0 0
\(785\) −568.349 −0.724012
\(786\) 0 0
\(787\) 216.453 + 374.908i 0.275036 + 0.476376i 0.970144 0.242529i \(-0.0779770\pi\)
−0.695109 + 0.718905i \(0.744644\pi\)
\(788\) 0 0
\(789\) −1602.85 925.407i −2.03150 1.17289i
\(790\) 0 0
\(791\) −355.843 + 500.714i −0.449865 + 0.633013i
\(792\) 0 0
\(793\) −312.760 + 541.717i −0.394401 + 0.683123i
\(794\) 0 0
\(795\) −176.623 305.921i −0.222168 0.384806i
\(796\) 0 0
\(797\) 526.301i 0.660352i −0.943919 0.330176i \(-0.892892\pi\)
0.943919 0.330176i \(-0.107108\pi\)
\(798\) 0 0
\(799\) 2516.46i 3.14951i
\(800\) 0 0
\(801\) −230.606 399.422i −0.287898 0.498654i
\(802\) 0 0
\(803\) −209.218 + 362.376i −0.260545 + 0.451277i
\(804\) 0 0
\(805\) 329.274 + 31.1276i 0.409036 + 0.0386678i
\(806\) 0 0
\(807\) −1086.81 627.472i −1.34673 0.777537i
\(808\) 0 0
\(809\) 391.649 + 678.356i 0.484115 + 0.838511i 0.999834 0.0182466i \(-0.00580838\pi\)
−0.515719 + 0.856758i \(0.672475\pi\)
\(810\) 0 0
\(811\) −1526.43 −1.88216 −0.941079 0.338188i \(-0.890186\pi\)
−0.941079 + 0.338188i \(0.890186\pi\)
\(812\) 0 0
\(813\) 760.295i 0.935173i
\(814\) 0 0
\(815\) 428.054 247.137i 0.525220 0.303236i
\(816\) 0 0
\(817\) −502.720 + 870.736i −0.615324 + 1.06577i
\(818\) 0 0
\(819\) −1028.75 + 470.992i −1.25611 + 0.575082i
\(820\) 0 0
\(821\) −311.578 179.890i −0.379511 0.219111i 0.298095 0.954536i \(-0.403649\pi\)
−0.677605 + 0.735426i \(0.736982\pi\)
\(822\) 0 0
\(823\) −199.591 + 115.234i −0.242516 + 0.140017i −0.616333 0.787486i \(-0.711382\pi\)
0.373817 + 0.927503i \(0.378049\pi\)
\(824\) 0 0
\(825\) 194.273 0.235482
\(826\) 0 0
\(827\) −515.503 −0.623340 −0.311670 0.950190i \(-0.600888\pi\)
−0.311670 + 0.950190i \(0.600888\pi\)
\(828\) 0 0
\(829\) 1014.52 585.733i 1.22379 0.706554i 0.258064 0.966128i \(-0.416915\pi\)
0.965723 + 0.259573i \(0.0835820\pi\)
\(830\) 0 0
\(831\) −1512.17 873.054i −1.81970 1.05061i
\(832\) 0 0
\(833\) 916.410 1061.65i 1.10013 1.27448i
\(834\) 0 0
\(835\) 172.496 298.772i 0.206582 0.357810i
\(836\) 0 0
\(837\) −80.0116 + 46.1947i −0.0955934 + 0.0551909i
\(838\) 0 0
\(839\) 564.433i 0.672745i 0.941729 + 0.336372i \(0.109200\pi\)
−0.941729 + 0.336372i \(0.890800\pi\)
\(840\) 0 0
\(841\) 767.835 0.913003
\(842\) 0 0
\(843\) 405.547 + 702.428i 0.481076 + 0.833248i
\(844\) 0 0
\(845\) −231.172 133.467i −0.273576 0.157949i
\(846\) 0 0
\(847\) 312.512 + 682.596i 0.368963 + 0.805899i
\(848\) 0 0
\(849\) −122.713 + 212.545i −0.144538 + 0.250347i
\(850\) 0 0
\(851\) 228.223 + 395.294i 0.268183 + 0.464506i
\(852\) 0 0
\(853\) 462.894i 0.542666i −0.962486 0.271333i \(-0.912536\pi\)
0.962486 0.271333i \(-0.0874644\pi\)
\(854\) 0 0
\(855\) 1127.08i 1.31822i
\(856\) 0 0
\(857\) 423.274 + 733.131i 0.493902 + 0.855463i 0.999975 0.00702758i \(-0.00223697\pi\)
−0.506074 + 0.862490i \(0.668904\pi\)
\(858\) 0 0
\(859\) 94.2748 163.289i 0.109749 0.190092i −0.805919 0.592025i \(-0.798328\pi\)
0.915669 + 0.401934i \(0.131662\pi\)
\(860\) 0 0
\(861\) 26.8665 + 2.53979i 0.0312038 + 0.00294982i
\(862\) 0 0
\(863\) 678.004 + 391.446i 0.785636 + 0.453587i 0.838424 0.545018i \(-0.183477\pi\)
−0.0527878 + 0.998606i \(0.516811\pi\)
\(864\) 0 0
\(865\) 121.061 + 209.684i 0.139955 + 0.242409i
\(866\) 0 0
\(867\) −2333.73 −2.69173
\(868\) 0 0
\(869\) 240.002i 0.276182i
\(870\) 0 0
\(871\) 197.843 114.225i 0.227144 0.131142i
\(872\) 0 0
\(873\) −864.559 + 1497.46i −0.990331 + 1.71530i
\(874\) 0 0
\(875\) 762.035 + 541.557i 0.870897 + 0.618922i
\(876\) 0 0
\(877\) −57.9190 33.4395i −0.0660421 0.0381295i 0.466615 0.884460i \(-0.345473\pi\)
−0.532657 + 0.846331i \(0.678807\pi\)
\(878\) 0 0
\(879\) 1193.68 689.170i 1.35799 0.784038i
\(880\) 0 0
\(881\) 1077.23 1.22274 0.611369 0.791345i \(-0.290619\pi\)
0.611369 + 0.791345i \(0.290619\pi\)
\(882\) 0 0
\(883\) 50.4655 0.0571524 0.0285762 0.999592i \(-0.490903\pi\)
0.0285762 + 0.999592i \(0.490903\pi\)
\(884\) 0 0
\(885\) 1351.98 780.568i 1.52767 0.881998i
\(886\) 0 0
\(887\) 798.495 + 461.011i 0.900220 + 0.519742i 0.877272 0.479994i \(-0.159361\pi\)
0.0229484 + 0.999737i \(0.492695\pi\)
\(888\) 0 0
\(889\) −1194.95 849.217i −1.34415 0.955250i
\(890\) 0 0
\(891\) −123.759 + 214.357i −0.138899 + 0.240581i
\(892\) 0 0
\(893\) −2285.73 + 1319.67i −2.55961 + 1.47779i
\(894\) 0 0
\(895\) 441.414i 0.493200i
\(896\) 0 0
\(897\) −895.329 −0.998137
\(898\) 0 0
\(899\) −65.3315 113.157i −0.0726713 0.125870i
\(900\) 0 0
\(901\) −549.653 317.342i −0.610048 0.352211i
\(902\) 0 0
\(903\) −1027.39 97.1228i −1.13775 0.107556i
\(904\) 0 0
\(905\) −336.325 + 582.532i −0.371630 + 0.643682i
\(906\) 0 0
\(907\) 130.121 + 225.376i 0.143463 + 0.248485i 0.928798 0.370585i \(-0.120843\pi\)
−0.785336 + 0.619070i \(0.787510\pi\)
\(908\) 0 0
\(909\) 1188.56i 1.30754i
\(910\) 0 0
\(911\) 143.580i 0.157607i −0.996890 0.0788034i \(-0.974890\pi\)
0.996890 0.0788034i \(-0.0251099\pi\)
\(912\) 0 0
\(913\) 107.972 + 187.014i 0.118261 + 0.204834i
\(914\) 0 0
\(915\) 319.773 553.863i 0.349479 0.605315i
\(916\) 0 0
\(917\) 446.227 + 974.661i 0.486617 + 1.06288i
\(918\) 0 0
\(919\) 511.111 + 295.090i 0.556160 + 0.321099i 0.751603 0.659616i \(-0.229281\pi\)
−0.195443 + 0.980715i \(0.562614\pi\)
\(920\) 0 0
\(921\) 41.2328 + 71.4173i 0.0447696 + 0.0775432i
\(922\) 0 0
\(923\) 1756.45 1.90298
\(924\) 0 0
\(925\) 416.119i 0.449859i
\(926\) 0 0
\(927\) 179.497 103.633i 0.193632 0.111794i
\(928\) 0 0
\(929\) 771.734 1336.68i 0.830715 1.43884i −0.0667570 0.997769i \(-0.521265\pi\)
0.897472 0.441071i \(-0.145401\pi\)
\(930\) 0 0
\(931\) 1444.88 + 275.644i 1.55197 + 0.296073i
\(932\) 0 0
\(933\) −848.509 489.887i −0.909442 0.525067i
\(934\) 0 0
\(935\) −332.673 + 192.069i −0.355800 + 0.205421i
\(936\) 0 0
\(937\) 430.049 0.458964 0.229482 0.973313i \(-0.426297\pi\)
0.229482 + 0.973313i \(0.426297\pi\)
\(938\) 0 0
\(939\) −361.379 −0.384855
\(940\) 0 0
\(941\) 570.055 329.122i 0.605797 0.349757i −0.165522 0.986206i \(-0.552931\pi\)
0.771319 + 0.636449i \(0.219597\pi\)
\(942\) 0 0
\(943\) 9.90265 + 5.71730i 0.0105012 + 0.00606288i
\(944\) 0 0
\(945\) 139.316 63.7829i 0.147425 0.0674952i
\(946\) 0 0
\(947\) −210.844 + 365.192i −0.222644 + 0.385630i −0.955610 0.294635i \(-0.904802\pi\)
0.732966 + 0.680265i \(0.238135\pi\)
\(948\) 0 0
\(949\) 1522.50 879.015i 1.60432 0.926254i
\(950\) 0 0
\(951\) 627.585i 0.659921i
\(952\) 0 0
\(953\) 872.394 0.915419 0.457709 0.889102i \(-0.348670\pi\)
0.457709 + 0.889102i \(0.348670\pi\)
\(954\) 0 0
\(955\) 198.689 + 344.140i 0.208052 + 0.360356i
\(956\) 0 0
\(957\) 120.915 + 69.8101i 0.126348 + 0.0729469i
\(958\) 0 0
\(959\) 1043.53 + 98.6489i 1.08814 + 0.102866i
\(960\) 0 0
\(961\) −363.826 + 630.165i −0.378591 + 0.655739i
\(962\) 0 0
\(963\) −192.040 332.622i −0.199418 0.345402i
\(964\) 0 0
\(965\) 79.5994i 0.0824865i
\(966\) 0 0
\(967\) 1130.71i 1.16930i −0.811286 0.584649i \(-0.801232\pi\)
0.811286 0.584649i \(-0.198768\pi\)
\(968\) 0 0
\(969\) −1890.93 3275.18i −1.95142 3.37996i
\(970\) 0 0
\(971\) 194.294 336.527i 0.200097 0.346578i −0.748463 0.663177i \(-0.769208\pi\)
0.948559 + 0.316599i \(0.102541\pi\)
\(972\) 0 0
\(973\) 18.6926 26.3027i 0.0192113 0.0270326i
\(974\) 0 0
\(975\) −706.872 408.113i −0.724997 0.418577i
\(976\) 0 0
\(977\) −235.013 407.055i −0.240546 0.416638i 0.720324 0.693638i \(-0.243993\pi\)
−0.960870 + 0.277000i \(0.910660\pi\)
\(978\) 0 0
\(979\) −164.869 −0.168405
\(980\) 0 0
\(981\) 1401.15i 1.42829i
\(982\) 0 0
\(983\) 1025.30 591.957i 1.04303 0.602195i 0.122341 0.992488i \(-0.460960\pi\)
0.920691 + 0.390293i \(0.127626\pi\)
\(984\) 0 0
\(985\) 609.069 1054.94i 0.618344 1.07100i
\(986\) 0 0
\(987\) −2208.14 1569.27i −2.23723 1.58993i
\(988\) 0 0
\(989\) −378.682 218.632i −0.382894 0.221064i
\(990\) 0 0
\(991\) −875.407 + 505.417i −0.883357 + 0.510007i −0.871764 0.489926i \(-0.837024\pi\)
−0.0115934 + 0.999933i \(0.503690\pi\)
\(992\) 0 0
\(993\) −924.168 −0.930683
\(994\) 0 0
\(995\) −836.429 −0.840632
\(996\) 0 0
\(997\) 518.411 299.305i 0.519971 0.300205i −0.216952 0.976182i \(-0.569611\pi\)
0.736923 + 0.675977i \(0.236278\pi\)
\(998\) 0 0
\(999\) 183.128 + 105.729i 0.183311 + 0.105835i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.o.b.415.9 yes 20
4.3 odd 2 inner 448.3.o.b.415.2 yes 20
7.4 even 3 448.3.o.a.95.9 yes 20
8.3 odd 2 448.3.o.a.415.9 yes 20
8.5 even 2 448.3.o.a.415.2 yes 20
28.11 odd 6 448.3.o.a.95.2 20
56.11 odd 6 inner 448.3.o.b.95.9 yes 20
56.53 even 6 inner 448.3.o.b.95.2 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.3.o.a.95.2 20 28.11 odd 6
448.3.o.a.95.9 yes 20 7.4 even 3
448.3.o.a.415.2 yes 20 8.5 even 2
448.3.o.a.415.9 yes 20 8.3 odd 2
448.3.o.b.95.2 yes 20 56.53 even 6 inner
448.3.o.b.95.9 yes 20 56.11 odd 6 inner
448.3.o.b.415.2 yes 20 4.3 odd 2 inner
448.3.o.b.415.9 yes 20 1.1 even 1 trivial