Properties

Label 448.3.l.b.209.13
Level $448$
Weight $3$
Character 448.209
Analytic conductor $12.207$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(209,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.209"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 209.13
Character \(\chi\) \(=\) 448.209
Dual form 448.3.l.b.433.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.752012 + 0.752012i) q^{3} +(6.01979 + 6.01979i) q^{5} +(4.46479 - 5.39126i) q^{7} +7.86896i q^{9} +(6.94142 - 6.94142i) q^{11} +(12.7620 - 12.7620i) q^{13} -9.05390 q^{15} -5.91610i q^{17} +(-5.24006 + 5.24006i) q^{19} +(0.696719 + 7.41186i) q^{21} +25.3271i q^{23} +47.4756i q^{25} +(-12.6857 - 12.6857i) q^{27} +(-5.79909 - 5.79909i) q^{29} -26.4139i q^{31} +10.4401i q^{33} +(59.3313 - 5.57717i) q^{35} +(-3.51860 + 3.51860i) q^{37} +19.1943i q^{39} +59.2859 q^{41} +(-1.69937 + 1.69937i) q^{43} +(-47.3694 + 47.3694i) q^{45} +81.1427i q^{47} +(-9.13136 - 48.1416i) q^{49} +(4.44897 + 4.44897i) q^{51} +(-13.0400 + 13.0400i) q^{53} +83.5717 q^{55} -7.88118i q^{57} +(20.7941 + 20.7941i) q^{59} +(-21.5617 + 21.5617i) q^{61} +(42.4236 + 35.1332i) q^{63} +153.648 q^{65} +(-40.2663 - 40.2663i) q^{67} +(-19.0462 - 19.0462i) q^{69} +99.6009i q^{71} +130.729 q^{73} +(-35.7022 - 35.7022i) q^{75} +(-6.43104 - 68.4149i) q^{77} -116.485 q^{79} -51.7411 q^{81} +(31.6396 - 31.6396i) q^{83} +(35.6136 - 35.6136i) q^{85} +8.72196 q^{87} -133.128 q^{89} +(-11.8236 - 125.782i) q^{91} +(19.8635 + 19.8635i) q^{93} -63.0881 q^{95} -27.7360i q^{97} +(54.6217 + 54.6217i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{15} - 20 q^{21} - 96 q^{29} + 100 q^{35} - 128 q^{37} + 72 q^{43} + 192 q^{49} + 128 q^{51} + 88 q^{53} - 444 q^{63} - 8 q^{65} - 440 q^{67} + 12 q^{77} + 8 q^{79} + 64 q^{81} + 96 q^{85} + 388 q^{91}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.752012 + 0.752012i −0.250671 + 0.250671i −0.821246 0.570575i \(-0.806720\pi\)
0.570575 + 0.821246i \(0.306720\pi\)
\(4\) 0 0
\(5\) 6.01979 + 6.01979i 1.20396 + 1.20396i 0.972953 + 0.231004i \(0.0742012\pi\)
0.231004 + 0.972953i \(0.425799\pi\)
\(6\) 0 0
\(7\) 4.46479 5.39126i 0.637827 0.770180i
\(8\) 0 0
\(9\) 7.86896i 0.874329i
\(10\) 0 0
\(11\) 6.94142 6.94142i 0.631038 0.631038i −0.317290 0.948328i \(-0.602773\pi\)
0.948328 + 0.317290i \(0.102773\pi\)
\(12\) 0 0
\(13\) 12.7620 12.7620i 0.981689 0.981689i −0.0181465 0.999835i \(-0.505777\pi\)
0.999835 + 0.0181465i \(0.00577653\pi\)
\(14\) 0 0
\(15\) −9.05390 −0.603593
\(16\) 0 0
\(17\) 5.91610i 0.348006i −0.984745 0.174003i \(-0.944330\pi\)
0.984745 0.174003i \(-0.0556702\pi\)
\(18\) 0 0
\(19\) −5.24006 + 5.24006i −0.275793 + 0.275793i −0.831427 0.555634i \(-0.812476\pi\)
0.555634 + 0.831427i \(0.312476\pi\)
\(20\) 0 0
\(21\) 0.696719 + 7.41186i 0.0331771 + 0.352946i
\(22\) 0 0
\(23\) 25.3271i 1.10118i 0.834777 + 0.550588i \(0.185597\pi\)
−0.834777 + 0.550588i \(0.814403\pi\)
\(24\) 0 0
\(25\) 47.4756i 1.89903i
\(26\) 0 0
\(27\) −12.6857 12.6857i −0.469839 0.469839i
\(28\) 0 0
\(29\) −5.79909 5.79909i −0.199968 0.199968i 0.600018 0.799986i \(-0.295160\pi\)
−0.799986 + 0.600018i \(0.795160\pi\)
\(30\) 0 0
\(31\) 26.4139i 0.852061i −0.904709 0.426030i \(-0.859912\pi\)
0.904709 0.426030i \(-0.140088\pi\)
\(32\) 0 0
\(33\) 10.4401i 0.316365i
\(34\) 0 0
\(35\) 59.3313 5.57717i 1.69518 0.159348i
\(36\) 0 0
\(37\) −3.51860 + 3.51860i −0.0950974 + 0.0950974i −0.753055 0.657958i \(-0.771421\pi\)
0.657958 + 0.753055i \(0.271421\pi\)
\(38\) 0 0
\(39\) 19.1943i 0.492161i
\(40\) 0 0
\(41\) 59.2859 1.44600 0.722999 0.690849i \(-0.242763\pi\)
0.722999 + 0.690849i \(0.242763\pi\)
\(42\) 0 0
\(43\) −1.69937 + 1.69937i −0.0395202 + 0.0395202i −0.726591 0.687071i \(-0.758896\pi\)
0.687071 + 0.726591i \(0.258896\pi\)
\(44\) 0 0
\(45\) −47.3694 + 47.3694i −1.05265 + 1.05265i
\(46\) 0 0
\(47\) 81.1427i 1.72644i 0.504828 + 0.863220i \(0.331556\pi\)
−0.504828 + 0.863220i \(0.668444\pi\)
\(48\) 0 0
\(49\) −9.13136 48.1416i −0.186354 0.982483i
\(50\) 0 0
\(51\) 4.44897 + 4.44897i 0.0872348 + 0.0872348i
\(52\) 0 0
\(53\) −13.0400 + 13.0400i −0.246037 + 0.246037i −0.819342 0.573305i \(-0.805661\pi\)
0.573305 + 0.819342i \(0.305661\pi\)
\(54\) 0 0
\(55\) 83.5717 1.51949
\(56\) 0 0
\(57\) 7.88118i 0.138266i
\(58\) 0 0
\(59\) 20.7941 + 20.7941i 0.352442 + 0.352442i 0.861017 0.508575i \(-0.169828\pi\)
−0.508575 + 0.861017i \(0.669828\pi\)
\(60\) 0 0
\(61\) −21.5617 + 21.5617i −0.353471 + 0.353471i −0.861399 0.507928i \(-0.830411\pi\)
0.507928 + 0.861399i \(0.330411\pi\)
\(62\) 0 0
\(63\) 42.4236 + 35.1332i 0.673390 + 0.557670i
\(64\) 0 0
\(65\) 153.648 2.36382
\(66\) 0 0
\(67\) −40.2663 40.2663i −0.600989 0.600989i 0.339586 0.940575i \(-0.389713\pi\)
−0.940575 + 0.339586i \(0.889713\pi\)
\(68\) 0 0
\(69\) −19.0462 19.0462i −0.276033 0.276033i
\(70\) 0 0
\(71\) 99.6009i 1.40283i 0.712753 + 0.701415i \(0.247448\pi\)
−0.712753 + 0.701415i \(0.752552\pi\)
\(72\) 0 0
\(73\) 130.729 1.79081 0.895403 0.445258i \(-0.146888\pi\)
0.895403 + 0.445258i \(0.146888\pi\)
\(74\) 0 0
\(75\) −35.7022 35.7022i −0.476030 0.476030i
\(76\) 0 0
\(77\) −6.43104 68.4149i −0.0835200 0.888506i
\(78\) 0 0
\(79\) −116.485 −1.47450 −0.737249 0.675621i \(-0.763876\pi\)
−0.737249 + 0.675621i \(0.763876\pi\)
\(80\) 0 0
\(81\) −51.7411 −0.638779
\(82\) 0 0
\(83\) 31.6396 31.6396i 0.381200 0.381200i −0.490334 0.871534i \(-0.663125\pi\)
0.871534 + 0.490334i \(0.163125\pi\)
\(84\) 0 0
\(85\) 35.6136 35.6136i 0.418984 0.418984i
\(86\) 0 0
\(87\) 8.72196 0.100252
\(88\) 0 0
\(89\) −133.128 −1.49583 −0.747913 0.663797i \(-0.768944\pi\)
−0.747913 + 0.663797i \(0.768944\pi\)
\(90\) 0 0
\(91\) −11.8236 125.782i −0.129930 1.38222i
\(92\) 0 0
\(93\) 19.8635 + 19.8635i 0.213586 + 0.213586i
\(94\) 0 0
\(95\) −63.0881 −0.664085
\(96\) 0 0
\(97\) 27.7360i 0.285938i −0.989727 0.142969i \(-0.954335\pi\)
0.989727 0.142969i \(-0.0456649\pi\)
\(98\) 0 0
\(99\) 54.6217 + 54.6217i 0.551735 + 0.551735i
\(100\) 0 0
\(101\) −100.746 100.746i −0.997488 0.997488i 0.00250837 0.999997i \(-0.499202\pi\)
−0.999997 + 0.00250837i \(0.999202\pi\)
\(102\) 0 0
\(103\) 7.53632 0.0731681 0.0365841 0.999331i \(-0.488352\pi\)
0.0365841 + 0.999331i \(0.488352\pi\)
\(104\) 0 0
\(105\) −40.4237 + 48.8119i −0.384988 + 0.464875i
\(106\) 0 0
\(107\) 82.4715 82.4715i 0.770762 0.770762i −0.207478 0.978240i \(-0.566525\pi\)
0.978240 + 0.207478i \(0.0665254\pi\)
\(108\) 0 0
\(109\) −118.767 118.767i −1.08961 1.08961i −0.995569 0.0940368i \(-0.970023\pi\)
−0.0940368 0.995569i \(-0.529977\pi\)
\(110\) 0 0
\(111\) 5.29206i 0.0476762i
\(112\) 0 0
\(113\) −76.9425 −0.680907 −0.340454 0.940261i \(-0.610581\pi\)
−0.340454 + 0.940261i \(0.610581\pi\)
\(114\) 0 0
\(115\) −152.464 + 152.464i −1.32577 + 1.32577i
\(116\) 0 0
\(117\) 100.423 + 100.423i 0.858319 + 0.858319i
\(118\) 0 0
\(119\) −31.8952 26.4141i −0.268027 0.221967i
\(120\) 0 0
\(121\) 24.6334i 0.203582i
\(122\) 0 0
\(123\) −44.5837 + 44.5837i −0.362469 + 0.362469i
\(124\) 0 0
\(125\) −135.299 + 135.299i −1.08239 + 1.08239i
\(126\) 0 0
\(127\) −102.900 −0.810240 −0.405120 0.914264i \(-0.632770\pi\)
−0.405120 + 0.914264i \(0.632770\pi\)
\(128\) 0 0
\(129\) 2.55589i 0.0198131i
\(130\) 0 0
\(131\) 41.4626 41.4626i 0.316509 0.316509i −0.530916 0.847425i \(-0.678152\pi\)
0.847425 + 0.530916i \(0.178152\pi\)
\(132\) 0 0
\(133\) 4.85478 + 51.6463i 0.0365021 + 0.388318i
\(134\) 0 0
\(135\) 152.730i 1.13133i
\(136\) 0 0
\(137\) 31.9294i 0.233062i 0.993187 + 0.116531i \(0.0371774\pi\)
−0.993187 + 0.116531i \(0.962823\pi\)
\(138\) 0 0
\(139\) 48.4192 + 48.4192i 0.348340 + 0.348340i 0.859491 0.511151i \(-0.170781\pi\)
−0.511151 + 0.859491i \(0.670781\pi\)
\(140\) 0 0
\(141\) −61.0202 61.0202i −0.432768 0.432768i
\(142\) 0 0
\(143\) 177.172i 1.23897i
\(144\) 0 0
\(145\) 69.8185i 0.481507i
\(146\) 0 0
\(147\) 43.0700 + 29.3362i 0.292993 + 0.199566i
\(148\) 0 0
\(149\) 174.695 174.695i 1.17245 1.17245i 0.190826 0.981624i \(-0.438883\pi\)
0.981624 0.190826i \(-0.0611165\pi\)
\(150\) 0 0
\(151\) 53.1868i 0.352230i −0.984370 0.176115i \(-0.943647\pi\)
0.984370 0.176115i \(-0.0563531\pi\)
\(152\) 0 0
\(153\) 46.5535 0.304271
\(154\) 0 0
\(155\) 159.006 159.006i 1.02584 1.02584i
\(156\) 0 0
\(157\) −52.0135 + 52.0135i −0.331296 + 0.331296i −0.853079 0.521782i \(-0.825267\pi\)
0.521782 + 0.853079i \(0.325267\pi\)
\(158\) 0 0
\(159\) 19.6124i 0.123349i
\(160\) 0 0
\(161\) 136.545 + 113.080i 0.848104 + 0.702360i
\(162\) 0 0
\(163\) −135.555 135.555i −0.831625 0.831625i 0.156114 0.987739i \(-0.450103\pi\)
−0.987739 + 0.156114i \(0.950103\pi\)
\(164\) 0 0
\(165\) −62.8469 + 62.8469i −0.380890 + 0.380890i
\(166\) 0 0
\(167\) −268.875 −1.61003 −0.805015 0.593254i \(-0.797843\pi\)
−0.805015 + 0.593254i \(0.797843\pi\)
\(168\) 0 0
\(169\) 156.735i 0.927426i
\(170\) 0 0
\(171\) −41.2338 41.2338i −0.241133 0.241133i
\(172\) 0 0
\(173\) 175.570 175.570i 1.01486 1.01486i 0.0149704 0.999888i \(-0.495235\pi\)
0.999888 0.0149704i \(-0.00476541\pi\)
\(174\) 0 0
\(175\) 255.953 + 211.969i 1.46259 + 1.21125i
\(176\) 0 0
\(177\) −31.2748 −0.176694
\(178\) 0 0
\(179\) −89.5549 89.5549i −0.500307 0.500307i 0.411227 0.911533i \(-0.365100\pi\)
−0.911533 + 0.411227i \(0.865100\pi\)
\(180\) 0 0
\(181\) −2.23766 2.23766i −0.0123627 0.0123627i 0.700898 0.713261i \(-0.252783\pi\)
−0.713261 + 0.700898i \(0.752783\pi\)
\(182\) 0 0
\(183\) 32.4293i 0.177209i
\(184\) 0 0
\(185\) −42.3625 −0.228986
\(186\) 0 0
\(187\) −41.0661 41.0661i −0.219605 0.219605i
\(188\) 0 0
\(189\) −125.030 + 11.7529i −0.661536 + 0.0621847i
\(190\) 0 0
\(191\) 202.309 1.05921 0.529606 0.848244i \(-0.322340\pi\)
0.529606 + 0.848244i \(0.322340\pi\)
\(192\) 0 0
\(193\) 25.7587 0.133465 0.0667324 0.997771i \(-0.478743\pi\)
0.0667324 + 0.997771i \(0.478743\pi\)
\(194\) 0 0
\(195\) −115.545 + 115.545i −0.592541 + 0.592541i
\(196\) 0 0
\(197\) −238.209 + 238.209i −1.20918 + 1.20918i −0.237888 + 0.971293i \(0.576455\pi\)
−0.971293 + 0.237888i \(0.923545\pi\)
\(198\) 0 0
\(199\) 70.8263 0.355911 0.177955 0.984039i \(-0.443052\pi\)
0.177955 + 0.984039i \(0.443052\pi\)
\(200\) 0 0
\(201\) 60.5614 0.301301
\(202\) 0 0
\(203\) −57.1561 + 5.37270i −0.281557 + 0.0264665i
\(204\) 0 0
\(205\) 356.888 + 356.888i 1.74092 + 1.74092i
\(206\) 0 0
\(207\) −199.298 −0.962790
\(208\) 0 0
\(209\) 72.7469i 0.348071i
\(210\) 0 0
\(211\) −38.5433 38.5433i −0.182670 0.182670i 0.609848 0.792518i \(-0.291230\pi\)
−0.792518 + 0.609848i \(0.791230\pi\)
\(212\) 0 0
\(213\) −74.9011 74.9011i −0.351648 0.351648i
\(214\) 0 0
\(215\) −20.4597 −0.0951613
\(216\) 0 0
\(217\) −142.404 117.932i −0.656240 0.543467i
\(218\) 0 0
\(219\) −98.3096 + 98.3096i −0.448902 + 0.448902i
\(220\) 0 0
\(221\) −75.5010 75.5010i −0.341633 0.341633i
\(222\) 0 0
\(223\) 231.515i 1.03818i 0.854719 + 0.519091i \(0.173729\pi\)
−0.854719 + 0.519091i \(0.826271\pi\)
\(224\) 0 0
\(225\) −373.584 −1.66037
\(226\) 0 0
\(227\) 164.507 164.507i 0.724701 0.724701i −0.244858 0.969559i \(-0.578741\pi\)
0.969559 + 0.244858i \(0.0787413\pi\)
\(228\) 0 0
\(229\) −18.0794 18.0794i −0.0789495 0.0789495i 0.666529 0.745479i \(-0.267779\pi\)
−0.745479 + 0.666529i \(0.767779\pi\)
\(230\) 0 0
\(231\) 56.2850 + 46.6126i 0.243658 + 0.201786i
\(232\) 0 0
\(233\) 60.0557i 0.257750i −0.991661 0.128875i \(-0.958863\pi\)
0.991661 0.128875i \(-0.0411365\pi\)
\(234\) 0 0
\(235\) −488.461 + 488.461i −2.07856 + 2.07856i
\(236\) 0 0
\(237\) 87.5983 87.5983i 0.369613 0.369613i
\(238\) 0 0
\(239\) 64.5787 0.270204 0.135102 0.990832i \(-0.456864\pi\)
0.135102 + 0.990832i \(0.456864\pi\)
\(240\) 0 0
\(241\) 77.8974i 0.323226i 0.986854 + 0.161613i \(0.0516696\pi\)
−0.986854 + 0.161613i \(0.948330\pi\)
\(242\) 0 0
\(243\) 153.081 153.081i 0.629962 0.629962i
\(244\) 0 0
\(245\) 234.834 344.771i 0.958504 1.40723i
\(246\) 0 0
\(247\) 133.747i 0.541485i
\(248\) 0 0
\(249\) 47.5867i 0.191111i
\(250\) 0 0
\(251\) −41.9084 41.9084i −0.166966 0.166966i 0.618678 0.785644i \(-0.287668\pi\)
−0.785644 + 0.618678i \(0.787668\pi\)
\(252\) 0 0
\(253\) 175.806 + 175.806i 0.694884 + 0.694884i
\(254\) 0 0
\(255\) 53.5637i 0.210054i
\(256\) 0 0
\(257\) 112.615i 0.438192i −0.975703 0.219096i \(-0.929689\pi\)
0.975703 0.219096i \(-0.0703108\pi\)
\(258\) 0 0
\(259\) 3.25989 + 34.6795i 0.0125865 + 0.133898i
\(260\) 0 0
\(261\) 45.6328 45.6328i 0.174838 0.174838i
\(262\) 0 0
\(263\) 186.564i 0.709367i −0.934986 0.354684i \(-0.884589\pi\)
0.934986 0.354684i \(-0.115411\pi\)
\(264\) 0 0
\(265\) −156.996 −0.592437
\(266\) 0 0
\(267\) 100.114 100.114i 0.374959 0.374959i
\(268\) 0 0
\(269\) 244.189 244.189i 0.907768 0.907768i −0.0883242 0.996092i \(-0.528151\pi\)
0.996092 + 0.0883242i \(0.0281512\pi\)
\(270\) 0 0
\(271\) 433.179i 1.59845i −0.601034 0.799223i \(-0.705245\pi\)
0.601034 0.799223i \(-0.294755\pi\)
\(272\) 0 0
\(273\) 103.481 + 85.6983i 0.379052 + 0.313913i
\(274\) 0 0
\(275\) 329.548 + 329.548i 1.19836 + 1.19836i
\(276\) 0 0
\(277\) −208.653 + 208.653i −0.753261 + 0.753261i −0.975086 0.221826i \(-0.928798\pi\)
0.221826 + 0.975086i \(0.428798\pi\)
\(278\) 0 0
\(279\) 207.850 0.744981
\(280\) 0 0
\(281\) 244.401i 0.869754i −0.900490 0.434877i \(-0.856792\pi\)
0.900490 0.434877i \(-0.143208\pi\)
\(282\) 0 0
\(283\) 378.601 + 378.601i 1.33781 + 1.33781i 0.898176 + 0.439637i \(0.144893\pi\)
0.439637 + 0.898176i \(0.355107\pi\)
\(284\) 0 0
\(285\) 47.4430 47.4430i 0.166467 0.166467i
\(286\) 0 0
\(287\) 264.699 319.626i 0.922296 1.11368i
\(288\) 0 0
\(289\) 254.000 0.878892
\(290\) 0 0
\(291\) 20.8578 + 20.8578i 0.0716763 + 0.0716763i
\(292\) 0 0
\(293\) 33.2350 + 33.2350i 0.113430 + 0.113430i 0.761544 0.648114i \(-0.224442\pi\)
−0.648114 + 0.761544i \(0.724442\pi\)
\(294\) 0 0
\(295\) 250.352i 0.848650i
\(296\) 0 0
\(297\) −176.113 −0.592972
\(298\) 0 0
\(299\) 323.223 + 323.223i 1.08101 + 1.08101i
\(300\) 0 0
\(301\) 1.57442 + 16.7491i 0.00523063 + 0.0556447i
\(302\) 0 0
\(303\) 151.525 0.500082
\(304\) 0 0
\(305\) −259.594 −0.851127
\(306\) 0 0
\(307\) 68.8567 68.8567i 0.224289 0.224289i −0.586013 0.810302i \(-0.699303\pi\)
0.810302 + 0.586013i \(0.199303\pi\)
\(308\) 0 0
\(309\) −5.66740 + 5.66740i −0.0183411 + 0.0183411i
\(310\) 0 0
\(311\) −54.7005 −0.175886 −0.0879430 0.996126i \(-0.528029\pi\)
−0.0879430 + 0.996126i \(0.528029\pi\)
\(312\) 0 0
\(313\) −74.2099 −0.237092 −0.118546 0.992949i \(-0.537823\pi\)
−0.118546 + 0.992949i \(0.537823\pi\)
\(314\) 0 0
\(315\) 43.8865 + 466.875i 0.139322 + 1.48214i
\(316\) 0 0
\(317\) −100.164 100.164i −0.315975 0.315975i 0.531244 0.847219i \(-0.321725\pi\)
−0.847219 + 0.531244i \(0.821725\pi\)
\(318\) 0 0
\(319\) −80.5078 −0.252375
\(320\) 0 0
\(321\) 124.039i 0.386415i
\(322\) 0 0
\(323\) 31.0007 + 31.0007i 0.0959775 + 0.0959775i
\(324\) 0 0
\(325\) 605.882 + 605.882i 1.86425 + 1.86425i
\(326\) 0 0
\(327\) 178.628 0.546264
\(328\) 0 0
\(329\) 437.461 + 362.285i 1.32967 + 1.10117i
\(330\) 0 0
\(331\) 287.922 287.922i 0.869854 0.869854i −0.122602 0.992456i \(-0.539124\pi\)
0.992456 + 0.122602i \(0.0391239\pi\)
\(332\) 0 0
\(333\) −27.6877 27.6877i −0.0831464 0.0831464i
\(334\) 0 0
\(335\) 484.789i 1.44713i
\(336\) 0 0
\(337\) −247.389 −0.734093 −0.367047 0.930203i \(-0.619631\pi\)
−0.367047 + 0.930203i \(0.619631\pi\)
\(338\) 0 0
\(339\) 57.8617 57.8617i 0.170683 0.170683i
\(340\) 0 0
\(341\) −183.350 183.350i −0.537683 0.537683i
\(342\) 0 0
\(343\) −300.314 165.713i −0.875550 0.483127i
\(344\) 0 0
\(345\) 229.309i 0.664663i
\(346\) 0 0
\(347\) −313.519 + 313.519i −0.903512 + 0.903512i −0.995738 0.0922262i \(-0.970602\pi\)
0.0922262 + 0.995738i \(0.470602\pi\)
\(348\) 0 0
\(349\) 268.900 268.900i 0.770487 0.770487i −0.207705 0.978192i \(-0.566599\pi\)
0.978192 + 0.207705i \(0.0665993\pi\)
\(350\) 0 0
\(351\) −323.787 −0.922471
\(352\) 0 0
\(353\) 152.317i 0.431492i −0.976450 0.215746i \(-0.930782\pi\)
0.976450 0.215746i \(-0.0692183\pi\)
\(354\) 0 0
\(355\) −599.576 + 599.576i −1.68895 + 1.68895i
\(356\) 0 0
\(357\) 43.8493 4.12186i 0.122827 0.0115458i
\(358\) 0 0
\(359\) 99.2551i 0.276477i 0.990399 + 0.138238i \(0.0441440\pi\)
−0.990399 + 0.138238i \(0.955856\pi\)
\(360\) 0 0
\(361\) 306.083i 0.847877i
\(362\) 0 0
\(363\) −18.5246 18.5246i −0.0510320 0.0510320i
\(364\) 0 0
\(365\) 786.959 + 786.959i 2.15605 + 2.15605i
\(366\) 0 0
\(367\) 313.201i 0.853408i 0.904391 + 0.426704i \(0.140325\pi\)
−0.904391 + 0.426704i \(0.859675\pi\)
\(368\) 0 0
\(369\) 466.518i 1.26428i
\(370\) 0 0
\(371\) 12.0812 + 128.523i 0.0325638 + 0.346422i
\(372\) 0 0
\(373\) −192.122 + 192.122i −0.515072 + 0.515072i −0.916076 0.401004i \(-0.868661\pi\)
0.401004 + 0.916076i \(0.368661\pi\)
\(374\) 0 0
\(375\) 203.492i 0.542646i
\(376\) 0 0
\(377\) −148.015 −0.392614
\(378\) 0 0
\(379\) 55.0996 55.0996i 0.145382 0.145382i −0.630670 0.776051i \(-0.717220\pi\)
0.776051 + 0.630670i \(0.217220\pi\)
\(380\) 0 0
\(381\) 77.3823 77.3823i 0.203103 0.203103i
\(382\) 0 0
\(383\) 44.5676i 0.116365i −0.998306 0.0581823i \(-0.981470\pi\)
0.998306 0.0581823i \(-0.0185305\pi\)
\(384\) 0 0
\(385\) 373.130 450.557i 0.969168 1.17028i
\(386\) 0 0
\(387\) −13.3723 13.3723i −0.0345537 0.0345537i
\(388\) 0 0
\(389\) −50.2482 + 50.2482i −0.129173 + 0.129173i −0.768737 0.639565i \(-0.779115\pi\)
0.639565 + 0.768737i \(0.279115\pi\)
\(390\) 0 0
\(391\) 149.837 0.383216
\(392\) 0 0
\(393\) 62.3608i 0.158679i
\(394\) 0 0
\(395\) −701.217 701.217i −1.77523 1.77523i
\(396\) 0 0
\(397\) −265.435 + 265.435i −0.668602 + 0.668602i −0.957392 0.288790i \(-0.906747\pi\)
0.288790 + 0.957392i \(0.406747\pi\)
\(398\) 0 0
\(399\) −42.4895 35.1878i −0.106490 0.0881899i
\(400\) 0 0
\(401\) −312.566 −0.779467 −0.389734 0.920928i \(-0.627433\pi\)
−0.389734 + 0.920928i \(0.627433\pi\)
\(402\) 0 0
\(403\) −337.093 337.093i −0.836458 0.836458i
\(404\) 0 0
\(405\) −311.470 311.470i −0.769063 0.769063i
\(406\) 0 0
\(407\) 48.8482i 0.120020i
\(408\) 0 0
\(409\) −281.100 −0.687286 −0.343643 0.939100i \(-0.611661\pi\)
−0.343643 + 0.939100i \(0.611661\pi\)
\(410\) 0 0
\(411\) −24.0113 24.0113i −0.0584217 0.0584217i
\(412\) 0 0
\(413\) 204.947 19.2651i 0.496241 0.0466469i
\(414\) 0 0
\(415\) 380.927 0.917898
\(416\) 0 0
\(417\) −72.8236 −0.174637
\(418\) 0 0
\(419\) 348.371 348.371i 0.831435 0.831435i −0.156278 0.987713i \(-0.549950\pi\)
0.987713 + 0.156278i \(0.0499496\pi\)
\(420\) 0 0
\(421\) −126.230 + 126.230i −0.299835 + 0.299835i −0.840949 0.541114i \(-0.818003\pi\)
0.541114 + 0.840949i \(0.318003\pi\)
\(422\) 0 0
\(423\) −638.508 −1.50948
\(424\) 0 0
\(425\) 280.871 0.660872
\(426\) 0 0
\(427\) 19.9763 + 212.513i 0.0467830 + 0.497689i
\(428\) 0 0
\(429\) 133.235 + 133.235i 0.310572 + 0.310572i
\(430\) 0 0
\(431\) 642.234 1.49010 0.745051 0.667007i \(-0.232425\pi\)
0.745051 + 0.667007i \(0.232425\pi\)
\(432\) 0 0
\(433\) 92.9286i 0.214616i 0.994226 + 0.107308i \(0.0342230\pi\)
−0.994226 + 0.107308i \(0.965777\pi\)
\(434\) 0 0
\(435\) 52.5043 + 52.5043i 0.120700 + 0.120700i
\(436\) 0 0
\(437\) −132.715 132.715i −0.303697 0.303697i
\(438\) 0 0
\(439\) −435.700 −0.992482 −0.496241 0.868185i \(-0.665287\pi\)
−0.496241 + 0.868185i \(0.665287\pi\)
\(440\) 0 0
\(441\) 378.825 71.8543i 0.859013 0.162935i
\(442\) 0 0
\(443\) 355.684 355.684i 0.802898 0.802898i −0.180649 0.983548i \(-0.557820\pi\)
0.983548 + 0.180649i \(0.0578199\pi\)
\(444\) 0 0
\(445\) −801.405 801.405i −1.80091 1.80091i
\(446\) 0 0
\(447\) 262.745i 0.587797i
\(448\) 0 0
\(449\) −117.227 −0.261085 −0.130543 0.991443i \(-0.541672\pi\)
−0.130543 + 0.991443i \(0.541672\pi\)
\(450\) 0 0
\(451\) 411.528 411.528i 0.912479 0.912479i
\(452\) 0 0
\(453\) 39.9971 + 39.9971i 0.0882938 + 0.0882938i
\(454\) 0 0
\(455\) 686.008 828.359i 1.50771 1.82057i
\(456\) 0 0
\(457\) 179.002i 0.391689i −0.980635 0.195844i \(-0.937255\pi\)
0.980635 0.195844i \(-0.0627447\pi\)
\(458\) 0 0
\(459\) −75.0496 + 75.0496i −0.163507 + 0.163507i
\(460\) 0 0
\(461\) −86.8740 + 86.8740i −0.188447 + 0.188447i −0.795024 0.606578i \(-0.792542\pi\)
0.606578 + 0.795024i \(0.292542\pi\)
\(462\) 0 0
\(463\) −920.087 −1.98723 −0.993614 0.112831i \(-0.964008\pi\)
−0.993614 + 0.112831i \(0.964008\pi\)
\(464\) 0 0
\(465\) 239.149i 0.514298i
\(466\) 0 0
\(467\) 29.5742 29.5742i 0.0633281 0.0633281i −0.674733 0.738062i \(-0.735741\pi\)
0.738062 + 0.674733i \(0.235741\pi\)
\(468\) 0 0
\(469\) −396.866 + 37.3056i −0.846197 + 0.0795429i
\(470\) 0 0
\(471\) 78.2296i 0.166092i
\(472\) 0 0
\(473\) 23.5921i 0.0498775i
\(474\) 0 0
\(475\) −248.775 248.775i −0.523737 0.523737i
\(476\) 0 0
\(477\) −102.611 102.611i −0.215117 0.215117i
\(478\) 0 0
\(479\) 773.399i 1.61461i 0.590133 + 0.807306i \(0.299075\pi\)
−0.590133 + 0.807306i \(0.700925\pi\)
\(480\) 0 0
\(481\) 89.8085i 0.186712i
\(482\) 0 0
\(483\) −187.721 + 17.6458i −0.388656 + 0.0365338i
\(484\) 0 0
\(485\) 166.965 166.965i 0.344257 0.344257i
\(486\) 0 0
\(487\) 639.484i 1.31311i 0.754278 + 0.656555i \(0.227987\pi\)
−0.754278 + 0.656555i \(0.772013\pi\)
\(488\) 0 0
\(489\) 203.878 0.416928
\(490\) 0 0
\(491\) 280.573 280.573i 0.571431 0.571431i −0.361097 0.932528i \(-0.617598\pi\)
0.932528 + 0.361097i \(0.117598\pi\)
\(492\) 0 0
\(493\) −34.3080 + 34.3080i −0.0695902 + 0.0695902i
\(494\) 0 0
\(495\) 657.622i 1.32853i
\(496\) 0 0
\(497\) 536.975 + 444.697i 1.08043 + 0.894763i
\(498\) 0 0
\(499\) −107.950 107.950i −0.216332 0.216332i 0.590619 0.806951i \(-0.298884\pi\)
−0.806951 + 0.590619i \(0.798884\pi\)
\(500\) 0 0
\(501\) 202.197 202.197i 0.403587 0.403587i
\(502\) 0 0
\(503\) −290.234 −0.577006 −0.288503 0.957479i \(-0.593158\pi\)
−0.288503 + 0.957479i \(0.593158\pi\)
\(504\) 0 0
\(505\) 1212.94i 2.40187i
\(506\) 0 0
\(507\) 117.867 + 117.867i 0.232478 + 0.232478i
\(508\) 0 0
\(509\) −605.494 + 605.494i −1.18958 + 1.18958i −0.212391 + 0.977185i \(0.568125\pi\)
−0.977185 + 0.212391i \(0.931875\pi\)
\(510\) 0 0
\(511\) 583.676 704.793i 1.14222 1.37924i
\(512\) 0 0
\(513\) 132.947 0.259156
\(514\) 0 0
\(515\) 45.3670 + 45.3670i 0.0880913 + 0.0880913i
\(516\) 0 0
\(517\) 563.245 + 563.245i 1.08945 + 1.08945i
\(518\) 0 0
\(519\) 264.062i 0.508790i
\(520\) 0 0
\(521\) −514.345 −0.987227 −0.493613 0.869681i \(-0.664324\pi\)
−0.493613 + 0.869681i \(0.664324\pi\)
\(522\) 0 0
\(523\) −11.1948 11.1948i −0.0214049 0.0214049i 0.696323 0.717728i \(-0.254818\pi\)
−0.717728 + 0.696323i \(0.754818\pi\)
\(524\) 0 0
\(525\) −351.883 + 33.0772i −0.670253 + 0.0630041i
\(526\) 0 0
\(527\) −156.267 −0.296522
\(528\) 0 0
\(529\) −112.460 −0.212590
\(530\) 0 0
\(531\) −163.628 + 163.628i −0.308150 + 0.308150i
\(532\) 0 0
\(533\) 756.604 756.604i 1.41952 1.41952i
\(534\) 0 0
\(535\) 992.922 1.85593
\(536\) 0 0
\(537\) 134.693 0.250824
\(538\) 0 0
\(539\) −397.556 270.787i −0.737581 0.502387i
\(540\) 0 0
\(541\) −547.935 547.935i −1.01282 1.01282i −0.999917 0.0129021i \(-0.995893\pi\)
−0.0129021 0.999917i \(-0.504107\pi\)
\(542\) 0 0
\(543\) 3.36549 0.00619795
\(544\) 0 0
\(545\) 1429.90i 2.62368i
\(546\) 0 0
\(547\) −470.095 470.095i −0.859405 0.859405i 0.131863 0.991268i \(-0.457904\pi\)
−0.991268 + 0.131863i \(0.957904\pi\)
\(548\) 0 0
\(549\) −169.668 169.668i −0.309050 0.309050i
\(550\) 0 0
\(551\) 60.7751 0.110300
\(552\) 0 0
\(553\) −520.082 + 628.003i −0.940474 + 1.13563i
\(554\) 0 0
\(555\) 31.8571 31.8571i 0.0574001 0.0574001i
\(556\) 0 0
\(557\) −299.030 299.030i −0.536859 0.536859i 0.385746 0.922605i \(-0.373944\pi\)
−0.922605 + 0.385746i \(0.873944\pi\)
\(558\) 0 0
\(559\) 43.3746i 0.0775931i
\(560\) 0 0
\(561\) 61.7644 0.110097
\(562\) 0 0
\(563\) −576.267 + 576.267i −1.02356 + 1.02356i −0.0238492 + 0.999716i \(0.507592\pi\)
−0.999716 + 0.0238492i \(0.992408\pi\)
\(564\) 0 0
\(565\) −463.177 463.177i −0.819783 0.819783i
\(566\) 0 0
\(567\) −231.013 + 278.950i −0.407430 + 0.491975i
\(568\) 0 0
\(569\) 333.539i 0.586185i −0.956084 0.293093i \(-0.905316\pi\)
0.956084 0.293093i \(-0.0946844\pi\)
\(570\) 0 0
\(571\) 287.272 287.272i 0.503104 0.503104i −0.409297 0.912401i \(-0.634226\pi\)
0.912401 + 0.409297i \(0.134226\pi\)
\(572\) 0 0
\(573\) −152.139 + 152.139i −0.265513 + 0.265513i
\(574\) 0 0
\(575\) −1202.42 −2.09116
\(576\) 0 0
\(577\) 254.228i 0.440603i −0.975432 0.220302i \(-0.929296\pi\)
0.975432 0.220302i \(-0.0707042\pi\)
\(578\) 0 0
\(579\) −19.3709 + 19.3709i −0.0334557 + 0.0334557i
\(580\) 0 0
\(581\) −29.3133 311.842i −0.0504531 0.536732i
\(582\) 0 0
\(583\) 181.032i 0.310518i
\(584\) 0 0
\(585\) 1209.05i 2.06676i
\(586\) 0 0
\(587\) 325.537 + 325.537i 0.554578 + 0.554578i 0.927759 0.373181i \(-0.121733\pi\)
−0.373181 + 0.927759i \(0.621733\pi\)
\(588\) 0 0
\(589\) 138.410 + 138.410i 0.234992 + 0.234992i
\(590\) 0 0
\(591\) 358.271i 0.606212i
\(592\) 0 0
\(593\) 365.199i 0.615850i −0.951411 0.307925i \(-0.900365\pi\)
0.951411 0.307925i \(-0.0996346\pi\)
\(594\) 0 0
\(595\) −32.9951 351.010i −0.0554539 0.589932i
\(596\) 0 0
\(597\) −53.2622 + 53.2622i −0.0892164 + 0.0892164i
\(598\) 0 0
\(599\) 846.590i 1.41334i −0.707544 0.706669i \(-0.750197\pi\)
0.707544 0.706669i \(-0.249803\pi\)
\(600\) 0 0
\(601\) −264.664 −0.440372 −0.220186 0.975458i \(-0.570666\pi\)
−0.220186 + 0.975458i \(0.570666\pi\)
\(602\) 0 0
\(603\) 316.854 316.854i 0.525462 0.525462i
\(604\) 0 0
\(605\) −148.288 + 148.288i −0.245104 + 0.245104i
\(606\) 0 0
\(607\) 631.165i 1.03981i −0.854224 0.519906i \(-0.825967\pi\)
0.854224 0.519906i \(-0.174033\pi\)
\(608\) 0 0
\(609\) 38.9417 47.0224i 0.0639437 0.0772124i
\(610\) 0 0
\(611\) 1035.54 + 1035.54i 1.69483 + 1.69483i
\(612\) 0 0
\(613\) −156.240 + 156.240i −0.254878 + 0.254878i −0.822967 0.568089i \(-0.807683\pi\)
0.568089 + 0.822967i \(0.307683\pi\)
\(614\) 0 0
\(615\) −536.768 −0.872794
\(616\) 0 0
\(617\) 523.193i 0.847963i 0.905671 + 0.423982i \(0.139368\pi\)
−0.905671 + 0.423982i \(0.860632\pi\)
\(618\) 0 0
\(619\) −93.7666 93.7666i −0.151481 0.151481i 0.627298 0.778779i \(-0.284161\pi\)
−0.778779 + 0.627298i \(0.784161\pi\)
\(620\) 0 0
\(621\) 321.290 321.290i 0.517376 0.517376i
\(622\) 0 0
\(623\) −594.390 + 717.730i −0.954077 + 1.15205i
\(624\) 0 0
\(625\) −442.045 −0.707273
\(626\) 0 0
\(627\) −54.7065 54.7065i −0.0872513 0.0872513i
\(628\) 0 0
\(629\) 20.8164 + 20.8164i 0.0330944 + 0.0330944i
\(630\) 0 0
\(631\) 997.642i 1.58105i 0.612430 + 0.790524i \(0.290192\pi\)
−0.612430 + 0.790524i \(0.709808\pi\)
\(632\) 0 0
\(633\) 57.9700 0.0915797
\(634\) 0 0
\(635\) −619.439 619.439i −0.975494 0.975494i
\(636\) 0 0
\(637\) −730.916 497.848i −1.14743 0.781550i
\(638\) 0 0
\(639\) −783.756 −1.22653
\(640\) 0 0
\(641\) 895.604 1.39720 0.698599 0.715513i \(-0.253807\pi\)
0.698599 + 0.715513i \(0.253807\pi\)
\(642\) 0 0
\(643\) −497.619 + 497.619i −0.773902 + 0.773902i −0.978786 0.204884i \(-0.934318\pi\)
0.204884 + 0.978786i \(0.434318\pi\)
\(644\) 0 0
\(645\) 15.3859 15.3859i 0.0238541 0.0238541i
\(646\) 0 0
\(647\) 58.9196 0.0910658 0.0455329 0.998963i \(-0.485501\pi\)
0.0455329 + 0.998963i \(0.485501\pi\)
\(648\) 0 0
\(649\) 288.681 0.444809
\(650\) 0 0
\(651\) 195.776 18.4030i 0.300731 0.0282689i
\(652\) 0 0
\(653\) −58.1148 58.1148i −0.0889967 0.0889967i 0.661207 0.750204i \(-0.270045\pi\)
−0.750204 + 0.661207i \(0.770045\pi\)
\(654\) 0 0
\(655\) 499.192 0.762126
\(656\) 0 0
\(657\) 1028.70i 1.56575i
\(658\) 0 0
\(659\) 74.7256 + 74.7256i 0.113392 + 0.113392i 0.761526 0.648134i \(-0.224450\pi\)
−0.648134 + 0.761526i \(0.724450\pi\)
\(660\) 0 0
\(661\) 113.175 + 113.175i 0.171218 + 0.171218i 0.787514 0.616296i \(-0.211368\pi\)
−0.616296 + 0.787514i \(0.711368\pi\)
\(662\) 0 0
\(663\) 113.555 0.171275
\(664\) 0 0
\(665\) −281.675 + 340.124i −0.423571 + 0.511465i
\(666\) 0 0
\(667\) 146.874 146.874i 0.220201 0.220201i
\(668\) 0 0
\(669\) −174.102 174.102i −0.260242 0.260242i
\(670\) 0 0
\(671\) 299.338i 0.446107i
\(672\) 0 0
\(673\) 633.501 0.941309 0.470654 0.882318i \(-0.344018\pi\)
0.470654 + 0.882318i \(0.344018\pi\)
\(674\) 0 0
\(675\) 602.259 602.259i 0.892236 0.892236i
\(676\) 0 0
\(677\) 439.372 + 439.372i 0.648998 + 0.648998i 0.952751 0.303753i \(-0.0982396\pi\)
−0.303753 + 0.952751i \(0.598240\pi\)
\(678\) 0 0
\(679\) −149.532 123.835i −0.220224 0.182379i
\(680\) 0 0
\(681\) 247.423i 0.363322i
\(682\) 0 0
\(683\) −273.784 + 273.784i −0.400855 + 0.400855i −0.878534 0.477679i \(-0.841478\pi\)
0.477679 + 0.878534i \(0.341478\pi\)
\(684\) 0 0
\(685\) −192.208 + 192.208i −0.280596 + 0.280596i
\(686\) 0 0
\(687\) 27.1919 0.0395806
\(688\) 0 0
\(689\) 332.831i 0.483064i
\(690\) 0 0
\(691\) 702.619 702.619i 1.01681 1.01681i 0.0169580 0.999856i \(-0.494602\pi\)
0.999856 0.0169580i \(-0.00539816\pi\)
\(692\) 0 0
\(693\) 538.354 50.6056i 0.776846 0.0730239i
\(694\) 0 0
\(695\) 582.946i 0.838772i
\(696\) 0 0
\(697\) 350.741i 0.503215i
\(698\) 0 0
\(699\) 45.1626 + 45.1626i 0.0646103 + 0.0646103i
\(700\) 0 0
\(701\) 746.925 + 746.925i 1.06551 + 1.06551i 0.997698 + 0.0678159i \(0.0216031\pi\)
0.0678159 + 0.997698i \(0.478397\pi\)
\(702\) 0 0
\(703\) 36.8754i 0.0524543i
\(704\) 0 0
\(705\) 734.657i 1.04207i
\(706\) 0 0
\(707\) −992.961 + 93.3388i −1.40447 + 0.132021i
\(708\) 0 0
\(709\) −464.990 + 464.990i −0.655839 + 0.655839i −0.954393 0.298554i \(-0.903496\pi\)
0.298554 + 0.954393i \(0.403496\pi\)
\(710\) 0 0
\(711\) 916.618i 1.28920i
\(712\) 0 0
\(713\) 668.986 0.938269
\(714\) 0 0
\(715\) 1066.54 1066.54i 1.49166 1.49166i
\(716\) 0 0
\(717\) −48.5639 + 48.5639i −0.0677321 + 0.0677321i
\(718\) 0 0
\(719\) 846.592i 1.17746i 0.808331 + 0.588729i \(0.200371\pi\)
−0.808331 + 0.588729i \(0.799629\pi\)
\(720\) 0 0
\(721\) 33.6480 40.6302i 0.0466686 0.0563526i
\(722\) 0 0
\(723\) −58.5798 58.5798i −0.0810232 0.0810232i
\(724\) 0 0
\(725\) 275.315 275.315i 0.379745 0.379745i
\(726\) 0 0
\(727\) 1333.27 1.83393 0.916966 0.398965i \(-0.130630\pi\)
0.916966 + 0.398965i \(0.130630\pi\)
\(728\) 0 0
\(729\) 235.433i 0.322953i
\(730\) 0 0
\(731\) 10.0536 + 10.0536i 0.0137533 + 0.0137533i
\(732\) 0 0
\(733\) 164.938 164.938i 0.225018 0.225018i −0.585590 0.810608i \(-0.699137\pi\)
0.810608 + 0.585590i \(0.199137\pi\)
\(734\) 0 0
\(735\) 82.6744 + 435.870i 0.112482 + 0.593020i
\(736\) 0 0
\(737\) −559.010 −0.758494
\(738\) 0 0
\(739\) 714.408 + 714.408i 0.966722 + 0.966722i 0.999464 0.0327418i \(-0.0104239\pi\)
−0.0327418 + 0.999464i \(0.510424\pi\)
\(740\) 0 0
\(741\) −100.579 100.579i −0.135734 0.135734i
\(742\) 0 0
\(743\) 374.557i 0.504114i 0.967712 + 0.252057i \(0.0811071\pi\)
−0.967712 + 0.252057i \(0.918893\pi\)
\(744\) 0 0
\(745\) 2103.25 2.82316
\(746\) 0 0
\(747\) 248.971 + 248.971i 0.333294 + 0.333294i
\(748\) 0 0
\(749\) −76.4077 812.843i −0.102013 1.08524i
\(750\) 0 0
\(751\) 571.874 0.761483 0.380742 0.924681i \(-0.375669\pi\)
0.380742 + 0.924681i \(0.375669\pi\)
\(752\) 0 0
\(753\) 63.0313 0.0837068
\(754\) 0 0
\(755\) 320.173 320.173i 0.424070 0.424070i
\(756\) 0 0
\(757\) −847.678 + 847.678i −1.11979 + 1.11979i −0.128014 + 0.991772i \(0.540860\pi\)
−0.991772 + 0.128014i \(0.959140\pi\)
\(758\) 0 0
\(759\) −264.416 −0.348374
\(760\) 0 0
\(761\) 320.868 0.421639 0.210820 0.977525i \(-0.432387\pi\)
0.210820 + 0.977525i \(0.432387\pi\)
\(762\) 0 0
\(763\) −1170.57 + 110.034i −1.53417 + 0.144213i
\(764\) 0 0
\(765\) 280.242 + 280.242i 0.366330 + 0.366330i
\(766\) 0 0
\(767\) 530.746 0.691977
\(768\) 0 0
\(769\) 1064.20i 1.38387i 0.721957 + 0.691937i \(0.243243\pi\)
−0.721957 + 0.691937i \(0.756757\pi\)
\(770\) 0 0
\(771\) 84.6881 + 84.6881i 0.109842 + 0.109842i
\(772\) 0 0
\(773\) −903.810 903.810i −1.16922 1.16922i −0.982392 0.186832i \(-0.940178\pi\)
−0.186832 0.982392i \(-0.559822\pi\)
\(774\) 0 0
\(775\) 1254.02 1.61808
\(776\) 0 0
\(777\) −28.5309 23.6279i −0.0367193 0.0304092i
\(778\) 0 0
\(779\) −310.662 + 310.662i −0.398796 + 0.398796i
\(780\) 0 0
\(781\) 691.372 + 691.372i 0.885239 + 0.885239i
\(782\) 0 0
\(783\) 147.130i 0.187906i
\(784\) 0 0
\(785\) −626.221 −0.797733
\(786\) 0 0
\(787\) −887.233 + 887.233i −1.12736 + 1.12736i −0.136756 + 0.990605i \(0.543668\pi\)
−0.990605 + 0.136756i \(0.956332\pi\)
\(788\) 0 0
\(789\) 140.298 + 140.298i 0.177818 + 0.177818i
\(790\) 0 0
\(791\) −343.532 + 414.817i −0.434301 + 0.524421i
\(792\) 0 0
\(793\) 550.339i 0.693997i
\(794\) 0 0
\(795\) 118.063 118.063i 0.148506 0.148506i
\(796\) 0 0
\(797\) −505.200 + 505.200i −0.633877 + 0.633877i −0.949038 0.315161i \(-0.897941\pi\)
0.315161 + 0.949038i \(0.397941\pi\)
\(798\) 0 0
\(799\) 480.048 0.600811
\(800\) 0 0
\(801\) 1047.58i 1.30784i
\(802\) 0 0
\(803\) 907.443 907.443i 1.13007 1.13007i
\(804\) 0 0
\(805\) 141.253 + 1502.69i 0.175470 + 1.86669i
\(806\) 0 0
\(807\) 367.267i 0.455101i
\(808\) 0 0
\(809\) 295.844i 0.365691i 0.983142 + 0.182846i \(0.0585308\pi\)
−0.983142 + 0.182846i \(0.941469\pi\)
\(810\) 0 0
\(811\) −296.074 296.074i −0.365073 0.365073i 0.500604 0.865677i \(-0.333111\pi\)
−0.865677 + 0.500604i \(0.833111\pi\)
\(812\) 0 0
\(813\) 325.756 + 325.756i 0.400683 + 0.400683i
\(814\) 0 0
\(815\) 1632.02i 2.00248i
\(816\) 0 0
\(817\) 17.8096i 0.0217988i
\(818\) 0 0
\(819\) 989.776 93.0395i 1.20852 0.113601i
\(820\) 0 0
\(821\) 357.491 357.491i 0.435433 0.435433i −0.455038 0.890472i \(-0.650375\pi\)
0.890472 + 0.455038i \(0.150375\pi\)
\(822\) 0 0
\(823\) 730.158i 0.887191i 0.896227 + 0.443596i \(0.146297\pi\)
−0.896227 + 0.443596i \(0.853703\pi\)
\(824\) 0 0
\(825\) −495.648 −0.600786
\(826\) 0 0
\(827\) 35.9526 35.9526i 0.0434735 0.0434735i −0.685036 0.728509i \(-0.740213\pi\)
0.728509 + 0.685036i \(0.240213\pi\)
\(828\) 0 0
\(829\) −652.419 + 652.419i −0.786996 + 0.786996i −0.981001 0.194005i \(-0.937852\pi\)
0.194005 + 0.981001i \(0.437852\pi\)
\(830\) 0 0
\(831\) 313.819i 0.377641i
\(832\) 0 0
\(833\) −284.811 + 54.0220i −0.341910 + 0.0648524i
\(834\) 0 0
\(835\) −1618.57 1618.57i −1.93841 1.93841i
\(836\) 0 0
\(837\) −335.077 + 335.077i −0.400331 + 0.400331i
\(838\) 0 0
\(839\) −247.208 −0.294646 −0.147323 0.989088i \(-0.547066\pi\)
−0.147323 + 0.989088i \(0.547066\pi\)
\(840\) 0 0
\(841\) 773.741i 0.920025i
\(842\) 0 0
\(843\) 183.792 + 183.792i 0.218022 + 0.218022i
\(844\) 0 0
\(845\) 943.511 943.511i 1.11658 1.11658i
\(846\) 0 0
\(847\) 132.805 + 109.983i 0.156795 + 0.129850i
\(848\) 0 0
\(849\) −569.425 −0.670700
\(850\) 0 0
\(851\) −89.1159 89.1159i −0.104719 0.104719i
\(852\) 0 0
\(853\) −277.858 277.858i −0.325742 0.325742i 0.525223 0.850965i \(-0.323982\pi\)
−0.850965 + 0.525223i \(0.823982\pi\)
\(854\) 0 0
\(855\) 496.438i 0.580629i
\(856\) 0 0
\(857\) 419.096 0.489027 0.244513 0.969646i \(-0.421372\pi\)
0.244513 + 0.969646i \(0.421372\pi\)
\(858\) 0 0
\(859\) −551.198 551.198i −0.641674 0.641674i 0.309293 0.950967i \(-0.399908\pi\)
−0.950967 + 0.309293i \(0.899908\pi\)
\(860\) 0 0
\(861\) 41.3056 + 439.419i 0.0479740 + 0.510359i
\(862\) 0 0
\(863\) −814.232 −0.943491 −0.471745 0.881735i \(-0.656376\pi\)
−0.471745 + 0.881735i \(0.656376\pi\)
\(864\) 0 0
\(865\) 2113.79 2.44369
\(866\) 0 0
\(867\) −191.011 + 191.011i −0.220312 + 0.220312i
\(868\) 0 0
\(869\) −808.573 + 808.573i −0.930464 + 0.930464i
\(870\) 0 0
\(871\) −1027.75 −1.17997
\(872\) 0 0
\(873\) 218.253 0.250004
\(874\) 0 0
\(875\) 125.350 + 1333.51i 0.143258 + 1.52401i
\(876\) 0 0
\(877\) 434.182 + 434.182i 0.495077 + 0.495077i 0.909901 0.414824i \(-0.136157\pi\)
−0.414824 + 0.909901i \(0.636157\pi\)
\(878\) 0 0
\(879\) −49.9863 −0.0568672
\(880\) 0 0
\(881\) 592.016i 0.671982i −0.941865 0.335991i \(-0.890929\pi\)
0.941865 0.335991i \(-0.109071\pi\)
\(882\) 0 0
\(883\) 1020.66 + 1020.66i 1.15590 + 1.15590i 0.985349 + 0.170549i \(0.0545540\pi\)
0.170549 + 0.985349i \(0.445446\pi\)
\(884\) 0 0
\(885\) −188.267 188.267i −0.212732 0.212732i
\(886\) 0 0
\(887\) −958.356 −1.08045 −0.540223 0.841522i \(-0.681660\pi\)
−0.540223 + 0.841522i \(0.681660\pi\)
\(888\) 0 0
\(889\) −459.428 + 554.763i −0.516792 + 0.624030i
\(890\) 0 0
\(891\) −359.157 + 359.157i −0.403094 + 0.403094i
\(892\) 0 0
\(893\) −425.193 425.193i −0.476140 0.476140i
\(894\) 0 0
\(895\) 1078.20i 1.20470i
\(896\) 0 0
\(897\) −486.135 −0.541956
\(898\) 0 0
\(899\) −153.176 + 153.176i −0.170385 + 0.170385i
\(900\) 0 0
\(901\) 77.1458 + 77.1458i 0.0856224 + 0.0856224i
\(902\) 0 0
\(903\) −13.7795 11.4115i −0.0152597 0.0126373i
\(904\) 0 0
\(905\) 26.9404i 0.0297684i
\(906\) 0 0
\(907\) −651.884 + 651.884i −0.718725 + 0.718725i −0.968344 0.249619i \(-0.919695\pi\)
0.249619 + 0.968344i \(0.419695\pi\)
\(908\) 0 0
\(909\) 792.769 792.769i 0.872133 0.872133i
\(910\) 0 0
\(911\) 270.629 0.297068 0.148534 0.988907i \(-0.452545\pi\)
0.148534 + 0.988907i \(0.452545\pi\)
\(912\) 0 0
\(913\) 439.248i 0.481104i
\(914\) 0 0
\(915\) 195.218 195.218i 0.213353 0.213353i
\(916\) 0 0
\(917\) −38.4140 408.658i −0.0418910 0.445646i
\(918\) 0 0
\(919\) 672.828i 0.732131i −0.930589 0.366065i \(-0.880705\pi\)
0.930589 0.366065i \(-0.119295\pi\)
\(920\) 0 0
\(921\) 103.562i 0.112445i
\(922\) 0 0
\(923\) 1271.10 + 1271.10i 1.37714 + 1.37714i
\(924\) 0 0
\(925\) −167.048 167.048i −0.180592 0.180592i
\(926\) 0 0
\(927\) 59.3029i 0.0639730i
\(928\) 0 0
\(929\) 1329.64i 1.43125i 0.698482 + 0.715627i \(0.253859\pi\)
−0.698482 + 0.715627i \(0.746141\pi\)
\(930\) 0 0
\(931\) 300.114 + 204.416i 0.322357 + 0.219566i
\(932\) 0 0
\(933\) 41.1354 41.1354i 0.0440894 0.0440894i
\(934\) 0 0
\(935\) 494.418i 0.528790i
\(936\) 0 0
\(937\) −291.259 −0.310842 −0.155421 0.987848i \(-0.549673\pi\)
−0.155421 + 0.987848i \(0.549673\pi\)
\(938\) 0 0
\(939\) 55.8067 55.8067i 0.0594321 0.0594321i
\(940\) 0 0
\(941\) 419.867 419.867i 0.446192 0.446192i −0.447894 0.894087i \(-0.647826\pi\)
0.894087 + 0.447894i \(0.147826\pi\)
\(942\) 0 0
\(943\) 1501.54i 1.59230i
\(944\) 0 0
\(945\) −823.406 681.906i −0.871329 0.721594i
\(946\) 0 0
\(947\) −372.399 372.399i −0.393241 0.393241i 0.482600 0.875841i \(-0.339693\pi\)
−0.875841 + 0.482600i \(0.839693\pi\)
\(948\) 0 0
\(949\) 1668.35 1668.35i 1.75801 1.75801i
\(950\) 0 0
\(951\) 150.649 0.158411
\(952\) 0 0
\(953\) 495.950i 0.520409i 0.965554 + 0.260204i \(0.0837899\pi\)
−0.965554 + 0.260204i \(0.916210\pi\)
\(954\) 0 0
\(955\) 1217.86 + 1217.86i 1.27525 + 1.27525i
\(956\) 0 0
\(957\) 60.5428 60.5428i 0.0632631 0.0632631i
\(958\) 0 0
\(959\) 172.140 + 142.558i 0.179499 + 0.148653i
\(960\) 0 0
\(961\) 263.307 0.273993
\(962\) 0 0
\(963\) 648.965 + 648.965i 0.673899 + 0.673899i
\(964\) 0 0
\(965\) 155.062 + 155.062i 0.160686 + 0.160686i
\(966\) 0 0
\(967\) 51.0248i 0.0527660i 0.999652 + 0.0263830i \(0.00839895\pi\)
−0.999652 + 0.0263830i \(0.991601\pi\)
\(968\) 0 0
\(969\) −46.6258 −0.0481174
\(970\) 0 0
\(971\) 492.933 + 492.933i 0.507655 + 0.507655i 0.913806 0.406151i \(-0.133129\pi\)
−0.406151 + 0.913806i \(0.633129\pi\)
\(972\) 0 0
\(973\) 477.222 44.8591i 0.490464 0.0461039i
\(974\) 0 0
\(975\) −911.261 −0.934626
\(976\) 0 0
\(977\) 520.611 0.532867 0.266433 0.963853i \(-0.414155\pi\)
0.266433 + 0.963853i \(0.414155\pi\)
\(978\) 0 0
\(979\) −924.100 + 924.100i −0.943923 + 0.943923i
\(980\) 0 0
\(981\) 934.572 934.572i 0.952673 0.952673i
\(982\) 0 0
\(983\) 1507.24 1.53330 0.766651 0.642064i \(-0.221922\pi\)
0.766651 + 0.642064i \(0.221922\pi\)
\(984\) 0 0
\(985\) −2867.93 −2.91160
\(986\) 0 0
\(987\) −601.418 + 56.5336i −0.609340 + 0.0572782i
\(988\) 0 0
\(989\) −43.0400 43.0400i −0.0435187 0.0435187i
\(990\) 0 0
\(991\) 988.153 0.997127 0.498563 0.866853i \(-0.333861\pi\)
0.498563 + 0.866853i \(0.333861\pi\)
\(992\) 0 0
\(993\) 433.041i 0.436093i
\(994\) 0 0
\(995\) 426.359 + 426.359i 0.428501 + 0.428501i
\(996\) 0 0
\(997\) 613.198 + 613.198i 0.615044 + 0.615044i 0.944256 0.329212i \(-0.106783\pi\)
−0.329212 + 0.944256i \(0.606783\pi\)
\(998\) 0 0
\(999\) 89.2715 0.0893609
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.l.b.209.13 56
4.3 odd 2 112.3.l.b.13.12 yes 56
7.6 odd 2 inner 448.3.l.b.209.16 56
16.5 even 4 inner 448.3.l.b.433.16 56
16.11 odd 4 112.3.l.b.69.11 yes 56
28.27 even 2 112.3.l.b.13.11 56
112.27 even 4 112.3.l.b.69.12 yes 56
112.69 odd 4 inner 448.3.l.b.433.13 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.11 56 28.27 even 2
112.3.l.b.13.12 yes 56 4.3 odd 2
112.3.l.b.69.11 yes 56 16.11 odd 4
112.3.l.b.69.12 yes 56 112.27 even 4
448.3.l.b.209.13 56 1.1 even 1 trivial
448.3.l.b.209.16 56 7.6 odd 2 inner
448.3.l.b.433.13 56 112.69 odd 4 inner
448.3.l.b.433.16 56 16.5 even 4 inner