L(s) = 1 | + (−0.752 + 0.752i)3-s + (6.01 + 6.01i)5-s + (4.46 − 5.39i)7-s + 7.86i·9-s + (6.94 − 6.94i)11-s + (12.7 − 12.7i)13-s − 9.05·15-s − 5.91i·17-s + (−5.24 + 5.24i)19-s + (0.696 + 7.41i)21-s + 25.3i·23-s + 47.4i·25-s + (−12.6 − 12.6i)27-s + (−5.79 − 5.79i)29-s − 26.4i·31-s + ⋯ |
L(s) = 1 | + (−0.250 + 0.250i)3-s + (1.20 + 1.20i)5-s + (0.637 − 0.770i)7-s + 0.874i·9-s + (0.631 − 0.631i)11-s + (0.981 − 0.981i)13-s − 0.603·15-s − 0.348i·17-s + (−0.275 + 0.275i)19-s + (0.0331 + 0.352i)21-s + 1.10i·23-s + 1.89i·25-s + (−0.469 − 0.469i)27-s + (−0.199 − 0.199i)29-s − 0.852i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.747 - 0.664i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.747 - 0.664i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.242450834\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.242450834\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-4.46 + 5.39i)T \) |
good | 3 | \( 1 + (0.752 - 0.752i)T - 9iT^{2} \) |
| 5 | \( 1 + (-6.01 - 6.01i)T + 25iT^{2} \) |
| 11 | \( 1 + (-6.94 + 6.94i)T - 121iT^{2} \) |
| 13 | \( 1 + (-12.7 + 12.7i)T - 169iT^{2} \) |
| 17 | \( 1 + 5.91iT - 289T^{2} \) |
| 19 | \( 1 + (5.24 - 5.24i)T - 361iT^{2} \) |
| 23 | \( 1 - 25.3iT - 529T^{2} \) |
| 29 | \( 1 + (5.79 + 5.79i)T + 841iT^{2} \) |
| 31 | \( 1 + 26.4iT - 961T^{2} \) |
| 37 | \( 1 + (3.51 - 3.51i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 - 59.2T + 1.68e3T^{2} \) |
| 43 | \( 1 + (1.69 - 1.69i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 - 81.1iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (13.0 - 13.0i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (-20.7 - 20.7i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + (21.5 - 21.5i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + (40.2 + 40.2i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 99.6iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 130.T + 5.32e3T^{2} \) |
| 79 | \( 1 + 116.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-31.6 + 31.6i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 133.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 27.7iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.10541928408326037248885861051, −10.26207663343078794878121959224, −9.469322809399903734910459453842, −8.119466032615087288027918521015, −7.29484037878390761029416784605, −6.08882027064857814872702506891, −5.55761157776101559499080000737, −4.07606486693643219027556725600, −2.83392286259246981920549938518, −1.43305813151199795413122564880,
1.20643520905663339437367407627, 2.06729286217262881384794100116, 4.11343250003583565366026567283, 5.11483436994875360582958948878, 6.08562710549400593869097040532, 6.72596318051523031268392549550, 8.457533791036781316624027547888, 8.991248761452723398899860113212, 9.565928199735806440334334055344, 10.84445839660715761965444445189