Properties

Label 448.3.l.b.209.1
Level $448$
Weight $3$
Character 448.209
Analytic conductor $12.207$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(209,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.209"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 209.1
Character \(\chi\) \(=\) 448.209
Dual form 448.3.l.b.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.98373 + 3.98373i) q^{3} +(2.85829 + 2.85829i) q^{5} +(6.99861 - 0.139610i) q^{7} -22.7401i q^{9} +(7.34382 - 7.34382i) q^{11} +(7.74138 - 7.74138i) q^{13} -22.7733 q^{15} -16.9118i q^{17} +(9.10220 - 9.10220i) q^{19} +(-27.3244 + 28.4367i) q^{21} -38.7551i q^{23} -8.66033i q^{25} +(54.7370 + 54.7370i) q^{27} +(14.6486 + 14.6486i) q^{29} +8.79153i q^{31} +58.5115i q^{33} +(20.4031 + 19.6050i) q^{35} +(-5.59597 + 5.59597i) q^{37} +61.6791i q^{39} -0.648870 q^{41} +(-11.6035 + 11.6035i) q^{43} +(64.9980 - 64.9980i) q^{45} +5.84809i q^{47} +(48.9610 - 1.95416i) q^{49} +(67.3721 + 67.3721i) q^{51} +(34.7291 - 34.7291i) q^{53} +41.9816 q^{55} +72.5213i q^{57} +(-4.12592 - 4.12592i) q^{59} +(-32.6840 + 32.6840i) q^{61} +(-3.17476 - 159.149i) q^{63} +44.2542 q^{65} +(-74.0032 - 74.0032i) q^{67} +(154.390 + 154.390i) q^{69} -24.7275i q^{71} -95.7422 q^{73} +(34.5004 + 34.5004i) q^{75} +(50.3712 - 52.4218i) q^{77} +43.7384 q^{79} -231.453 q^{81} +(-82.9808 + 82.9808i) q^{83} +(48.3389 - 48.3389i) q^{85} -116.712 q^{87} +93.1114 q^{89} +(53.0981 - 55.2597i) q^{91} +(-35.0230 - 35.0230i) q^{93} +52.0335 q^{95} +116.527i q^{97} +(-167.000 - 167.000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{15} - 20 q^{21} - 96 q^{29} + 100 q^{35} - 128 q^{37} + 72 q^{43} + 192 q^{49} + 128 q^{51} + 88 q^{53} - 444 q^{63} - 8 q^{65} - 440 q^{67} + 12 q^{77} + 8 q^{79} + 64 q^{81} + 96 q^{85} + 388 q^{91}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.98373 + 3.98373i −1.32791 + 1.32791i −0.420716 + 0.907192i \(0.638221\pi\)
−0.907192 + 0.420716i \(0.861779\pi\)
\(4\) 0 0
\(5\) 2.85829 + 2.85829i 0.571658 + 0.571658i 0.932592 0.360933i \(-0.117542\pi\)
−0.360933 + 0.932592i \(0.617542\pi\)
\(6\) 0 0
\(7\) 6.99861 0.139610i 0.999801 0.0199444i
\(8\) 0 0
\(9\) 22.7401i 2.52668i
\(10\) 0 0
\(11\) 7.34382 7.34382i 0.667620 0.667620i −0.289544 0.957165i \(-0.593504\pi\)
0.957165 + 0.289544i \(0.0935038\pi\)
\(12\) 0 0
\(13\) 7.74138 7.74138i 0.595491 0.595491i −0.343619 0.939109i \(-0.611653\pi\)
0.939109 + 0.343619i \(0.111653\pi\)
\(14\) 0 0
\(15\) −22.7733 −1.51822
\(16\) 0 0
\(17\) 16.9118i 0.994813i −0.867518 0.497407i \(-0.834286\pi\)
0.867518 0.497407i \(-0.165714\pi\)
\(18\) 0 0
\(19\) 9.10220 9.10220i 0.479063 0.479063i −0.425769 0.904832i \(-0.639996\pi\)
0.904832 + 0.425769i \(0.139996\pi\)
\(20\) 0 0
\(21\) −27.3244 + 28.4367i −1.30116 + 1.35413i
\(22\) 0 0
\(23\) 38.7551i 1.68500i −0.538694 0.842502i \(-0.681082\pi\)
0.538694 0.842502i \(-0.318918\pi\)
\(24\) 0 0
\(25\) 8.66033i 0.346413i
\(26\) 0 0
\(27\) 54.7370 + 54.7370i 2.02730 + 2.02730i
\(28\) 0 0
\(29\) 14.6486 + 14.6486i 0.505124 + 0.505124i 0.913026 0.407902i \(-0.133739\pi\)
−0.407902 + 0.913026i \(0.633739\pi\)
\(30\) 0 0
\(31\) 8.79153i 0.283598i 0.989895 + 0.141799i \(0.0452886\pi\)
−0.989895 + 0.141799i \(0.954711\pi\)
\(32\) 0 0
\(33\) 58.5115i 1.77308i
\(34\) 0 0
\(35\) 20.4031 + 19.6050i 0.582946 + 0.560143i
\(36\) 0 0
\(37\) −5.59597 + 5.59597i −0.151242 + 0.151242i −0.778673 0.627430i \(-0.784107\pi\)
0.627430 + 0.778673i \(0.284107\pi\)
\(38\) 0 0
\(39\) 61.6791i 1.58151i
\(40\) 0 0
\(41\) −0.648870 −0.0158261 −0.00791304 0.999969i \(-0.502519\pi\)
−0.00791304 + 0.999969i \(0.502519\pi\)
\(42\) 0 0
\(43\) −11.6035 + 11.6035i −0.269849 + 0.269849i −0.829039 0.559190i \(-0.811112\pi\)
0.559190 + 0.829039i \(0.311112\pi\)
\(44\) 0 0
\(45\) 64.9980 64.9980i 1.44440 1.44440i
\(46\) 0 0
\(47\) 5.84809i 0.124428i 0.998063 + 0.0622138i \(0.0198161\pi\)
−0.998063 + 0.0622138i \(0.980184\pi\)
\(48\) 0 0
\(49\) 48.9610 1.95416i 0.999204 0.0398808i
\(50\) 0 0
\(51\) 67.3721 + 67.3721i 1.32102 + 1.32102i
\(52\) 0 0
\(53\) 34.7291 34.7291i 0.655266 0.655266i −0.298990 0.954256i \(-0.596650\pi\)
0.954256 + 0.298990i \(0.0966497\pi\)
\(54\) 0 0
\(55\) 41.9816 0.763301
\(56\) 0 0
\(57\) 72.5213i 1.27230i
\(58\) 0 0
\(59\) −4.12592 4.12592i −0.0699308 0.0699308i 0.671276 0.741207i \(-0.265746\pi\)
−0.741207 + 0.671276i \(0.765746\pi\)
\(60\) 0 0
\(61\) −32.6840 + 32.6840i −0.535804 + 0.535804i −0.922294 0.386490i \(-0.873687\pi\)
0.386490 + 0.922294i \(0.373687\pi\)
\(62\) 0 0
\(63\) −3.17476 159.149i −0.0503931 2.52618i
\(64\) 0 0
\(65\) 44.2542 0.680835
\(66\) 0 0
\(67\) −74.0032 74.0032i −1.10453 1.10453i −0.993857 0.110669i \(-0.964701\pi\)
−0.110669 0.993857i \(-0.535299\pi\)
\(68\) 0 0
\(69\) 154.390 + 154.390i 2.23753 + 2.23753i
\(70\) 0 0
\(71\) 24.7275i 0.348274i −0.984721 0.174137i \(-0.944286\pi\)
0.984721 0.174137i \(-0.0557136\pi\)
\(72\) 0 0
\(73\) −95.7422 −1.31154 −0.655769 0.754962i \(-0.727655\pi\)
−0.655769 + 0.754962i \(0.727655\pi\)
\(74\) 0 0
\(75\) 34.5004 + 34.5004i 0.460005 + 0.460005i
\(76\) 0 0
\(77\) 50.3712 52.4218i 0.654172 0.680803i
\(78\) 0 0
\(79\) 43.7384 0.553651 0.276826 0.960920i \(-0.410718\pi\)
0.276826 + 0.960920i \(0.410718\pi\)
\(80\) 0 0
\(81\) −231.453 −2.85744
\(82\) 0 0
\(83\) −82.9808 + 82.9808i −0.999769 + 0.999769i −1.00000 0.000231097i \(-0.999926\pi\)
0.000231097 1.00000i \(0.499926\pi\)
\(84\) 0 0
\(85\) 48.3389 48.3389i 0.568693 0.568693i
\(86\) 0 0
\(87\) −116.712 −1.34152
\(88\) 0 0
\(89\) 93.1114 1.04620 0.523098 0.852273i \(-0.324776\pi\)
0.523098 + 0.852273i \(0.324776\pi\)
\(90\) 0 0
\(91\) 53.0981 55.2597i 0.583496 0.607249i
\(92\) 0 0
\(93\) −35.0230 35.0230i −0.376592 0.376592i
\(94\) 0 0
\(95\) 52.0335 0.547721
\(96\) 0 0
\(97\) 116.527i 1.20131i 0.799507 + 0.600657i \(0.205094\pi\)
−0.799507 + 0.600657i \(0.794906\pi\)
\(98\) 0 0
\(99\) −167.000 167.000i −1.68686 1.68686i
\(100\) 0 0
\(101\) −60.6954 60.6954i −0.600945 0.600945i 0.339618 0.940563i \(-0.389702\pi\)
−0.940563 + 0.339618i \(0.889702\pi\)
\(102\) 0 0
\(103\) −88.6335 −0.860520 −0.430260 0.902705i \(-0.641578\pi\)
−0.430260 + 0.902705i \(0.641578\pi\)
\(104\) 0 0
\(105\) −159.381 + 3.17939i −1.51792 + 0.0302799i
\(106\) 0 0
\(107\) −99.3107 + 99.3107i −0.928137 + 0.928137i −0.997586 0.0694484i \(-0.977876\pi\)
0.0694484 + 0.997586i \(0.477876\pi\)
\(108\) 0 0
\(109\) −44.7537 44.7537i −0.410584 0.410584i 0.471358 0.881942i \(-0.343764\pi\)
−0.881942 + 0.471358i \(0.843764\pi\)
\(110\) 0 0
\(111\) 44.5856i 0.401672i
\(112\) 0 0
\(113\) 119.377 1.05643 0.528216 0.849110i \(-0.322861\pi\)
0.528216 + 0.849110i \(0.322861\pi\)
\(114\) 0 0
\(115\) 110.773 110.773i 0.963246 0.963246i
\(116\) 0 0
\(117\) −176.040 176.040i −1.50462 1.50462i
\(118\) 0 0
\(119\) −2.36107 118.359i −0.0198409 0.994615i
\(120\) 0 0
\(121\) 13.1366i 0.108567i
\(122\) 0 0
\(123\) 2.58492 2.58492i 0.0210156 0.0210156i
\(124\) 0 0
\(125\) 96.2111 96.2111i 0.769688 0.769688i
\(126\) 0 0
\(127\) 71.4706 0.562761 0.281380 0.959596i \(-0.409208\pi\)
0.281380 + 0.959596i \(0.409208\pi\)
\(128\) 0 0
\(129\) 92.4503i 0.716669i
\(130\) 0 0
\(131\) 40.0674 40.0674i 0.305858 0.305858i −0.537442 0.843301i \(-0.680609\pi\)
0.843301 + 0.537442i \(0.180609\pi\)
\(132\) 0 0
\(133\) 62.4320 64.9735i 0.469413 0.488522i
\(134\) 0 0
\(135\) 312.908i 2.31784i
\(136\) 0 0
\(137\) 42.7346i 0.311932i −0.987762 0.155966i \(-0.950151\pi\)
0.987762 0.155966i \(-0.0498489\pi\)
\(138\) 0 0
\(139\) 123.602 + 123.602i 0.889226 + 0.889226i 0.994449 0.105223i \(-0.0335555\pi\)
−0.105223 + 0.994449i \(0.533555\pi\)
\(140\) 0 0
\(141\) −23.2972 23.2972i −0.165228 0.165228i
\(142\) 0 0
\(143\) 113.703i 0.795123i
\(144\) 0 0
\(145\) 83.7400i 0.577517i
\(146\) 0 0
\(147\) −187.262 + 202.832i −1.27389 + 1.37981i
\(148\) 0 0
\(149\) 45.5452 45.5452i 0.305673 0.305673i −0.537556 0.843228i \(-0.680652\pi\)
0.843228 + 0.537556i \(0.180652\pi\)
\(150\) 0 0
\(151\) 79.4115i 0.525904i −0.964809 0.262952i \(-0.915304\pi\)
0.964809 0.262952i \(-0.0846961\pi\)
\(152\) 0 0
\(153\) −384.577 −2.51358
\(154\) 0 0
\(155\) −25.1288 + 25.1288i −0.162121 + 0.162121i
\(156\) 0 0
\(157\) −146.600 + 146.600i −0.933756 + 0.933756i −0.997938 0.0641826i \(-0.979556\pi\)
0.0641826 + 0.997938i \(0.479556\pi\)
\(158\) 0 0
\(159\) 276.703i 1.74027i
\(160\) 0 0
\(161\) −5.41061 271.232i −0.0336063 1.68467i
\(162\) 0 0
\(163\) 83.6012 + 83.6012i 0.512891 + 0.512891i 0.915411 0.402520i \(-0.131866\pi\)
−0.402520 + 0.915411i \(0.631866\pi\)
\(164\) 0 0
\(165\) −167.243 + 167.243i −1.01359 + 1.01359i
\(166\) 0 0
\(167\) 36.5918 0.219113 0.109556 0.993981i \(-0.465057\pi\)
0.109556 + 0.993981i \(0.465057\pi\)
\(168\) 0 0
\(169\) 49.1421i 0.290782i
\(170\) 0 0
\(171\) −206.985 206.985i −1.21044 1.21044i
\(172\) 0 0
\(173\) −15.0359 + 15.0359i −0.0869129 + 0.0869129i −0.749227 0.662314i \(-0.769575\pi\)
0.662314 + 0.749227i \(0.269575\pi\)
\(174\) 0 0
\(175\) −1.20907 60.6103i −0.00690899 0.346344i
\(176\) 0 0
\(177\) 32.8730 0.185723
\(178\) 0 0
\(179\) 195.329 + 195.329i 1.09123 + 1.09123i 0.995398 + 0.0958270i \(0.0305496\pi\)
0.0958270 + 0.995398i \(0.469450\pi\)
\(180\) 0 0
\(181\) 8.27670 + 8.27670i 0.0457276 + 0.0457276i 0.729601 0.683873i \(-0.239706\pi\)
−0.683873 + 0.729601i \(0.739706\pi\)
\(182\) 0 0
\(183\) 260.408i 1.42300i
\(184\) 0 0
\(185\) −31.9898 −0.172918
\(186\) 0 0
\(187\) −124.197 124.197i −0.664157 0.664157i
\(188\) 0 0
\(189\) 390.724 + 375.441i 2.06732 + 1.98646i
\(190\) 0 0
\(191\) 255.184 1.33604 0.668021 0.744142i \(-0.267141\pi\)
0.668021 + 0.744142i \(0.267141\pi\)
\(192\) 0 0
\(193\) 201.246 1.04273 0.521363 0.853335i \(-0.325424\pi\)
0.521363 + 0.853335i \(0.325424\pi\)
\(194\) 0 0
\(195\) −176.297 + 176.297i −0.904086 + 0.904086i
\(196\) 0 0
\(197\) −214.513 + 214.513i −1.08890 + 1.08890i −0.0932573 + 0.995642i \(0.529728\pi\)
−0.995642 + 0.0932573i \(0.970272\pi\)
\(198\) 0 0
\(199\) 24.0744 0.120977 0.0604885 0.998169i \(-0.480734\pi\)
0.0604885 + 0.998169i \(0.480734\pi\)
\(200\) 0 0
\(201\) 589.617 2.93342
\(202\) 0 0
\(203\) 104.565 + 100.475i 0.515098 + 0.494949i
\(204\) 0 0
\(205\) −1.85466 1.85466i −0.00904712 0.00904712i
\(206\) 0 0
\(207\) −881.296 −4.25747
\(208\) 0 0
\(209\) 133.690i 0.639664i
\(210\) 0 0
\(211\) 183.834 + 183.834i 0.871251 + 0.871251i 0.992609 0.121358i \(-0.0387248\pi\)
−0.121358 + 0.992609i \(0.538725\pi\)
\(212\) 0 0
\(213\) 98.5075 + 98.5075i 0.462477 + 0.462477i
\(214\) 0 0
\(215\) −66.3324 −0.308523
\(216\) 0 0
\(217\) 1.22739 + 61.5285i 0.00565617 + 0.283541i
\(218\) 0 0
\(219\) 381.411 381.411i 1.74160 1.74160i
\(220\) 0 0
\(221\) −130.921 130.921i −0.592402 0.592402i
\(222\) 0 0
\(223\) 194.715i 0.873161i −0.899665 0.436580i \(-0.856189\pi\)
0.899665 0.436580i \(-0.143811\pi\)
\(224\) 0 0
\(225\) −196.937 −0.875277
\(226\) 0 0
\(227\) 151.403 151.403i 0.666973 0.666973i −0.290042 0.957014i \(-0.593669\pi\)
0.957014 + 0.290042i \(0.0936691\pi\)
\(228\) 0 0
\(229\) −225.367 225.367i −0.984135 0.984135i 0.0157410 0.999876i \(-0.494989\pi\)
−0.999876 + 0.0157410i \(0.994989\pi\)
\(230\) 0 0
\(231\) 8.16882 + 409.499i 0.0353629 + 1.77272i
\(232\) 0 0
\(233\) 173.604i 0.745083i −0.928016 0.372541i \(-0.878486\pi\)
0.928016 0.372541i \(-0.121514\pi\)
\(234\) 0 0
\(235\) −16.7156 + 16.7156i −0.0711300 + 0.0711300i
\(236\) 0 0
\(237\) −174.242 + 174.242i −0.735198 + 0.735198i
\(238\) 0 0
\(239\) −34.6861 −0.145130 −0.0725651 0.997364i \(-0.523119\pi\)
−0.0725651 + 0.997364i \(0.523119\pi\)
\(240\) 0 0
\(241\) 325.440i 1.35037i 0.737647 + 0.675186i \(0.235937\pi\)
−0.737647 + 0.675186i \(0.764063\pi\)
\(242\) 0 0
\(243\) 429.412 429.412i 1.76713 1.76713i
\(244\) 0 0
\(245\) 145.530 + 134.359i 0.594002 + 0.548405i
\(246\) 0 0
\(247\) 140.927i 0.570555i
\(248\) 0 0
\(249\) 661.146i 2.65520i
\(250\) 0 0
\(251\) −279.467 279.467i −1.11341 1.11341i −0.992686 0.120727i \(-0.961478\pi\)
−0.120727 0.992686i \(-0.538522\pi\)
\(252\) 0 0
\(253\) −284.610 284.610i −1.12494 1.12494i
\(254\) 0 0
\(255\) 385.138i 1.51035i
\(256\) 0 0
\(257\) 82.3722i 0.320514i −0.987075 0.160257i \(-0.948768\pi\)
0.987075 0.160257i \(-0.0512324\pi\)
\(258\) 0 0
\(259\) −38.3828 + 39.9453i −0.148196 + 0.154229i
\(260\) 0 0
\(261\) 333.111 333.111i 1.27629 1.27629i
\(262\) 0 0
\(263\) 380.578i 1.44707i −0.690290 0.723533i \(-0.742517\pi\)
0.690290 0.723533i \(-0.257483\pi\)
\(264\) 0 0
\(265\) 198.532 0.749177
\(266\) 0 0
\(267\) −370.930 + 370.930i −1.38925 + 1.38925i
\(268\) 0 0
\(269\) 78.7424 78.7424i 0.292723 0.292723i −0.545432 0.838155i \(-0.683634\pi\)
0.838155 + 0.545432i \(0.183634\pi\)
\(270\) 0 0
\(271\) 454.854i 1.67843i 0.543800 + 0.839215i \(0.316985\pi\)
−0.543800 + 0.839215i \(0.683015\pi\)
\(272\) 0 0
\(273\) 8.61104 + 431.668i 0.0315423 + 1.58120i
\(274\) 0 0
\(275\) −63.5999 63.5999i −0.231273 0.231273i
\(276\) 0 0
\(277\) −321.144 + 321.144i −1.15937 + 1.15937i −0.174753 + 0.984612i \(0.555913\pi\)
−0.984612 + 0.174753i \(0.944087\pi\)
\(278\) 0 0
\(279\) 199.921 0.716561
\(280\) 0 0
\(281\) 378.429i 1.34672i 0.739313 + 0.673362i \(0.235150\pi\)
−0.739313 + 0.673362i \(0.764850\pi\)
\(282\) 0 0
\(283\) 310.879 + 310.879i 1.09851 + 1.09851i 0.994585 + 0.103927i \(0.0331408\pi\)
0.103927 + 0.994585i \(0.466859\pi\)
\(284\) 0 0
\(285\) −207.287 + 207.287i −0.727323 + 0.727323i
\(286\) 0 0
\(287\) −4.54118 + 0.0905890i −0.0158229 + 0.000315641i
\(288\) 0 0
\(289\) 2.99014 0.0103465
\(290\) 0 0
\(291\) −464.213 464.213i −1.59523 1.59523i
\(292\) 0 0
\(293\) 96.8340 + 96.8340i 0.330491 + 0.330491i 0.852773 0.522282i \(-0.174919\pi\)
−0.522282 + 0.852773i \(0.674919\pi\)
\(294\) 0 0
\(295\) 23.5861i 0.0799530i
\(296\) 0 0
\(297\) 803.957 2.70693
\(298\) 0 0
\(299\) −300.018 300.018i −1.00340 1.00340i
\(300\) 0 0
\(301\) −79.5884 + 82.8283i −0.264413 + 0.275177i
\(302\) 0 0
\(303\) 483.588 1.59600
\(304\) 0 0
\(305\) −186.841 −0.612593
\(306\) 0 0
\(307\) 139.121 139.121i 0.453163 0.453163i −0.443240 0.896403i \(-0.646171\pi\)
0.896403 + 0.443240i \(0.146171\pi\)
\(308\) 0 0
\(309\) 353.092 353.092i 1.14269 1.14269i
\(310\) 0 0
\(311\) 359.228 1.15507 0.577536 0.816365i \(-0.304014\pi\)
0.577536 + 0.816365i \(0.304014\pi\)
\(312\) 0 0
\(313\) −156.473 −0.499913 −0.249957 0.968257i \(-0.580416\pi\)
−0.249957 + 0.968257i \(0.580416\pi\)
\(314\) 0 0
\(315\) 445.821 463.970i 1.41530 1.47292i
\(316\) 0 0
\(317\) 59.0354 + 59.0354i 0.186232 + 0.186232i 0.794065 0.607833i \(-0.207961\pi\)
−0.607833 + 0.794065i \(0.707961\pi\)
\(318\) 0 0
\(319\) 215.153 0.674462
\(320\) 0 0
\(321\) 791.253i 2.46496i
\(322\) 0 0
\(323\) −153.935 153.935i −0.476578 0.476578i
\(324\) 0 0
\(325\) −67.0429 67.0429i −0.206286 0.206286i
\(326\) 0 0
\(327\) 356.573 1.09044
\(328\) 0 0
\(329\) 0.816455 + 40.9285i 0.00248163 + 0.124403i
\(330\) 0 0
\(331\) −382.660 + 382.660i −1.15607 + 1.15607i −0.170760 + 0.985313i \(0.554622\pi\)
−0.985313 + 0.170760i \(0.945378\pi\)
\(332\) 0 0
\(333\) 127.253 + 127.253i 0.382142 + 0.382142i
\(334\) 0 0
\(335\) 423.046i 1.26282i
\(336\) 0 0
\(337\) 140.848 0.417946 0.208973 0.977921i \(-0.432988\pi\)
0.208973 + 0.977921i \(0.432988\pi\)
\(338\) 0 0
\(339\) −475.565 + 475.565i −1.40285 + 1.40285i
\(340\) 0 0
\(341\) 64.5634 + 64.5634i 0.189336 + 0.189336i
\(342\) 0 0
\(343\) 342.386 20.5119i 0.998210 0.0598013i
\(344\) 0 0
\(345\) 882.581i 2.55821i
\(346\) 0 0
\(347\) −192.200 + 192.200i −0.553891 + 0.553891i −0.927561 0.373671i \(-0.878099\pi\)
0.373671 + 0.927561i \(0.378099\pi\)
\(348\) 0 0
\(349\) 100.387 100.387i 0.287642 0.287642i −0.548505 0.836147i \(-0.684803\pi\)
0.836147 + 0.548505i \(0.184803\pi\)
\(350\) 0 0
\(351\) 847.479 2.41447
\(352\) 0 0
\(353\) 107.037i 0.303222i −0.988440 0.151611i \(-0.951554\pi\)
0.988440 0.151611i \(-0.0484460\pi\)
\(354\) 0 0
\(355\) 70.6784 70.6784i 0.199094 0.199094i
\(356\) 0 0
\(357\) 480.917 + 462.105i 1.34711 + 1.29441i
\(358\) 0 0
\(359\) 289.025i 0.805084i 0.915401 + 0.402542i \(0.131873\pi\)
−0.915401 + 0.402542i \(0.868127\pi\)
\(360\) 0 0
\(361\) 195.300i 0.540997i
\(362\) 0 0
\(363\) −52.3325 52.3325i −0.144167 0.144167i
\(364\) 0 0
\(365\) −273.659 273.659i −0.749751 0.749751i
\(366\) 0 0
\(367\) 682.187i 1.85882i 0.369048 + 0.929410i \(0.379684\pi\)
−0.369048 + 0.929410i \(0.620316\pi\)
\(368\) 0 0
\(369\) 14.7554i 0.0399875i
\(370\) 0 0
\(371\) 238.207 247.904i 0.642067 0.668205i
\(372\) 0 0
\(373\) −224.714 + 224.714i −0.602450 + 0.602450i −0.940962 0.338512i \(-0.890076\pi\)
0.338512 + 0.940962i \(0.390076\pi\)
\(374\) 0 0
\(375\) 766.557i 2.04415i
\(376\) 0 0
\(377\) 226.801 0.601594
\(378\) 0 0
\(379\) −86.4654 + 86.4654i −0.228141 + 0.228141i −0.811916 0.583775i \(-0.801575\pi\)
0.583775 + 0.811916i \(0.301575\pi\)
\(380\) 0 0
\(381\) −284.719 + 284.719i −0.747295 + 0.747295i
\(382\) 0 0
\(383\) 181.073i 0.472776i −0.971659 0.236388i \(-0.924036\pi\)
0.971659 0.236388i \(-0.0759637\pi\)
\(384\) 0 0
\(385\) 293.813 5.86107i 0.763149 0.0152236i
\(386\) 0 0
\(387\) 263.865 + 263.865i 0.681823 + 0.681823i
\(388\) 0 0
\(389\) 371.622 371.622i 0.955326 0.955326i −0.0437177 0.999044i \(-0.513920\pi\)
0.999044 + 0.0437177i \(0.0139202\pi\)
\(390\) 0 0
\(391\) −655.419 −1.67626
\(392\) 0 0
\(393\) 319.235i 0.812304i
\(394\) 0 0
\(395\) 125.017 + 125.017i 0.316499 + 0.316499i
\(396\) 0 0
\(397\) 70.5522 70.5522i 0.177713 0.177713i −0.612645 0.790358i \(-0.709894\pi\)
0.790358 + 0.612645i \(0.209894\pi\)
\(398\) 0 0
\(399\) 10.1247 + 507.548i 0.0253753 + 1.27205i
\(400\) 0 0
\(401\) 273.378 0.681742 0.340871 0.940110i \(-0.389278\pi\)
0.340871 + 0.940110i \(0.389278\pi\)
\(402\) 0 0
\(403\) 68.0586 + 68.0586i 0.168880 + 0.168880i
\(404\) 0 0
\(405\) −661.560 661.560i −1.63348 1.63348i
\(406\) 0 0
\(407\) 82.1916i 0.201945i
\(408\) 0 0
\(409\) −93.7777 −0.229285 −0.114643 0.993407i \(-0.536572\pi\)
−0.114643 + 0.993407i \(0.536572\pi\)
\(410\) 0 0
\(411\) 170.243 + 170.243i 0.414217 + 0.414217i
\(412\) 0 0
\(413\) −29.4517 28.2996i −0.0713116 0.0685221i
\(414\) 0 0
\(415\) −474.367 −1.14305
\(416\) 0 0
\(417\) −984.796 −2.36162
\(418\) 0 0
\(419\) 208.427 208.427i 0.497438 0.497438i −0.413201 0.910640i \(-0.635589\pi\)
0.910640 + 0.413201i \(0.135589\pi\)
\(420\) 0 0
\(421\) 90.0153 90.0153i 0.213813 0.213813i −0.592072 0.805885i \(-0.701690\pi\)
0.805885 + 0.592072i \(0.201690\pi\)
\(422\) 0 0
\(423\) 132.986 0.314389
\(424\) 0 0
\(425\) −146.462 −0.344617
\(426\) 0 0
\(427\) −224.180 + 233.306i −0.525011 + 0.546383i
\(428\) 0 0
\(429\) 452.960 + 452.960i 1.05585 + 1.05585i
\(430\) 0 0
\(431\) −735.644 −1.70683 −0.853416 0.521231i \(-0.825473\pi\)
−0.853416 + 0.521231i \(0.825473\pi\)
\(432\) 0 0
\(433\) 528.416i 1.22036i 0.792263 + 0.610180i \(0.208903\pi\)
−0.792263 + 0.610180i \(0.791097\pi\)
\(434\) 0 0
\(435\) −333.597 333.597i −0.766890 0.766890i
\(436\) 0 0
\(437\) −352.756 352.756i −0.807223 0.807223i
\(438\) 0 0
\(439\) −832.069 −1.89537 −0.947687 0.319202i \(-0.896585\pi\)
−0.947687 + 0.319202i \(0.896585\pi\)
\(440\) 0 0
\(441\) −44.4378 1113.38i −0.100766 2.52467i
\(442\) 0 0
\(443\) −211.932 + 211.932i −0.478401 + 0.478401i −0.904620 0.426219i \(-0.859845\pi\)
0.426219 + 0.904620i \(0.359845\pi\)
\(444\) 0 0
\(445\) 266.139 + 266.139i 0.598066 + 0.598066i
\(446\) 0 0
\(447\) 362.879i 0.811811i
\(448\) 0 0
\(449\) 86.2224 0.192032 0.0960161 0.995380i \(-0.469390\pi\)
0.0960161 + 0.995380i \(0.469390\pi\)
\(450\) 0 0
\(451\) −4.76518 + 4.76518i −0.0105658 + 0.0105658i
\(452\) 0 0
\(453\) 316.354 + 316.354i 0.698353 + 0.698353i
\(454\) 0 0
\(455\) 309.718 6.17836i 0.680699 0.0135788i
\(456\) 0 0
\(457\) 118.672i 0.259675i −0.991535 0.129838i \(-0.958554\pi\)
0.991535 0.129838i \(-0.0414456\pi\)
\(458\) 0 0
\(459\) 925.702 925.702i 2.01678 2.01678i
\(460\) 0 0
\(461\) 545.655 545.655i 1.18363 1.18363i 0.204837 0.978796i \(-0.434334\pi\)
0.978796 0.204837i \(-0.0656663\pi\)
\(462\) 0 0
\(463\) 112.656 0.243317 0.121659 0.992572i \(-0.461179\pi\)
0.121659 + 0.992572i \(0.461179\pi\)
\(464\) 0 0
\(465\) 200.212i 0.430564i
\(466\) 0 0
\(467\) −380.423 + 380.423i −0.814609 + 0.814609i −0.985321 0.170712i \(-0.945393\pi\)
0.170712 + 0.985321i \(0.445393\pi\)
\(468\) 0 0
\(469\) −528.251 507.588i −1.12634 1.08228i
\(470\) 0 0
\(471\) 1168.03i 2.47988i
\(472\) 0 0
\(473\) 170.428i 0.360313i
\(474\) 0 0
\(475\) −78.8281 78.8281i −0.165954 0.165954i
\(476\) 0 0
\(477\) −789.745 789.745i −1.65565 1.65565i
\(478\) 0 0
\(479\) 863.895i 1.80354i −0.432217 0.901770i \(-0.642269\pi\)
0.432217 0.901770i \(-0.357731\pi\)
\(480\) 0 0
\(481\) 86.6411i 0.180127i
\(482\) 0 0
\(483\) 1102.07 + 1058.96i 2.28171 + 2.19246i
\(484\) 0 0
\(485\) −333.069 + 333.069i −0.686741 + 0.686741i
\(486\) 0 0
\(487\) 345.108i 0.708640i −0.935124 0.354320i \(-0.884712\pi\)
0.935124 0.354320i \(-0.115288\pi\)
\(488\) 0 0
\(489\) −666.088 −1.36214
\(490\) 0 0
\(491\) 129.810 129.810i 0.264379 0.264379i −0.562452 0.826830i \(-0.690142\pi\)
0.826830 + 0.562452i \(0.190142\pi\)
\(492\) 0 0
\(493\) 247.735 247.735i 0.502504 0.502504i
\(494\) 0 0
\(495\) 954.667i 1.92862i
\(496\) 0 0
\(497\) −3.45222 173.058i −0.00694611 0.348205i
\(498\) 0 0
\(499\) −223.327 223.327i −0.447549 0.447549i 0.446990 0.894539i \(-0.352496\pi\)
−0.894539 + 0.446990i \(0.852496\pi\)
\(500\) 0 0
\(501\) −145.772 + 145.772i −0.290962 + 0.290962i
\(502\) 0 0
\(503\) 521.614 1.03701 0.518503 0.855076i \(-0.326489\pi\)
0.518503 + 0.855076i \(0.326489\pi\)
\(504\) 0 0
\(505\) 346.970i 0.687070i
\(506\) 0 0
\(507\) −195.769 195.769i −0.386131 0.386131i
\(508\) 0 0
\(509\) −438.781 + 438.781i −0.862045 + 0.862045i −0.991575 0.129530i \(-0.958653\pi\)
0.129530 + 0.991575i \(0.458653\pi\)
\(510\) 0 0
\(511\) −670.062 + 13.3666i −1.31128 + 0.0261578i
\(512\) 0 0
\(513\) 996.454 1.94240
\(514\) 0 0
\(515\) −253.340 253.340i −0.491923 0.491923i
\(516\) 0 0
\(517\) 42.9473 + 42.9473i 0.0830703 + 0.0830703i
\(518\) 0 0
\(519\) 119.798i 0.230825i
\(520\) 0 0
\(521\) −281.992 −0.541252 −0.270626 0.962685i \(-0.587231\pi\)
−0.270626 + 0.962685i \(0.587231\pi\)
\(522\) 0 0
\(523\) 79.8725 + 79.8725i 0.152720 + 0.152720i 0.779332 0.626612i \(-0.215559\pi\)
−0.626612 + 0.779332i \(0.715559\pi\)
\(524\) 0 0
\(525\) 246.271 + 236.638i 0.469088 + 0.450739i
\(526\) 0 0
\(527\) 148.681 0.282127
\(528\) 0 0
\(529\) −972.956 −1.83924
\(530\) 0 0
\(531\) −93.8239 + 93.8239i −0.176693 + 0.176693i
\(532\) 0 0
\(533\) −5.02315 + 5.02315i −0.00942429 + 0.00942429i
\(534\) 0 0
\(535\) −567.718 −1.06115
\(536\) 0 0
\(537\) −1556.28 −2.89809
\(538\) 0 0
\(539\) 345.210 373.912i 0.640464 0.693714i
\(540\) 0 0
\(541\) −44.8955 44.8955i −0.0829861 0.0829861i 0.664395 0.747381i \(-0.268689\pi\)
−0.747381 + 0.664395i \(0.768689\pi\)
\(542\) 0 0
\(543\) −65.9442 −0.121444
\(544\) 0 0
\(545\) 255.838i 0.469428i
\(546\) 0 0
\(547\) −199.738 199.738i −0.365152 0.365152i 0.500553 0.865706i \(-0.333130\pi\)
−0.865706 + 0.500553i \(0.833130\pi\)
\(548\) 0 0
\(549\) 743.239 + 743.239i 1.35381 + 1.35381i
\(550\) 0 0
\(551\) 266.669 0.483973
\(552\) 0 0
\(553\) 306.108 6.10635i 0.553541 0.0110422i
\(554\) 0 0
\(555\) 127.439 127.439i 0.229619 0.229619i
\(556\) 0 0
\(557\) 77.5628 + 77.5628i 0.139251 + 0.139251i 0.773296 0.634045i \(-0.218607\pi\)
−0.634045 + 0.773296i \(0.718607\pi\)
\(558\) 0 0
\(559\) 179.654i 0.321385i
\(560\) 0 0
\(561\) 989.537 1.76388
\(562\) 0 0
\(563\) −197.910 + 197.910i −0.351528 + 0.351528i −0.860678 0.509150i \(-0.829960\pi\)
0.509150 + 0.860678i \(0.329960\pi\)
\(564\) 0 0
\(565\) 341.214 + 341.214i 0.603919 + 0.603919i
\(566\) 0 0
\(567\) −1619.85 + 32.3132i −2.85687 + 0.0569899i
\(568\) 0 0
\(569\) 569.566i 1.00100i −0.865738 0.500498i \(-0.833150\pi\)
0.865738 0.500498i \(-0.166850\pi\)
\(570\) 0 0
\(571\) 77.3963 77.3963i 0.135545 0.135545i −0.636079 0.771624i \(-0.719445\pi\)
0.771624 + 0.636079i \(0.219445\pi\)
\(572\) 0 0
\(573\) −1016.58 + 1016.58i −1.77414 + 1.77414i
\(574\) 0 0
\(575\) −335.632 −0.583708
\(576\) 0 0
\(577\) 897.407i 1.55530i 0.628698 + 0.777649i \(0.283588\pi\)
−0.628698 + 0.777649i \(0.716412\pi\)
\(578\) 0 0
\(579\) −801.709 + 801.709i −1.38464 + 1.38464i
\(580\) 0 0
\(581\) −569.165 + 592.335i −0.979630 + 1.01951i
\(582\) 0 0
\(583\) 510.089i 0.874938i
\(584\) 0 0
\(585\) 1006.35i 1.72025i
\(586\) 0 0
\(587\) −102.303 102.303i −0.174281 0.174281i 0.614576 0.788857i \(-0.289327\pi\)
−0.788857 + 0.614576i \(0.789327\pi\)
\(588\) 0 0
\(589\) 80.0222 + 80.0222i 0.135861 + 0.135861i
\(590\) 0 0
\(591\) 1709.12i 2.89192i
\(592\) 0 0
\(593\) 687.227i 1.15890i −0.815008 0.579449i \(-0.803268\pi\)
0.815008 0.579449i \(-0.196732\pi\)
\(594\) 0 0
\(595\) 331.557 345.054i 0.557238 0.579922i
\(596\) 0 0
\(597\) −95.9059 + 95.9059i −0.160646 + 0.160646i
\(598\) 0 0
\(599\) 1083.21i 1.80837i 0.427145 + 0.904183i \(0.359519\pi\)
−0.427145 + 0.904183i \(0.640481\pi\)
\(600\) 0 0
\(601\) 1112.08 1.85038 0.925192 0.379500i \(-0.123904\pi\)
0.925192 + 0.379500i \(0.123904\pi\)
\(602\) 0 0
\(603\) −1682.84 + 1682.84i −2.79079 + 2.79079i
\(604\) 0 0
\(605\) −37.5482 + 37.5482i −0.0620631 + 0.0620631i
\(606\) 0 0
\(607\) 119.503i 0.196876i −0.995143 0.0984378i \(-0.968615\pi\)
0.995143 0.0984378i \(-0.0313845\pi\)
\(608\) 0 0
\(609\) −816.822 + 16.2942i −1.34125 + 0.0267557i
\(610\) 0 0
\(611\) 45.2723 + 45.2723i 0.0740954 + 0.0740954i
\(612\) 0 0
\(613\) −176.246 + 176.246i −0.287514 + 0.287514i −0.836096 0.548582i \(-0.815168\pi\)
0.548582 + 0.836096i \(0.315168\pi\)
\(614\) 0 0
\(615\) 14.7769 0.0240275
\(616\) 0 0
\(617\) 850.125i 1.37784i 0.724839 + 0.688919i \(0.241914\pi\)
−0.724839 + 0.688919i \(0.758086\pi\)
\(618\) 0 0
\(619\) 213.073 + 213.073i 0.344222 + 0.344222i 0.857952 0.513730i \(-0.171737\pi\)
−0.513730 + 0.857952i \(0.671737\pi\)
\(620\) 0 0
\(621\) 2121.34 2121.34i 3.41600 3.41600i
\(622\) 0 0
\(623\) 651.650 12.9993i 1.04599 0.0208657i
\(624\) 0 0
\(625\) 333.490 0.533584
\(626\) 0 0
\(627\) 532.584 + 532.584i 0.849416 + 0.849416i
\(628\) 0 0
\(629\) 94.6381 + 94.6381i 0.150458 + 0.150458i
\(630\) 0 0
\(631\) 326.063i 0.516741i 0.966046 + 0.258370i \(0.0831855\pi\)
−0.966046 + 0.258370i \(0.916814\pi\)
\(632\) 0 0
\(633\) −1464.69 −2.31388
\(634\) 0 0
\(635\) 204.284 + 204.284i 0.321707 + 0.321707i
\(636\) 0 0
\(637\) 363.898 394.154i 0.571268 0.618766i
\(638\) 0 0
\(639\) −562.307 −0.879979
\(640\) 0 0
\(641\) 731.340 1.14094 0.570468 0.821320i \(-0.306762\pi\)
0.570468 + 0.821320i \(0.306762\pi\)
\(642\) 0 0
\(643\) 257.820 257.820i 0.400964 0.400964i −0.477609 0.878573i \(-0.658496\pi\)
0.878573 + 0.477609i \(0.158496\pi\)
\(644\) 0 0
\(645\) 264.250 264.250i 0.409690 0.409690i
\(646\) 0 0
\(647\) −863.893 −1.33523 −0.667614 0.744507i \(-0.732684\pi\)
−0.667614 + 0.744507i \(0.732684\pi\)
\(648\) 0 0
\(649\) −60.6000 −0.0933744
\(650\) 0 0
\(651\) −250.002 240.223i −0.384028 0.369006i
\(652\) 0 0
\(653\) −303.575 303.575i −0.464892 0.464892i 0.435363 0.900255i \(-0.356620\pi\)
−0.900255 + 0.435363i \(0.856620\pi\)
\(654\) 0 0
\(655\) 229.049 0.349693
\(656\) 0 0
\(657\) 2177.19i 3.31384i
\(658\) 0 0
\(659\) 378.621 + 378.621i 0.574539 + 0.574539i 0.933394 0.358854i \(-0.116833\pi\)
−0.358854 + 0.933394i \(0.616833\pi\)
\(660\) 0 0
\(661\) −407.564 407.564i −0.616588 0.616588i 0.328067 0.944654i \(-0.393603\pi\)
−0.944654 + 0.328067i \(0.893603\pi\)
\(662\) 0 0
\(663\) 1043.11 1.57331
\(664\) 0 0
\(665\) 364.162 7.26442i 0.547612 0.0109239i
\(666\) 0 0
\(667\) 567.708 567.708i 0.851136 0.851136i
\(668\) 0 0
\(669\) 775.691 + 775.691i 1.15948 + 1.15948i
\(670\) 0 0
\(671\) 480.051i 0.715427i
\(672\) 0 0
\(673\) −690.323 −1.02574 −0.512870 0.858466i \(-0.671418\pi\)
−0.512870 + 0.858466i \(0.671418\pi\)
\(674\) 0 0
\(675\) 474.040 474.040i 0.702282 0.702282i
\(676\) 0 0
\(677\) 218.512 + 218.512i 0.322765 + 0.322765i 0.849827 0.527062i \(-0.176706\pi\)
−0.527062 + 0.849827i \(0.676706\pi\)
\(678\) 0 0
\(679\) 16.2684 + 815.529i 0.0239594 + 1.20107i
\(680\) 0 0
\(681\) 1206.29i 1.77136i
\(682\) 0 0
\(683\) 328.283 328.283i 0.480648 0.480648i −0.424691 0.905339i \(-0.639617\pi\)
0.905339 + 0.424691i \(0.139617\pi\)
\(684\) 0 0
\(685\) 122.148 122.148i 0.178318 0.178318i
\(686\) 0 0
\(687\) 1795.60 2.61368
\(688\) 0 0
\(689\) 537.703i 0.780410i
\(690\) 0 0
\(691\) −323.199 + 323.199i −0.467727 + 0.467727i −0.901177 0.433451i \(-0.857296\pi\)
0.433451 + 0.901177i \(0.357296\pi\)
\(692\) 0 0
\(693\) −1192.08 1145.45i −1.72017 1.65289i
\(694\) 0 0
\(695\) 706.584i 1.01667i
\(696\) 0 0
\(697\) 10.9736i 0.0157440i
\(698\) 0 0
\(699\) 691.592 + 691.592i 0.989402 + 0.989402i
\(700\) 0 0
\(701\) 704.778 + 704.778i 1.00539 + 1.00539i 0.999985 + 0.00540466i \(0.00172037\pi\)
0.00540466 + 0.999985i \(0.498280\pi\)
\(702\) 0 0
\(703\) 101.871i 0.144909i
\(704\) 0 0
\(705\) 133.180i 0.188908i
\(706\) 0 0
\(707\) −433.257 416.310i −0.612811 0.588840i
\(708\) 0 0
\(709\) 700.308 700.308i 0.987740 0.987740i −0.0121858 0.999926i \(-0.503879\pi\)
0.999926 + 0.0121858i \(0.00387896\pi\)
\(710\) 0 0
\(711\) 994.619i 1.39890i
\(712\) 0 0
\(713\) 340.716 0.477863
\(714\) 0 0
\(715\) 324.995 324.995i 0.454539 0.454539i
\(716\) 0 0
\(717\) 138.180 138.180i 0.192720 0.192720i
\(718\) 0 0
\(719\) 25.6691i 0.0357012i 0.999841 + 0.0178506i \(0.00568232\pi\)
−0.999841 + 0.0178506i \(0.994318\pi\)
\(720\) 0 0
\(721\) −620.311 + 12.3742i −0.860348 + 0.0171625i
\(722\) 0 0
\(723\) −1296.46 1296.46i −1.79317 1.79317i
\(724\) 0 0
\(725\) 126.862 126.862i 0.174982 0.174982i
\(726\) 0 0
\(727\) −1039.69 −1.43010 −0.715052 0.699072i \(-0.753597\pi\)
−0.715052 + 0.699072i \(0.753597\pi\)
\(728\) 0 0
\(729\) 1338.24i 1.83573i
\(730\) 0 0
\(731\) 196.236 + 196.236i 0.268449 + 0.268449i
\(732\) 0 0
\(733\) −580.702 + 580.702i −0.792226 + 0.792226i −0.981856 0.189630i \(-0.939271\pi\)
0.189630 + 0.981856i \(0.439271\pi\)
\(734\) 0 0
\(735\) −1115.00 + 44.5026i −1.51701 + 0.0605478i
\(736\) 0 0
\(737\) −1086.93 −1.47481
\(738\) 0 0
\(739\) 194.170 + 194.170i 0.262747 + 0.262747i 0.826169 0.563422i \(-0.190516\pi\)
−0.563422 + 0.826169i \(0.690516\pi\)
\(740\) 0 0
\(741\) 561.415 + 561.415i 0.757645 + 0.757645i
\(742\) 0 0
\(743\) 827.119i 1.11322i −0.830775 0.556608i \(-0.812103\pi\)
0.830775 0.556608i \(-0.187897\pi\)
\(744\) 0 0
\(745\) 260.363 0.349481
\(746\) 0 0
\(747\) 1887.00 + 1887.00i 2.52610 + 2.52610i
\(748\) 0 0
\(749\) −681.172 + 708.901i −0.909441 + 0.946464i
\(750\) 0 0
\(751\) 920.918 1.22626 0.613128 0.789984i \(-0.289911\pi\)
0.613128 + 0.789984i \(0.289911\pi\)
\(752\) 0 0
\(753\) 2226.64 2.95702
\(754\) 0 0
\(755\) 226.981 226.981i 0.300638 0.300638i
\(756\) 0 0
\(757\) 415.892 415.892i 0.549396 0.549396i −0.376870 0.926266i \(-0.623000\pi\)
0.926266 + 0.376870i \(0.123000\pi\)
\(758\) 0 0
\(759\) 2267.62 2.98764
\(760\) 0 0
\(761\) −1186.17 −1.55871 −0.779353 0.626586i \(-0.784452\pi\)
−0.779353 + 0.626586i \(0.784452\pi\)
\(762\) 0 0
\(763\) −319.461 306.965i −0.418691 0.402314i
\(764\) 0 0
\(765\) −1099.23 1099.23i −1.43691 1.43691i
\(766\) 0 0
\(767\) −63.8806 −0.0832863
\(768\) 0 0
\(769\) 194.962i 0.253527i −0.991933 0.126764i \(-0.959541\pi\)
0.991933 0.126764i \(-0.0404589\pi\)
\(770\) 0 0
\(771\) 328.148 + 328.148i 0.425614 + 0.425614i
\(772\) 0 0
\(773\) 264.574 + 264.574i 0.342269 + 0.342269i 0.857220 0.514951i \(-0.172190\pi\)
−0.514951 + 0.857220i \(0.672190\pi\)
\(774\) 0 0
\(775\) 76.1376 0.0982420
\(776\) 0 0
\(777\) −6.22462 312.037i −0.00801110 0.401592i
\(778\) 0 0
\(779\) −5.90614 + 5.90614i −0.00758170 + 0.00758170i
\(780\) 0 0
\(781\) −181.594 181.594i −0.232515 0.232515i
\(782\) 0 0
\(783\) 1603.64i 2.04807i
\(784\) 0 0
\(785\) −838.049 −1.06758
\(786\) 0 0
\(787\) 239.581 239.581i 0.304424 0.304424i −0.538318 0.842742i \(-0.680940\pi\)
0.842742 + 0.538318i \(0.180940\pi\)
\(788\) 0 0
\(789\) 1516.12 + 1516.12i 1.92157 + 1.92157i
\(790\) 0 0
\(791\) 835.472 16.6663i 1.05622 0.0210699i
\(792\) 0 0
\(793\) 506.039i 0.638132i
\(794\) 0 0
\(795\) −790.897 + 790.897i −0.994839 + 0.994839i
\(796\) 0 0
\(797\) 554.730 554.730i 0.696022 0.696022i −0.267528 0.963550i \(-0.586207\pi\)
0.963550 + 0.267528i \(0.0862067\pi\)
\(798\) 0 0
\(799\) 98.9019 0.123782
\(800\) 0 0
\(801\) 2117.37i 2.64340i
\(802\) 0 0
\(803\) −703.114 + 703.114i −0.875609 + 0.875609i
\(804\) 0 0
\(805\) 759.794 790.724i 0.943843 0.982266i
\(806\) 0 0
\(807\) 627.376i 0.777418i
\(808\) 0 0
\(809\) 876.722i 1.08371i −0.840472 0.541855i \(-0.817722\pi\)
0.840472 0.541855i \(-0.182278\pi\)
\(810\) 0 0
\(811\) 798.902 + 798.902i 0.985083 + 0.985083i 0.999890 0.0148077i \(-0.00471362\pi\)
−0.0148077 + 0.999890i \(0.504714\pi\)
\(812\) 0 0
\(813\) −1812.02 1812.02i −2.22880 2.22880i
\(814\) 0 0
\(815\) 477.913i 0.586397i
\(816\) 0 0
\(817\) 211.235i 0.258549i
\(818\) 0 0
\(819\) −1256.61 1207.46i −1.53433 1.47431i
\(820\) 0 0
\(821\) 488.321 488.321i 0.594788 0.594788i −0.344133 0.938921i \(-0.611827\pi\)
0.938921 + 0.344133i \(0.111827\pi\)
\(822\) 0 0
\(823\) 481.599i 0.585175i 0.956239 + 0.292588i \(0.0945163\pi\)
−0.956239 + 0.292588i \(0.905484\pi\)
\(824\) 0 0
\(825\) 506.729 0.614218
\(826\) 0 0
\(827\) −269.789 + 269.789i −0.326226 + 0.326226i −0.851149 0.524924i \(-0.824094\pi\)
0.524924 + 0.851149i \(0.324094\pi\)
\(828\) 0 0
\(829\) 1021.06 1021.06i 1.23168 1.23168i 0.268357 0.963319i \(-0.413519\pi\)
0.963319 0.268357i \(-0.0864808\pi\)
\(830\) 0 0
\(831\) 2558.70i 3.07906i
\(832\) 0 0
\(833\) −33.0484 828.020i −0.0396739 0.994022i
\(834\) 0 0
\(835\) 104.590 + 104.590i 0.125258 + 0.125258i
\(836\) 0 0
\(837\) −481.222 + 481.222i −0.574936 + 0.574936i
\(838\) 0 0
\(839\) 770.486 0.918338 0.459169 0.888349i \(-0.348147\pi\)
0.459169 + 0.888349i \(0.348147\pi\)
\(840\) 0 0
\(841\) 411.837i 0.489699i
\(842\) 0 0
\(843\) −1507.56 1507.56i −1.78833 1.78833i
\(844\) 0 0
\(845\) −140.462 + 140.462i −0.166228 + 0.166228i
\(846\) 0 0
\(847\) 1.83400 + 91.9378i 0.00216529 + 0.108545i
\(848\) 0 0
\(849\) −2476.91 −2.91745
\(850\) 0 0
\(851\) 216.872 + 216.872i 0.254844 + 0.254844i
\(852\) 0 0
\(853\) −593.299 593.299i −0.695544 0.695544i 0.267902 0.963446i \(-0.413670\pi\)
−0.963446 + 0.267902i \(0.913670\pi\)
\(854\) 0 0
\(855\) 1183.25i 1.38392i
\(856\) 0 0
\(857\) −525.392 −0.613060 −0.306530 0.951861i \(-0.599168\pi\)
−0.306530 + 0.951861i \(0.599168\pi\)
\(858\) 0 0
\(859\) −738.470 738.470i −0.859686 0.859686i 0.131615 0.991301i \(-0.457984\pi\)
−0.991301 + 0.131615i \(0.957984\pi\)
\(860\) 0 0
\(861\) 17.7300 18.4517i 0.0205923 0.0214306i
\(862\) 0 0
\(863\) −381.348 −0.441887 −0.220943 0.975287i \(-0.570914\pi\)
−0.220943 + 0.975287i \(0.570914\pi\)
\(864\) 0 0
\(865\) −85.9541 −0.0993690
\(866\) 0 0
\(867\) −11.9119 + 11.9119i −0.0137392 + 0.0137392i
\(868\) 0 0
\(869\) 321.207 321.207i 0.369629 0.369629i
\(870\) 0 0
\(871\) −1145.77 −1.31547
\(872\) 0 0
\(873\) 2649.85 3.03534
\(874\) 0 0
\(875\) 659.911 686.776i 0.754184 0.784886i
\(876\) 0 0
\(877\) 847.709 + 847.709i 0.966601 + 0.966601i 0.999460 0.0328586i \(-0.0104611\pi\)
−0.0328586 + 0.999460i \(0.510461\pi\)
\(878\) 0 0
\(879\) −771.520 −0.877725
\(880\) 0 0
\(881\) 873.115i 0.991050i 0.868594 + 0.495525i \(0.165024\pi\)
−0.868594 + 0.495525i \(0.834976\pi\)
\(882\) 0 0
\(883\) −439.716 439.716i −0.497980 0.497980i 0.412829 0.910809i \(-0.364541\pi\)
−0.910809 + 0.412829i \(0.864541\pi\)
\(884\) 0 0
\(885\) 93.9607 + 93.9607i 0.106170 + 0.106170i
\(886\) 0 0
\(887\) 830.146 0.935903 0.467952 0.883754i \(-0.344992\pi\)
0.467952 + 0.883754i \(0.344992\pi\)
\(888\) 0 0
\(889\) 500.195 9.97805i 0.562649 0.0112239i
\(890\) 0 0
\(891\) −1699.75 + 1699.75i −1.90769 + 1.90769i
\(892\) 0 0
\(893\) 53.2305 + 53.2305i 0.0596086 + 0.0596086i
\(894\) 0 0
\(895\) 1116.62i 1.24762i
\(896\) 0 0
\(897\) 2390.38 2.66486
\(898\) 0 0
\(899\) −128.784 + 128.784i −0.143252 + 0.143252i
\(900\) 0 0
\(901\) −587.333 587.333i −0.651868 0.651868i
\(902\) 0 0
\(903\) −12.9070 647.024i −0.0142935 0.716527i
\(904\) 0 0
\(905\) 47.3145i 0.0522812i
\(906\) 0 0
\(907\) 997.246 997.246i 1.09950 1.09950i 0.105030 0.994469i \(-0.466506\pi\)
0.994469 0.105030i \(-0.0334940\pi\)
\(908\) 0 0
\(909\) −1380.22 + 1380.22i −1.51840 + 1.51840i
\(910\) 0 0
\(911\) 362.386 0.397789 0.198894 0.980021i \(-0.436265\pi\)
0.198894 + 0.980021i \(0.436265\pi\)
\(912\) 0 0
\(913\) 1218.79i 1.33493i
\(914\) 0 0
\(915\) 744.323 744.323i 0.813468 0.813468i
\(916\) 0 0
\(917\) 274.822 286.010i 0.299697 0.311898i
\(918\) 0 0
\(919\) 916.223i 0.996978i 0.866896 + 0.498489i \(0.166112\pi\)
−0.866896 + 0.498489i \(0.833888\pi\)
\(920\) 0 0
\(921\) 1108.44i 1.20352i
\(922\) 0 0
\(923\) −191.425 191.425i −0.207394 0.207394i
\(924\) 0 0
\(925\) 48.4630 + 48.4630i 0.0523924 + 0.0523924i
\(926\) 0 0
\(927\) 2015.54i 2.17426i
\(928\) 0 0
\(929\) 1362.91i 1.46707i 0.679652 + 0.733535i \(0.262131\pi\)
−0.679652 + 0.733535i \(0.737869\pi\)
\(930\) 0 0
\(931\) 427.866 463.440i 0.459577 0.497787i
\(932\) 0 0
\(933\) −1431.06 + 1431.06i −1.53383 + 1.53383i
\(934\) 0 0
\(935\) 709.985i 0.759342i
\(936\) 0 0
\(937\) 666.821 0.711656 0.355828 0.934552i \(-0.384199\pi\)
0.355828 + 0.934552i \(0.384199\pi\)
\(938\) 0 0
\(939\) 623.345 623.345i 0.663839 0.663839i
\(940\) 0 0
\(941\) 256.017 256.017i 0.272069 0.272069i −0.557863 0.829933i \(-0.688379\pi\)
0.829933 + 0.557863i \(0.188379\pi\)
\(942\) 0 0
\(943\) 25.1470i 0.0266670i
\(944\) 0 0
\(945\) 43.6853 + 2189.92i 0.0462278 + 2.31738i
\(946\) 0 0
\(947\) 466.545 + 466.545i 0.492655 + 0.492655i 0.909142 0.416487i \(-0.136739\pi\)
−0.416487 + 0.909142i \(0.636739\pi\)
\(948\) 0 0
\(949\) −741.177 + 741.177i −0.781008 + 0.781008i
\(950\) 0 0
\(951\) −470.362 −0.494597
\(952\) 0 0
\(953\) 731.374i 0.767444i −0.923449 0.383722i \(-0.874642\pi\)
0.923449 0.383722i \(-0.125358\pi\)
\(954\) 0 0
\(955\) 729.391 + 729.391i 0.763760 + 0.763760i
\(956\) 0 0
\(957\) −857.112 + 857.112i −0.895624 + 0.895624i
\(958\) 0 0
\(959\) −5.96620 299.083i −0.00622127 0.311869i
\(960\) 0 0
\(961\) 883.709 0.919572
\(962\) 0 0
\(963\) 2258.34 + 2258.34i 2.34511 + 2.34511i
\(964\) 0 0
\(965\) 575.220 + 575.220i 0.596083 + 0.596083i
\(966\) 0 0
\(967\) 193.963i 0.200582i 0.994958 + 0.100291i \(0.0319774\pi\)
−0.994958 + 0.100291i \(0.968023\pi\)
\(968\) 0 0
\(969\) 1226.47 1.26570
\(970\) 0 0
\(971\) −974.055 974.055i −1.00315 1.00315i −0.999995 0.00315102i \(-0.998997\pi\)
−0.00315102 0.999995i \(-0.501003\pi\)
\(972\) 0 0
\(973\) 882.301 + 847.789i 0.906784 + 0.871314i
\(974\) 0 0
\(975\) 534.161 0.547858
\(976\) 0 0
\(977\) 469.025 0.480067 0.240033 0.970765i \(-0.422842\pi\)
0.240033 + 0.970765i \(0.422842\pi\)
\(978\) 0 0
\(979\) 683.793 683.793i 0.698461 0.698461i
\(980\) 0 0
\(981\) −1017.71 + 1017.71i −1.03742 + 1.03742i
\(982\) 0 0
\(983\) −1695.60 −1.72493 −0.862463 0.506120i \(-0.831079\pi\)
−0.862463 + 0.506120i \(0.831079\pi\)
\(984\) 0 0
\(985\) −1226.28 −1.24496
\(986\) 0 0
\(987\) −166.300 159.795i −0.168491 0.161900i
\(988\) 0 0
\(989\) 449.695 + 449.695i 0.454696 + 0.454696i
\(990\) 0 0
\(991\) 276.573 0.279085 0.139542 0.990216i \(-0.455437\pi\)
0.139542 + 0.990216i \(0.455437\pi\)
\(992\) 0 0
\(993\) 3048.83i 3.07032i
\(994\) 0 0
\(995\) 68.8117 + 68.8117i 0.0691575 + 0.0691575i
\(996\) 0 0
\(997\) −616.598 616.598i −0.618453 0.618453i 0.326682 0.945134i \(-0.394070\pi\)
−0.945134 + 0.326682i \(0.894070\pi\)
\(998\) 0 0
\(999\) −612.613 −0.613226
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.l.b.209.1 56
4.3 odd 2 112.3.l.b.13.22 yes 56
7.6 odd 2 inner 448.3.l.b.209.28 56
16.5 even 4 inner 448.3.l.b.433.28 56
16.11 odd 4 112.3.l.b.69.21 yes 56
28.27 even 2 112.3.l.b.13.21 56
112.27 even 4 112.3.l.b.69.22 yes 56
112.69 odd 4 inner 448.3.l.b.433.1 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.21 56 28.27 even 2
112.3.l.b.13.22 yes 56 4.3 odd 2
112.3.l.b.69.21 yes 56 16.11 odd 4
112.3.l.b.69.22 yes 56 112.27 even 4
448.3.l.b.209.1 56 1.1 even 1 trivial
448.3.l.b.209.28 56 7.6 odd 2 inner
448.3.l.b.433.1 56 112.69 odd 4 inner
448.3.l.b.433.28 56 16.5 even 4 inner