L(s) = 1 | + (−3.98 + 3.98i)3-s + (2.85 + 2.85i)5-s + (6.99 − 0.139i)7-s − 22.7i·9-s + (7.34 − 7.34i)11-s + (7.74 − 7.74i)13-s − 22.7·15-s − 16.9i·17-s + (9.10 − 9.10i)19-s + (−27.3 + 28.4i)21-s − 38.7i·23-s − 8.66i·25-s + (54.7 + 54.7i)27-s + (14.6 + 14.6i)29-s + 8.79i·31-s + ⋯ |
L(s) = 1 | + (−1.32 + 1.32i)3-s + (0.571 + 0.571i)5-s + (0.999 − 0.0199i)7-s − 2.52i·9-s + (0.667 − 0.667i)11-s + (0.595 − 0.595i)13-s − 1.51·15-s − 0.994i·17-s + (0.479 − 0.479i)19-s + (−1.30 + 1.35i)21-s − 1.68i·23-s − 0.346i·25-s + (2.02 + 2.02i)27-s + (0.505 + 0.505i)29-s + 0.283i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.389637004\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.389637004\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-6.99 + 0.139i)T \) |
good | 3 | \( 1 + (3.98 - 3.98i)T - 9iT^{2} \) |
| 5 | \( 1 + (-2.85 - 2.85i)T + 25iT^{2} \) |
| 11 | \( 1 + (-7.34 + 7.34i)T - 121iT^{2} \) |
| 13 | \( 1 + (-7.74 + 7.74i)T - 169iT^{2} \) |
| 17 | \( 1 + 16.9iT - 289T^{2} \) |
| 19 | \( 1 + (-9.10 + 9.10i)T - 361iT^{2} \) |
| 23 | \( 1 + 38.7iT - 529T^{2} \) |
| 29 | \( 1 + (-14.6 - 14.6i)T + 841iT^{2} \) |
| 31 | \( 1 - 8.79iT - 961T^{2} \) |
| 37 | \( 1 + (5.59 - 5.59i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 0.648T + 1.68e3T^{2} \) |
| 43 | \( 1 + (11.6 - 11.6i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 - 5.84iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-34.7 + 34.7i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + (4.12 + 4.12i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + (32.6 - 32.6i)T - 3.72e3iT^{2} \) |
| 67 | \( 1 + (74.0 + 74.0i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 24.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 95.7T + 5.32e3T^{2} \) |
| 79 | \( 1 - 43.7T + 6.24e3T^{2} \) |
| 83 | \( 1 + (82.9 - 82.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 93.1T + 7.92e3T^{2} \) |
| 97 | \( 1 - 116. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75717726379413822509555004658, −10.42963139728713140604829961917, −9.349697937438695797177075704279, −8.486845508731947763159558904563, −6.82888252559572948191840678386, −6.05460719757710083713503357678, −5.15837969888556596763733695255, −4.37321854958785810329634888144, −3.05139313578685750147213282878, −0.809741605654218621305656955250,
1.39455039934565083793613110229, 1.70186308119696109543087055437, 4.31225996782907137088920982884, 5.44472993866289313438843324346, 5.98812105657881347490808798261, 7.08266646167504829946838212722, 7.83903160660895336706802665395, 8.903849578019190989498751420661, 10.13853916343200174541257943831, 11.20053278010051058609018595396