L(s) = 1 | + (−3.98 − 3.98i)3-s + (2.85 − 2.85i)5-s + (6.99 + 0.139i)7-s + 22.7i·9-s + (7.34 + 7.34i)11-s + (7.74 + 7.74i)13-s − 22.7·15-s + 16.9i·17-s + (9.10 + 9.10i)19-s + (−27.3 − 28.4i)21-s + 38.7i·23-s + 8.66i·25-s + (54.7 − 54.7i)27-s + (14.6 − 14.6i)29-s − 8.79i·31-s + ⋯ |
L(s) = 1 | + (−1.32 − 1.32i)3-s + (0.571 − 0.571i)5-s + (0.999 + 0.0199i)7-s + 2.52i·9-s + (0.667 + 0.667i)11-s + (0.595 + 0.595i)13-s − 1.51·15-s + 0.994i·17-s + (0.479 + 0.479i)19-s + (−1.30 − 1.35i)21-s + 1.68i·23-s + 0.346i·25-s + (2.02 − 2.02i)27-s + (0.505 − 0.505i)29-s − 0.283i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.389637004\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.389637004\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-6.99 - 0.139i)T \) |
good | 3 | \( 1 + (3.98 + 3.98i)T + 9iT^{2} \) |
| 5 | \( 1 + (-2.85 + 2.85i)T - 25iT^{2} \) |
| 11 | \( 1 + (-7.34 - 7.34i)T + 121iT^{2} \) |
| 13 | \( 1 + (-7.74 - 7.74i)T + 169iT^{2} \) |
| 17 | \( 1 - 16.9iT - 289T^{2} \) |
| 19 | \( 1 + (-9.10 - 9.10i)T + 361iT^{2} \) |
| 23 | \( 1 - 38.7iT - 529T^{2} \) |
| 29 | \( 1 + (-14.6 + 14.6i)T - 841iT^{2} \) |
| 31 | \( 1 + 8.79iT - 961T^{2} \) |
| 37 | \( 1 + (5.59 + 5.59i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 0.648T + 1.68e3T^{2} \) |
| 43 | \( 1 + (11.6 + 11.6i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + 5.84iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-34.7 - 34.7i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (4.12 - 4.12i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + (32.6 + 32.6i)T + 3.72e3iT^{2} \) |
| 67 | \( 1 + (74.0 - 74.0i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 24.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 95.7T + 5.32e3T^{2} \) |
| 79 | \( 1 - 43.7T + 6.24e3T^{2} \) |
| 83 | \( 1 + (82.9 + 82.9i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 93.1T + 7.92e3T^{2} \) |
| 97 | \( 1 + 116. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20053278010051058609018595396, −10.13853916343200174541257943831, −8.903849578019190989498751420661, −7.83903160660895336706802665395, −7.08266646167504829946838212722, −5.98812105657881347490808798261, −5.44472993866289313438843324346, −4.31225996782907137088920982884, −1.70186308119696109543087055437, −1.39455039934565083793613110229,
0.809741605654218621305656955250, 3.05139313578685750147213282878, 4.37321854958785810329634888144, 5.15837969888556596763733695255, 6.05460719757710083713503357678, 6.82888252559572948191840678386, 8.486845508731947763159558904563, 9.349697937438695797177075704279, 10.42963139728713140604829961917, 10.75717726379413822509555004658