Properties

Label 448.3.g.b.351.1
Level $448$
Weight $3$
Character 448.351
Analytic conductor $12.207$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(351,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.351"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 351.1
Root \(-1.32288 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.351
Dual form 448.3.g.b.351.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.64575 q^{3} -7.64575i q^{5} +2.64575i q^{7} -6.29150 q^{9} -3.29150 q^{11} -4.35425i q^{13} +12.5830i q^{15} -12.5830 q^{17} +10.3542 q^{19} -4.35425i q^{21} +19.1660i q^{23} -33.4575 q^{25} +25.1660 q^{27} +52.4575i q^{29} +17.1660i q^{31} +5.41699 q^{33} +20.2288 q^{35} -28.4575i q^{37} +7.16601i q^{39} -50.9150 q^{41} -75.2915 q^{43} +48.1033i q^{45} +74.3320i q^{47} -7.00000 q^{49} +20.7085 q^{51} -8.91503i q^{53} +25.1660i q^{55} -17.0405 q^{57} -45.1882 q^{59} -86.4353i q^{61} -16.6458i q^{63} -33.2915 q^{65} -113.830 q^{67} -31.5425i q^{69} +67.7490i q^{71} -57.7490 q^{73} +55.0627 q^{75} -8.70850i q^{77} -62.5830i q^{79} +15.2065 q^{81} +119.727 q^{83} +96.2065i q^{85} -86.3320i q^{87} +51.6680 q^{89} +11.5203 q^{91} -28.2510i q^{93} -79.1660i q^{95} +164.996 q^{97} +20.7085 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{9} + 8 q^{11} - 8 q^{17} + 52 q^{19} - 28 q^{25} + 16 q^{27} + 64 q^{33} + 28 q^{35} + 8 q^{41} - 280 q^{43} - 28 q^{49} + 104 q^{51} + 80 q^{57} - 276 q^{59} - 112 q^{65} - 32 q^{67}+ \cdots + 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.64575 −0.548584 −0.274292 0.961646i \(-0.588443\pi\)
−0.274292 + 0.961646i \(0.588443\pi\)
\(4\) 0 0
\(5\) − 7.64575i − 1.52915i −0.644535 0.764575i \(-0.722949\pi\)
0.644535 0.764575i \(-0.277051\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) −6.29150 −0.699056
\(10\) 0 0
\(11\) −3.29150 −0.299228 −0.149614 0.988745i \(-0.547803\pi\)
−0.149614 + 0.988745i \(0.547803\pi\)
\(12\) 0 0
\(13\) − 4.35425i − 0.334942i −0.985877 0.167471i \(-0.946440\pi\)
0.985877 0.167471i \(-0.0535601\pi\)
\(14\) 0 0
\(15\) 12.5830i 0.838867i
\(16\) 0 0
\(17\) −12.5830 −0.740177 −0.370088 0.928997i \(-0.620673\pi\)
−0.370088 + 0.928997i \(0.620673\pi\)
\(18\) 0 0
\(19\) 10.3542 0.544960 0.272480 0.962161i \(-0.412156\pi\)
0.272480 + 0.962161i \(0.412156\pi\)
\(20\) 0 0
\(21\) − 4.35425i − 0.207345i
\(22\) 0 0
\(23\) 19.1660i 0.833305i 0.909066 + 0.416652i \(0.136797\pi\)
−0.909066 + 0.416652i \(0.863203\pi\)
\(24\) 0 0
\(25\) −33.4575 −1.33830
\(26\) 0 0
\(27\) 25.1660 0.932074
\(28\) 0 0
\(29\) 52.4575i 1.80888i 0.426601 + 0.904440i \(0.359711\pi\)
−0.426601 + 0.904440i \(0.640289\pi\)
\(30\) 0 0
\(31\) 17.1660i 0.553742i 0.960907 + 0.276871i \(0.0892975\pi\)
−0.960907 + 0.276871i \(0.910702\pi\)
\(32\) 0 0
\(33\) 5.41699 0.164151
\(34\) 0 0
\(35\) 20.2288 0.577964
\(36\) 0 0
\(37\) − 28.4575i − 0.769122i −0.923100 0.384561i \(-0.874353\pi\)
0.923100 0.384561i \(-0.125647\pi\)
\(38\) 0 0
\(39\) 7.16601i 0.183744i
\(40\) 0 0
\(41\) −50.9150 −1.24183 −0.620915 0.783878i \(-0.713239\pi\)
−0.620915 + 0.783878i \(0.713239\pi\)
\(42\) 0 0
\(43\) −75.2915 −1.75097 −0.875483 0.483250i \(-0.839456\pi\)
−0.875483 + 0.483250i \(0.839456\pi\)
\(44\) 0 0
\(45\) 48.1033i 1.06896i
\(46\) 0 0
\(47\) 74.3320i 1.58153i 0.612118 + 0.790766i \(0.290318\pi\)
−0.612118 + 0.790766i \(0.709682\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 20.7085 0.406049
\(52\) 0 0
\(53\) − 8.91503i − 0.168208i −0.996457 0.0841040i \(-0.973197\pi\)
0.996457 0.0841040i \(-0.0268028\pi\)
\(54\) 0 0
\(55\) 25.1660i 0.457564i
\(56\) 0 0
\(57\) −17.0405 −0.298956
\(58\) 0 0
\(59\) −45.1882 −0.765902 −0.382951 0.923769i \(-0.625092\pi\)
−0.382951 + 0.923769i \(0.625092\pi\)
\(60\) 0 0
\(61\) − 86.4353i − 1.41697i −0.705725 0.708486i \(-0.749379\pi\)
0.705725 0.708486i \(-0.250621\pi\)
\(62\) 0 0
\(63\) − 16.6458i − 0.264218i
\(64\) 0 0
\(65\) −33.2915 −0.512177
\(66\) 0 0
\(67\) −113.830 −1.69896 −0.849478 0.527624i \(-0.823083\pi\)
−0.849478 + 0.527624i \(0.823083\pi\)
\(68\) 0 0
\(69\) − 31.5425i − 0.457137i
\(70\) 0 0
\(71\) 67.7490i 0.954211i 0.878846 + 0.477106i \(0.158314\pi\)
−0.878846 + 0.477106i \(0.841686\pi\)
\(72\) 0 0
\(73\) −57.7490 −0.791082 −0.395541 0.918448i \(-0.629443\pi\)
−0.395541 + 0.918448i \(0.629443\pi\)
\(74\) 0 0
\(75\) 55.0627 0.734170
\(76\) 0 0
\(77\) − 8.70850i − 0.113097i
\(78\) 0 0
\(79\) − 62.5830i − 0.792190i −0.918210 0.396095i \(-0.870365\pi\)
0.918210 0.396095i \(-0.129635\pi\)
\(80\) 0 0
\(81\) 15.2065 0.187735
\(82\) 0 0
\(83\) 119.727 1.44249 0.721246 0.692679i \(-0.243570\pi\)
0.721246 + 0.692679i \(0.243570\pi\)
\(84\) 0 0
\(85\) 96.2065i 1.13184i
\(86\) 0 0
\(87\) − 86.3320i − 0.992322i
\(88\) 0 0
\(89\) 51.6680 0.580539 0.290270 0.956945i \(-0.406255\pi\)
0.290270 + 0.956945i \(0.406255\pi\)
\(90\) 0 0
\(91\) 11.5203 0.126596
\(92\) 0 0
\(93\) − 28.2510i − 0.303774i
\(94\) 0 0
\(95\) − 79.1660i − 0.833326i
\(96\) 0 0
\(97\) 164.996 1.70099 0.850495 0.525983i \(-0.176302\pi\)
0.850495 + 0.525983i \(0.176302\pi\)
\(98\) 0 0
\(99\) 20.7085 0.209177
\(100\) 0 0
\(101\) 85.4758i 0.846295i 0.906061 + 0.423148i \(0.139075\pi\)
−0.906061 + 0.423148i \(0.860925\pi\)
\(102\) 0 0
\(103\) 60.5020i 0.587398i 0.955898 + 0.293699i \(0.0948863\pi\)
−0.955898 + 0.293699i \(0.905114\pi\)
\(104\) 0 0
\(105\) −33.2915 −0.317062
\(106\) 0 0
\(107\) 41.4170 0.387075 0.193537 0.981093i \(-0.438004\pi\)
0.193537 + 0.981093i \(0.438004\pi\)
\(108\) 0 0
\(109\) − 87.7046i − 0.804629i −0.915502 0.402314i \(-0.868206\pi\)
0.915502 0.402314i \(-0.131794\pi\)
\(110\) 0 0
\(111\) 46.8340i 0.421928i
\(112\) 0 0
\(113\) 126.790 1.12203 0.561016 0.827805i \(-0.310411\pi\)
0.561016 + 0.827805i \(0.310411\pi\)
\(114\) 0 0
\(115\) 146.539 1.27425
\(116\) 0 0
\(117\) 27.3948i 0.234143i
\(118\) 0 0
\(119\) − 33.2915i − 0.279761i
\(120\) 0 0
\(121\) −110.166 −0.910463
\(122\) 0 0
\(123\) 83.7935 0.681248
\(124\) 0 0
\(125\) 64.6640i 0.517312i
\(126\) 0 0
\(127\) − 102.162i − 0.804426i −0.915546 0.402213i \(-0.868241\pi\)
0.915546 0.402213i \(-0.131759\pi\)
\(128\) 0 0
\(129\) 123.911 0.960551
\(130\) 0 0
\(131\) −171.018 −1.30548 −0.652742 0.757581i \(-0.726381\pi\)
−0.652742 + 0.757581i \(0.726381\pi\)
\(132\) 0 0
\(133\) 27.3948i 0.205976i
\(134\) 0 0
\(135\) − 192.413i − 1.42528i
\(136\) 0 0
\(137\) −164.332 −1.19950 −0.599752 0.800186i \(-0.704734\pi\)
−0.599752 + 0.800186i \(0.704734\pi\)
\(138\) 0 0
\(139\) −177.395 −1.27622 −0.638111 0.769945i \(-0.720284\pi\)
−0.638111 + 0.769945i \(0.720284\pi\)
\(140\) 0 0
\(141\) − 122.332i − 0.867603i
\(142\) 0 0
\(143\) 14.3320i 0.100224i
\(144\) 0 0
\(145\) 401.077 2.76605
\(146\) 0 0
\(147\) 11.5203 0.0783691
\(148\) 0 0
\(149\) − 20.1621i − 0.135316i −0.997709 0.0676580i \(-0.978447\pi\)
0.997709 0.0676580i \(-0.0215527\pi\)
\(150\) 0 0
\(151\) − 205.498i − 1.36091i −0.732788 0.680457i \(-0.761781\pi\)
0.732788 0.680457i \(-0.238219\pi\)
\(152\) 0 0
\(153\) 79.1660 0.517425
\(154\) 0 0
\(155\) 131.247 0.846755
\(156\) 0 0
\(157\) − 159.601i − 1.01657i −0.861189 0.508284i \(-0.830280\pi\)
0.861189 0.508284i \(-0.169720\pi\)
\(158\) 0 0
\(159\) 14.6719i 0.0922762i
\(160\) 0 0
\(161\) −50.7085 −0.314960
\(162\) 0 0
\(163\) −252.207 −1.54728 −0.773640 0.633626i \(-0.781566\pi\)
−0.773640 + 0.633626i \(0.781566\pi\)
\(164\) 0 0
\(165\) − 41.4170i − 0.251012i
\(166\) 0 0
\(167\) − 37.1660i − 0.222551i −0.993790 0.111275i \(-0.964506\pi\)
0.993790 0.111275i \(-0.0354936\pi\)
\(168\) 0 0
\(169\) 150.041 0.887814
\(170\) 0 0
\(171\) −65.1438 −0.380958
\(172\) 0 0
\(173\) 93.5647i 0.540837i 0.962743 + 0.270418i \(0.0871620\pi\)
−0.962743 + 0.270418i \(0.912838\pi\)
\(174\) 0 0
\(175\) − 88.5203i − 0.505830i
\(176\) 0 0
\(177\) 74.3686 0.420162
\(178\) 0 0
\(179\) −198.583 −1.10940 −0.554701 0.832050i \(-0.687167\pi\)
−0.554701 + 0.832050i \(0.687167\pi\)
\(180\) 0 0
\(181\) 173.314i 0.957534i 0.877942 + 0.478767i \(0.158916\pi\)
−0.877942 + 0.478767i \(0.841084\pi\)
\(182\) 0 0
\(183\) 142.251i 0.777328i
\(184\) 0 0
\(185\) −217.579 −1.17610
\(186\) 0 0
\(187\) 41.4170 0.221481
\(188\) 0 0
\(189\) 66.5830i 0.352291i
\(190\) 0 0
\(191\) − 104.502i − 0.547131i −0.961853 0.273565i \(-0.911797\pi\)
0.961853 0.273565i \(-0.0882030\pi\)
\(192\) 0 0
\(193\) −11.1294 −0.0576654 −0.0288327 0.999584i \(-0.509179\pi\)
−0.0288327 + 0.999584i \(0.509179\pi\)
\(194\) 0 0
\(195\) 54.7895 0.280972
\(196\) 0 0
\(197\) − 299.247i − 1.51902i −0.650495 0.759510i \(-0.725439\pi\)
0.650495 0.759510i \(-0.274561\pi\)
\(198\) 0 0
\(199\) − 304.162i − 1.52845i −0.644948 0.764226i \(-0.723121\pi\)
0.644948 0.764226i \(-0.276879\pi\)
\(200\) 0 0
\(201\) 187.336 0.932020
\(202\) 0 0
\(203\) −138.790 −0.683692
\(204\) 0 0
\(205\) 389.284i 1.89894i
\(206\) 0 0
\(207\) − 120.583i − 0.582527i
\(208\) 0 0
\(209\) −34.0810 −0.163067
\(210\) 0 0
\(211\) 341.077 1.61648 0.808240 0.588854i \(-0.200421\pi\)
0.808240 + 0.588854i \(0.200421\pi\)
\(212\) 0 0
\(213\) − 111.498i − 0.523465i
\(214\) 0 0
\(215\) 575.660i 2.67749i
\(216\) 0 0
\(217\) −45.4170 −0.209295
\(218\) 0 0
\(219\) 95.0405 0.433975
\(220\) 0 0
\(221\) 54.7895i 0.247916i
\(222\) 0 0
\(223\) 61.0039i 0.273560i 0.990601 + 0.136780i \(0.0436754\pi\)
−0.990601 + 0.136780i \(0.956325\pi\)
\(224\) 0 0
\(225\) 210.498 0.935547
\(226\) 0 0
\(227\) 147.771 0.650975 0.325487 0.945546i \(-0.394472\pi\)
0.325487 + 0.945546i \(0.394472\pi\)
\(228\) 0 0
\(229\) 164.265i 0.717316i 0.933469 + 0.358658i \(0.116766\pi\)
−0.933469 + 0.358658i \(0.883234\pi\)
\(230\) 0 0
\(231\) 14.3320i 0.0620434i
\(232\) 0 0
\(233\) −341.660 −1.46635 −0.733176 0.680039i \(-0.761963\pi\)
−0.733176 + 0.680039i \(0.761963\pi\)
\(234\) 0 0
\(235\) 568.324 2.41840
\(236\) 0 0
\(237\) 102.996i 0.434583i
\(238\) 0 0
\(239\) 333.158i 1.39397i 0.717087 + 0.696984i \(0.245475\pi\)
−0.717087 + 0.696984i \(0.754525\pi\)
\(240\) 0 0
\(241\) −183.166 −0.760025 −0.380012 0.924981i \(-0.624080\pi\)
−0.380012 + 0.924981i \(0.624080\pi\)
\(242\) 0 0
\(243\) −251.520 −1.03506
\(244\) 0 0
\(245\) 53.5203i 0.218450i
\(246\) 0 0
\(247\) − 45.0850i − 0.182530i
\(248\) 0 0
\(249\) −197.041 −0.791327
\(250\) 0 0
\(251\) −263.180 −1.04853 −0.524264 0.851556i \(-0.675659\pi\)
−0.524264 + 0.851556i \(0.675659\pi\)
\(252\) 0 0
\(253\) − 63.0850i − 0.249348i
\(254\) 0 0
\(255\) − 158.332i − 0.620910i
\(256\) 0 0
\(257\) 189.838 0.738669 0.369334 0.929297i \(-0.379586\pi\)
0.369334 + 0.929297i \(0.379586\pi\)
\(258\) 0 0
\(259\) 75.2915 0.290701
\(260\) 0 0
\(261\) − 330.037i − 1.26451i
\(262\) 0 0
\(263\) − 178.421i − 0.678407i −0.940713 0.339203i \(-0.889843\pi\)
0.940713 0.339203i \(-0.110157\pi\)
\(264\) 0 0
\(265\) −68.1621 −0.257215
\(266\) 0 0
\(267\) −85.0326 −0.318474
\(268\) 0 0
\(269\) − 122.848i − 0.456685i −0.973581 0.228343i \(-0.926669\pi\)
0.973581 0.228343i \(-0.0733306\pi\)
\(270\) 0 0
\(271\) 537.992i 1.98521i 0.121386 + 0.992605i \(0.461266\pi\)
−0.121386 + 0.992605i \(0.538734\pi\)
\(272\) 0 0
\(273\) −18.9595 −0.0694487
\(274\) 0 0
\(275\) 110.125 0.400456
\(276\) 0 0
\(277\) 20.5751i 0.0742785i 0.999310 + 0.0371392i \(0.0118245\pi\)
−0.999310 + 0.0371392i \(0.988175\pi\)
\(278\) 0 0
\(279\) − 108.000i − 0.387097i
\(280\) 0 0
\(281\) −216.656 −0.771018 −0.385509 0.922704i \(-0.625974\pi\)
−0.385509 + 0.922704i \(0.625974\pi\)
\(282\) 0 0
\(283\) −10.5608 −0.0373172 −0.0186586 0.999826i \(-0.505940\pi\)
−0.0186586 + 0.999826i \(0.505940\pi\)
\(284\) 0 0
\(285\) 130.288i 0.457149i
\(286\) 0 0
\(287\) − 134.708i − 0.469368i
\(288\) 0 0
\(289\) −130.668 −0.452138
\(290\) 0 0
\(291\) −271.542 −0.933136
\(292\) 0 0
\(293\) − 393.844i − 1.34418i −0.740470 0.672089i \(-0.765397\pi\)
0.740470 0.672089i \(-0.234603\pi\)
\(294\) 0 0
\(295\) 345.498i 1.17118i
\(296\) 0 0
\(297\) −82.8340 −0.278902
\(298\) 0 0
\(299\) 83.4536 0.279109
\(300\) 0 0
\(301\) − 199.203i − 0.661803i
\(302\) 0 0
\(303\) − 140.672i − 0.464264i
\(304\) 0 0
\(305\) −660.863 −2.16676
\(306\) 0 0
\(307\) −86.6784 −0.282340 −0.141170 0.989985i \(-0.545086\pi\)
−0.141170 + 0.989985i \(0.545086\pi\)
\(308\) 0 0
\(309\) − 99.5712i − 0.322237i
\(310\) 0 0
\(311\) 459.984i 1.47905i 0.673130 + 0.739525i \(0.264950\pi\)
−0.673130 + 0.739525i \(0.735050\pi\)
\(312\) 0 0
\(313\) 239.919 0.766514 0.383257 0.923642i \(-0.374802\pi\)
0.383257 + 0.923642i \(0.374802\pi\)
\(314\) 0 0
\(315\) −127.269 −0.404029
\(316\) 0 0
\(317\) − 156.340i − 0.493186i −0.969119 0.246593i \(-0.920689\pi\)
0.969119 0.246593i \(-0.0793110\pi\)
\(318\) 0 0
\(319\) − 172.664i − 0.541267i
\(320\) 0 0
\(321\) −68.1621 −0.212343
\(322\) 0 0
\(323\) −130.288 −0.403367
\(324\) 0 0
\(325\) 145.682i 0.448253i
\(326\) 0 0
\(327\) 144.340i 0.441406i
\(328\) 0 0
\(329\) −196.664 −0.597763
\(330\) 0 0
\(331\) −206.125 −0.622736 −0.311368 0.950289i \(-0.600787\pi\)
−0.311368 + 0.950289i \(0.600787\pi\)
\(332\) 0 0
\(333\) 179.041i 0.537659i
\(334\) 0 0
\(335\) 870.316i 2.59796i
\(336\) 0 0
\(337\) 273.373 0.811194 0.405597 0.914052i \(-0.367064\pi\)
0.405597 + 0.914052i \(0.367064\pi\)
\(338\) 0 0
\(339\) −208.664 −0.615528
\(340\) 0 0
\(341\) − 56.5020i − 0.165695i
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) −241.166 −0.699032
\(346\) 0 0
\(347\) 174.450 0.502737 0.251368 0.967891i \(-0.419119\pi\)
0.251368 + 0.967891i \(0.419119\pi\)
\(348\) 0 0
\(349\) − 102.140i − 0.292664i −0.989236 0.146332i \(-0.953253\pi\)
0.989236 0.146332i \(-0.0467468\pi\)
\(350\) 0 0
\(351\) − 109.579i − 0.312191i
\(352\) 0 0
\(353\) −294.073 −0.833068 −0.416534 0.909120i \(-0.636755\pi\)
−0.416534 + 0.909120i \(0.636755\pi\)
\(354\) 0 0
\(355\) 517.992 1.45913
\(356\) 0 0
\(357\) 54.7895i 0.153472i
\(358\) 0 0
\(359\) 218.162i 0.607694i 0.952721 + 0.303847i \(0.0982711\pi\)
−0.952721 + 0.303847i \(0.901729\pi\)
\(360\) 0 0
\(361\) −253.790 −0.703018
\(362\) 0 0
\(363\) 181.306 0.499465
\(364\) 0 0
\(365\) 441.535i 1.20968i
\(366\) 0 0
\(367\) − 129.166i − 0.351951i −0.984395 0.175975i \(-0.943692\pi\)
0.984395 0.175975i \(-0.0563079\pi\)
\(368\) 0 0
\(369\) 320.332 0.868108
\(370\) 0 0
\(371\) 23.5869 0.0635767
\(372\) 0 0
\(373\) 565.166i 1.51519i 0.652725 + 0.757595i \(0.273626\pi\)
−0.652725 + 0.757595i \(0.726374\pi\)
\(374\) 0 0
\(375\) − 106.421i − 0.283789i
\(376\) 0 0
\(377\) 228.413 0.605870
\(378\) 0 0
\(379\) −557.624 −1.47130 −0.735651 0.677361i \(-0.763124\pi\)
−0.735651 + 0.677361i \(0.763124\pi\)
\(380\) 0 0
\(381\) 168.133i 0.441295i
\(382\) 0 0
\(383\) 141.668i 0.369890i 0.982749 + 0.184945i \(0.0592107\pi\)
−0.982749 + 0.184945i \(0.940789\pi\)
\(384\) 0 0
\(385\) −66.5830 −0.172943
\(386\) 0 0
\(387\) 473.697 1.22402
\(388\) 0 0
\(389\) 616.944i 1.58597i 0.609239 + 0.792987i \(0.291475\pi\)
−0.609239 + 0.792987i \(0.708525\pi\)
\(390\) 0 0
\(391\) − 241.166i − 0.616793i
\(392\) 0 0
\(393\) 281.454 0.716167
\(394\) 0 0
\(395\) −478.494 −1.21138
\(396\) 0 0
\(397\) − 641.387i − 1.61558i −0.589468 0.807792i \(-0.700662\pi\)
0.589468 0.807792i \(-0.299338\pi\)
\(398\) 0 0
\(399\) − 45.0850i − 0.112995i
\(400\) 0 0
\(401\) −651.025 −1.62350 −0.811752 0.584003i \(-0.801486\pi\)
−0.811752 + 0.584003i \(0.801486\pi\)
\(402\) 0 0
\(403\) 74.7451 0.185472
\(404\) 0 0
\(405\) − 116.265i − 0.287075i
\(406\) 0 0
\(407\) 93.6680i 0.230142i
\(408\) 0 0
\(409\) 13.1581 0.0321715 0.0160857 0.999871i \(-0.494880\pi\)
0.0160857 + 0.999871i \(0.494880\pi\)
\(410\) 0 0
\(411\) 270.450 0.658028
\(412\) 0 0
\(413\) − 119.557i − 0.289484i
\(414\) 0 0
\(415\) − 915.401i − 2.20579i
\(416\) 0 0
\(417\) 291.948 0.700114
\(418\) 0 0
\(419\) 415.269 0.991096 0.495548 0.868581i \(-0.334967\pi\)
0.495548 + 0.868581i \(0.334967\pi\)
\(420\) 0 0
\(421\) 487.409i 1.15774i 0.815419 + 0.578871i \(0.196506\pi\)
−0.815419 + 0.578871i \(0.803494\pi\)
\(422\) 0 0
\(423\) − 467.660i − 1.10558i
\(424\) 0 0
\(425\) 420.996 0.990579
\(426\) 0 0
\(427\) 228.686 0.535565
\(428\) 0 0
\(429\) − 23.5869i − 0.0549812i
\(430\) 0 0
\(431\) 476.818i 1.10631i 0.833079 + 0.553153i \(0.186576\pi\)
−0.833079 + 0.553153i \(0.813424\pi\)
\(432\) 0 0
\(433\) 416.907 0.962834 0.481417 0.876492i \(-0.340122\pi\)
0.481417 + 0.876492i \(0.340122\pi\)
\(434\) 0 0
\(435\) −660.073 −1.51741
\(436\) 0 0
\(437\) 198.450i 0.454118i
\(438\) 0 0
\(439\) 202.170i 0.460524i 0.973129 + 0.230262i \(0.0739583\pi\)
−0.973129 + 0.230262i \(0.926042\pi\)
\(440\) 0 0
\(441\) 44.0405 0.0998651
\(442\) 0 0
\(443\) 358.494 0.809242 0.404621 0.914485i \(-0.367403\pi\)
0.404621 + 0.914485i \(0.367403\pi\)
\(444\) 0 0
\(445\) − 395.041i − 0.887732i
\(446\) 0 0
\(447\) 33.1818i 0.0742321i
\(448\) 0 0
\(449\) −420.656 −0.936873 −0.468437 0.883497i \(-0.655183\pi\)
−0.468437 + 0.883497i \(0.655183\pi\)
\(450\) 0 0
\(451\) 167.587 0.371590
\(452\) 0 0
\(453\) 338.199i 0.746575i
\(454\) 0 0
\(455\) − 88.0810i − 0.193585i
\(456\) 0 0
\(457\) 331.778 0.725991 0.362995 0.931791i \(-0.381754\pi\)
0.362995 + 0.931791i \(0.381754\pi\)
\(458\) 0 0
\(459\) −316.664 −0.689900
\(460\) 0 0
\(461\) − 210.480i − 0.456572i −0.973594 0.228286i \(-0.926688\pi\)
0.973594 0.228286i \(-0.0733121\pi\)
\(462\) 0 0
\(463\) 36.6640i 0.0791880i 0.999216 + 0.0395940i \(0.0126065\pi\)
−0.999216 + 0.0395940i \(0.987394\pi\)
\(464\) 0 0
\(465\) −216.000 −0.464516
\(466\) 0 0
\(467\) −45.4679 −0.0973617 −0.0486809 0.998814i \(-0.515502\pi\)
−0.0486809 + 0.998814i \(0.515502\pi\)
\(468\) 0 0
\(469\) − 301.166i − 0.642145i
\(470\) 0 0
\(471\) 262.664i 0.557673i
\(472\) 0 0
\(473\) 247.822 0.523937
\(474\) 0 0
\(475\) −346.427 −0.729321
\(476\) 0 0
\(477\) 56.0889i 0.117587i
\(478\) 0 0
\(479\) − 155.320i − 0.324259i −0.986769 0.162130i \(-0.948164\pi\)
0.986769 0.162130i \(-0.0518363\pi\)
\(480\) 0 0
\(481\) −123.911 −0.257611
\(482\) 0 0
\(483\) 83.4536 0.172782
\(484\) 0 0
\(485\) − 1261.52i − 2.60107i
\(486\) 0 0
\(487\) − 799.814i − 1.64233i −0.570691 0.821165i \(-0.693325\pi\)
0.570691 0.821165i \(-0.306675\pi\)
\(488\) 0 0
\(489\) 415.069 0.848812
\(490\) 0 0
\(491\) 48.4131 0.0986009 0.0493005 0.998784i \(-0.484301\pi\)
0.0493005 + 0.998784i \(0.484301\pi\)
\(492\) 0 0
\(493\) − 660.073i − 1.33889i
\(494\) 0 0
\(495\) − 158.332i − 0.319863i
\(496\) 0 0
\(497\) −179.247 −0.360658
\(498\) 0 0
\(499\) −748.397 −1.49979 −0.749897 0.661554i \(-0.769897\pi\)
−0.749897 + 0.661554i \(0.769897\pi\)
\(500\) 0 0
\(501\) 61.1660i 0.122088i
\(502\) 0 0
\(503\) − 564.000i − 1.12127i −0.828062 0.560636i \(-0.810557\pi\)
0.828062 0.560636i \(-0.189443\pi\)
\(504\) 0 0
\(505\) 653.527 1.29411
\(506\) 0 0
\(507\) −246.929 −0.487040
\(508\) 0 0
\(509\) 20.6052i 0.0404818i 0.999795 + 0.0202409i \(0.00644332\pi\)
−0.999795 + 0.0202409i \(0.993557\pi\)
\(510\) 0 0
\(511\) − 152.790i − 0.299001i
\(512\) 0 0
\(513\) 260.575 0.507944
\(514\) 0 0
\(515\) 462.583 0.898219
\(516\) 0 0
\(517\) − 244.664i − 0.473238i
\(518\) 0 0
\(519\) − 153.984i − 0.296694i
\(520\) 0 0
\(521\) 717.158 1.37650 0.688252 0.725472i \(-0.258379\pi\)
0.688252 + 0.725472i \(0.258379\pi\)
\(522\) 0 0
\(523\) 133.233 0.254747 0.127374 0.991855i \(-0.459345\pi\)
0.127374 + 0.991855i \(0.459345\pi\)
\(524\) 0 0
\(525\) 145.682i 0.277490i
\(526\) 0 0
\(527\) − 216.000i − 0.409867i
\(528\) 0 0
\(529\) 161.664 0.305603
\(530\) 0 0
\(531\) 284.302 0.535409
\(532\) 0 0
\(533\) 221.697i 0.415941i
\(534\) 0 0
\(535\) − 316.664i − 0.591895i
\(536\) 0 0
\(537\) 326.818 0.608600
\(538\) 0 0
\(539\) 23.0405 0.0427468
\(540\) 0 0
\(541\) 454.907i 0.840863i 0.907324 + 0.420432i \(0.138121\pi\)
−0.907324 + 0.420432i \(0.861879\pi\)
\(542\) 0 0
\(543\) − 285.231i − 0.525288i
\(544\) 0 0
\(545\) −670.567 −1.23040
\(546\) 0 0
\(547\) 77.2105 0.141153 0.0705763 0.997506i \(-0.477516\pi\)
0.0705763 + 0.997506i \(0.477516\pi\)
\(548\) 0 0
\(549\) 543.808i 0.990542i
\(550\) 0 0
\(551\) 543.158i 0.985768i
\(552\) 0 0
\(553\) 165.579 0.299420
\(554\) 0 0
\(555\) 358.081 0.645191
\(556\) 0 0
\(557\) 10.4209i 0.0187090i 0.999956 + 0.00935452i \(0.00297768\pi\)
−0.999956 + 0.00935452i \(0.997022\pi\)
\(558\) 0 0
\(559\) 327.838i 0.586472i
\(560\) 0 0
\(561\) −68.1621 −0.121501
\(562\) 0 0
\(563\) −116.775 −0.207416 −0.103708 0.994608i \(-0.533071\pi\)
−0.103708 + 0.994608i \(0.533071\pi\)
\(564\) 0 0
\(565\) − 969.401i − 1.71575i
\(566\) 0 0
\(567\) 40.2327i 0.0709571i
\(568\) 0 0
\(569\) 884.855 1.55511 0.777553 0.628818i \(-0.216461\pi\)
0.777553 + 0.628818i \(0.216461\pi\)
\(570\) 0 0
\(571\) −475.616 −0.832952 −0.416476 0.909147i \(-0.636735\pi\)
−0.416476 + 0.909147i \(0.636735\pi\)
\(572\) 0 0
\(573\) 171.984i 0.300147i
\(574\) 0 0
\(575\) − 641.247i − 1.11521i
\(576\) 0 0
\(577\) 409.571 0.709829 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(578\) 0 0
\(579\) 18.3163 0.0316343
\(580\) 0 0
\(581\) 316.767i 0.545211i
\(582\) 0 0
\(583\) 29.3438i 0.0503325i
\(584\) 0 0
\(585\) 209.454 0.358040
\(586\) 0 0
\(587\) 515.593 0.878353 0.439177 0.898401i \(-0.355270\pi\)
0.439177 + 0.898401i \(0.355270\pi\)
\(588\) 0 0
\(589\) 177.741i 0.301768i
\(590\) 0 0
\(591\) 492.486i 0.833310i
\(592\) 0 0
\(593\) −218.162 −0.367896 −0.183948 0.982936i \(-0.558888\pi\)
−0.183948 + 0.982936i \(0.558888\pi\)
\(594\) 0 0
\(595\) −254.539 −0.427796
\(596\) 0 0
\(597\) 500.575i 0.838484i
\(598\) 0 0
\(599\) − 633.328i − 1.05731i −0.848837 0.528654i \(-0.822697\pi\)
0.848837 0.528654i \(-0.177303\pi\)
\(600\) 0 0
\(601\) −226.826 −0.377415 −0.188707 0.982033i \(-0.560430\pi\)
−0.188707 + 0.982033i \(0.560430\pi\)
\(602\) 0 0
\(603\) 716.162 1.18767
\(604\) 0 0
\(605\) 842.302i 1.39223i
\(606\) 0 0
\(607\) − 1117.81i − 1.84154i −0.390107 0.920770i \(-0.627562\pi\)
0.390107 0.920770i \(-0.372438\pi\)
\(608\) 0 0
\(609\) 228.413 0.375062
\(610\) 0 0
\(611\) 323.660 0.529722
\(612\) 0 0
\(613\) − 69.1947i − 0.112879i −0.998406 0.0564394i \(-0.982025\pi\)
0.998406 0.0564394i \(-0.0179748\pi\)
\(614\) 0 0
\(615\) − 640.664i − 1.04173i
\(616\) 0 0
\(617\) 94.7738 0.153604 0.0768021 0.997046i \(-0.475529\pi\)
0.0768021 + 0.997046i \(0.475529\pi\)
\(618\) 0 0
\(619\) 1148.99 1.85621 0.928106 0.372317i \(-0.121437\pi\)
0.928106 + 0.372317i \(0.121437\pi\)
\(620\) 0 0
\(621\) 482.332i 0.776702i
\(622\) 0 0
\(623\) 136.701i 0.219423i
\(624\) 0 0
\(625\) −342.033 −0.547252
\(626\) 0 0
\(627\) 56.0889 0.0894560
\(628\) 0 0
\(629\) 358.081i 0.569286i
\(630\) 0 0
\(631\) 775.320i 1.22872i 0.789027 + 0.614358i \(0.210585\pi\)
−0.789027 + 0.614358i \(0.789415\pi\)
\(632\) 0 0
\(633\) −561.328 −0.886774
\(634\) 0 0
\(635\) −781.106 −1.23009
\(636\) 0 0
\(637\) 30.4797i 0.0478489i
\(638\) 0 0
\(639\) − 426.243i − 0.667047i
\(640\) 0 0
\(641\) −981.681 −1.53148 −0.765742 0.643148i \(-0.777628\pi\)
−0.765742 + 0.643148i \(0.777628\pi\)
\(642\) 0 0
\(643\) −852.273 −1.32546 −0.662732 0.748857i \(-0.730603\pi\)
−0.662732 + 0.748857i \(0.730603\pi\)
\(644\) 0 0
\(645\) − 947.393i − 1.46883i
\(646\) 0 0
\(647\) 131.174i 0.202742i 0.994849 + 0.101371i \(0.0323229\pi\)
−0.994849 + 0.101371i \(0.967677\pi\)
\(648\) 0 0
\(649\) 148.737 0.229179
\(650\) 0 0
\(651\) 74.7451 0.114816
\(652\) 0 0
\(653\) 317.284i 0.485886i 0.970041 + 0.242943i \(0.0781128\pi\)
−0.970041 + 0.242943i \(0.921887\pi\)
\(654\) 0 0
\(655\) 1307.56i 1.99628i
\(656\) 0 0
\(657\) 363.328 0.553011
\(658\) 0 0
\(659\) 844.677 1.28176 0.640878 0.767643i \(-0.278571\pi\)
0.640878 + 0.767643i \(0.278571\pi\)
\(660\) 0 0
\(661\) − 1034.44i − 1.56496i −0.622679 0.782478i \(-0.713956\pi\)
0.622679 0.782478i \(-0.286044\pi\)
\(662\) 0 0
\(663\) − 90.1699i − 0.136003i
\(664\) 0 0
\(665\) 209.454 0.314968
\(666\) 0 0
\(667\) −1005.40 −1.50735
\(668\) 0 0
\(669\) − 100.397i − 0.150071i
\(670\) 0 0
\(671\) 284.502i 0.423997i
\(672\) 0 0
\(673\) −164.996 −0.245165 −0.122583 0.992458i \(-0.539118\pi\)
−0.122583 + 0.992458i \(0.539118\pi\)
\(674\) 0 0
\(675\) −841.992 −1.24740
\(676\) 0 0
\(677\) 1017.98i 1.50366i 0.659357 + 0.751830i \(0.270829\pi\)
−0.659357 + 0.751830i \(0.729171\pi\)
\(678\) 0 0
\(679\) 436.539i 0.642914i
\(680\) 0 0
\(681\) −243.195 −0.357114
\(682\) 0 0
\(683\) −1050.39 −1.53791 −0.768953 0.639306i \(-0.779222\pi\)
−0.768953 + 0.639306i \(0.779222\pi\)
\(684\) 0 0
\(685\) 1256.44i 1.83422i
\(686\) 0 0
\(687\) − 270.340i − 0.393508i
\(688\) 0 0
\(689\) −38.8182 −0.0563400
\(690\) 0 0
\(691\) −487.003 −0.704779 −0.352390 0.935853i \(-0.614631\pi\)
−0.352390 + 0.935853i \(0.614631\pi\)
\(692\) 0 0
\(693\) 54.7895i 0.0790614i
\(694\) 0 0
\(695\) 1356.32i 1.95153i
\(696\) 0 0
\(697\) 640.664 0.919174
\(698\) 0 0
\(699\) 562.288 0.804417
\(700\) 0 0
\(701\) − 746.125i − 1.06437i −0.846627 0.532187i \(-0.821371\pi\)
0.846627 0.532187i \(-0.178629\pi\)
\(702\) 0 0
\(703\) − 294.656i − 0.419141i
\(704\) 0 0
\(705\) −935.320 −1.32670
\(706\) 0 0
\(707\) −226.148 −0.319869
\(708\) 0 0
\(709\) − 340.604i − 0.480400i −0.970723 0.240200i \(-0.922787\pi\)
0.970723 0.240200i \(-0.0772131\pi\)
\(710\) 0 0
\(711\) 393.741i 0.553785i
\(712\) 0 0
\(713\) −329.004 −0.461436
\(714\) 0 0
\(715\) 109.579 0.153257
\(716\) 0 0
\(717\) − 548.295i − 0.764708i
\(718\) 0 0
\(719\) − 341.344i − 0.474748i −0.971418 0.237374i \(-0.923713\pi\)
0.971418 0.237374i \(-0.0762867\pi\)
\(720\) 0 0
\(721\) −160.073 −0.222015
\(722\) 0 0
\(723\) 301.446 0.416937
\(724\) 0 0
\(725\) − 1755.10i − 2.42082i
\(726\) 0 0
\(727\) − 616.000i − 0.847318i −0.905822 0.423659i \(-0.860746\pi\)
0.905822 0.423659i \(-0.139254\pi\)
\(728\) 0 0
\(729\) 277.081 0.380084
\(730\) 0 0
\(731\) 947.393 1.29602
\(732\) 0 0
\(733\) 211.160i 0.288076i 0.989572 + 0.144038i \(0.0460087\pi\)
−0.989572 + 0.144038i \(0.953991\pi\)
\(734\) 0 0
\(735\) − 88.0810i − 0.119838i
\(736\) 0 0
\(737\) 374.672 0.508374
\(738\) 0 0
\(739\) 624.959 0.845683 0.422841 0.906204i \(-0.361033\pi\)
0.422841 + 0.906204i \(0.361033\pi\)
\(740\) 0 0
\(741\) 74.1987i 0.100133i
\(742\) 0 0
\(743\) 153.158i 0.206135i 0.994674 + 0.103067i \(0.0328657\pi\)
−0.994674 + 0.103067i \(0.967134\pi\)
\(744\) 0 0
\(745\) −154.154 −0.206918
\(746\) 0 0
\(747\) −753.261 −1.00838
\(748\) 0 0
\(749\) 109.579i 0.146300i
\(750\) 0 0
\(751\) 940.463i 1.25228i 0.779710 + 0.626140i \(0.215366\pi\)
−0.779710 + 0.626140i \(0.784634\pi\)
\(752\) 0 0
\(753\) 433.129 0.575205
\(754\) 0 0
\(755\) −1571.19 −2.08104
\(756\) 0 0
\(757\) − 110.052i − 0.145380i −0.997355 0.0726898i \(-0.976842\pi\)
0.997355 0.0726898i \(-0.0231583\pi\)
\(758\) 0 0
\(759\) 103.822i 0.136788i
\(760\) 0 0
\(761\) −909.571 −1.19523 −0.597616 0.801783i \(-0.703885\pi\)
−0.597616 + 0.801783i \(0.703885\pi\)
\(762\) 0 0
\(763\) 232.044 0.304121
\(764\) 0 0
\(765\) − 605.284i − 0.791220i
\(766\) 0 0
\(767\) 196.761i 0.256533i
\(768\) 0 0
\(769\) −427.328 −0.555693 −0.277847 0.960625i \(-0.589621\pi\)
−0.277847 + 0.960625i \(0.589621\pi\)
\(770\) 0 0
\(771\) −312.426 −0.405222
\(772\) 0 0
\(773\) 589.342i 0.762409i 0.924491 + 0.381205i \(0.124491\pi\)
−0.924491 + 0.381205i \(0.875509\pi\)
\(774\) 0 0
\(775\) − 574.332i − 0.741074i
\(776\) 0 0
\(777\) −123.911 −0.159474
\(778\) 0 0
\(779\) −527.187 −0.676748
\(780\) 0 0
\(781\) − 222.996i − 0.285526i
\(782\) 0 0
\(783\) 1320.15i 1.68601i
\(784\) 0 0
\(785\) −1220.27 −1.55449
\(786\) 0 0
\(787\) 1126.16 1.43095 0.715477 0.698636i \(-0.246209\pi\)
0.715477 + 0.698636i \(0.246209\pi\)
\(788\) 0 0
\(789\) 293.636i 0.372163i
\(790\) 0 0
\(791\) 335.454i 0.424088i
\(792\) 0 0
\(793\) −376.361 −0.474604
\(794\) 0 0
\(795\) 112.178 0.141104
\(796\) 0 0
\(797\) − 536.339i − 0.672947i −0.941693 0.336473i \(-0.890766\pi\)
0.941693 0.336473i \(-0.109234\pi\)
\(798\) 0 0
\(799\) − 935.320i − 1.17061i
\(800\) 0 0
\(801\) −325.069 −0.405829
\(802\) 0 0
\(803\) 190.081 0.236714
\(804\) 0 0
\(805\) 387.705i 0.481621i
\(806\) 0 0
\(807\) 202.178i 0.250530i
\(808\) 0 0
\(809\) 164.782 0.203686 0.101843 0.994801i \(-0.467526\pi\)
0.101843 + 0.994801i \(0.467526\pi\)
\(810\) 0 0
\(811\) 903.918 1.11457 0.557286 0.830321i \(-0.311843\pi\)
0.557286 + 0.830321i \(0.311843\pi\)
\(812\) 0 0
\(813\) − 885.401i − 1.08905i
\(814\) 0 0
\(815\) 1928.31i 2.36602i
\(816\) 0 0
\(817\) −779.587 −0.954207
\(818\) 0 0
\(819\) −72.4797 −0.0884979
\(820\) 0 0
\(821\) 1206.32i 1.46933i 0.678432 + 0.734663i \(0.262660\pi\)
−0.678432 + 0.734663i \(0.737340\pi\)
\(822\) 0 0
\(823\) 1430.05i 1.73761i 0.495158 + 0.868803i \(0.335110\pi\)
−0.495158 + 0.868803i \(0.664890\pi\)
\(824\) 0 0
\(825\) −181.239 −0.219684
\(826\) 0 0
\(827\) 1327.97 1.60577 0.802883 0.596137i \(-0.203298\pi\)
0.802883 + 0.596137i \(0.203298\pi\)
\(828\) 0 0
\(829\) 224.205i 0.270453i 0.990815 + 0.135226i \(0.0431761\pi\)
−0.990815 + 0.135226i \(0.956824\pi\)
\(830\) 0 0
\(831\) − 33.8615i − 0.0407480i
\(832\) 0 0
\(833\) 88.0810 0.105740
\(834\) 0 0
\(835\) −284.162 −0.340314
\(836\) 0 0
\(837\) 432.000i 0.516129i
\(838\) 0 0
\(839\) − 1544.16i − 1.84048i −0.391355 0.920240i \(-0.627994\pi\)
0.391355 0.920240i \(-0.372006\pi\)
\(840\) 0 0
\(841\) −1910.79 −2.27205
\(842\) 0 0
\(843\) 356.562 0.422968
\(844\) 0 0
\(845\) − 1147.17i − 1.35760i
\(846\) 0 0
\(847\) − 291.472i − 0.344123i
\(848\) 0 0
\(849\) 17.3804 0.0204716
\(850\) 0 0
\(851\) 545.417 0.640913
\(852\) 0 0
\(853\) 1094.24i 1.28282i 0.767200 + 0.641408i \(0.221649\pi\)
−0.767200 + 0.641408i \(0.778351\pi\)
\(854\) 0 0
\(855\) 498.073i 0.582542i
\(856\) 0 0
\(857\) 1504.64 1.75571 0.877853 0.478930i \(-0.158975\pi\)
0.877853 + 0.478930i \(0.158975\pi\)
\(858\) 0 0
\(859\) 7.40264 0.00861774 0.00430887 0.999991i \(-0.498628\pi\)
0.00430887 + 0.999991i \(0.498628\pi\)
\(860\) 0 0
\(861\) 221.697i 0.257487i
\(862\) 0 0
\(863\) − 248.648i − 0.288121i −0.989569 0.144060i \(-0.953984\pi\)
0.989569 0.144060i \(-0.0460160\pi\)
\(864\) 0 0
\(865\) 715.373 0.827020
\(866\) 0 0
\(867\) 215.047 0.248036
\(868\) 0 0
\(869\) 205.992i 0.237045i
\(870\) 0 0
\(871\) 495.644i 0.569052i
\(872\) 0 0
\(873\) −1038.07 −1.18909
\(874\) 0 0
\(875\) −171.085 −0.195526
\(876\) 0 0
\(877\) 689.210i 0.785873i 0.919566 + 0.392936i \(0.128541\pi\)
−0.919566 + 0.392936i \(0.871459\pi\)
\(878\) 0 0
\(879\) 648.170i 0.737395i
\(880\) 0 0
\(881\) −1017.23 −1.15463 −0.577316 0.816521i \(-0.695900\pi\)
−0.577316 + 0.816521i \(0.695900\pi\)
\(882\) 0 0
\(883\) 1018.71 1.15370 0.576848 0.816852i \(-0.304282\pi\)
0.576848 + 0.816852i \(0.304282\pi\)
\(884\) 0 0
\(885\) − 568.604i − 0.642490i
\(886\) 0 0
\(887\) − 616.324i − 0.694841i −0.937709 0.347421i \(-0.887058\pi\)
0.937709 0.347421i \(-0.112942\pi\)
\(888\) 0 0
\(889\) 270.295 0.304044
\(890\) 0 0
\(891\) −50.0523 −0.0561755
\(892\) 0 0
\(893\) 769.652i 0.861873i
\(894\) 0 0
\(895\) 1518.32i 1.69644i
\(896\) 0 0
\(897\) −137.344 −0.153115
\(898\) 0 0
\(899\) −900.486 −1.00165
\(900\) 0 0
\(901\) 112.178i 0.124504i
\(902\) 0 0
\(903\) 327.838i 0.363054i
\(904\) 0 0
\(905\) 1325.11 1.46421
\(906\) 0 0
\(907\) −949.166 −1.04649 −0.523245 0.852182i \(-0.675279\pi\)
−0.523245 + 0.852182i \(0.675279\pi\)
\(908\) 0 0
\(909\) − 537.771i − 0.591608i
\(910\) 0 0
\(911\) − 1034.84i − 1.13594i −0.823049 0.567970i \(-0.807729\pi\)
0.823049 0.567970i \(-0.192271\pi\)
\(912\) 0 0
\(913\) −394.081 −0.431633
\(914\) 0 0
\(915\) 1087.62 1.18865
\(916\) 0 0
\(917\) − 452.472i − 0.493426i
\(918\) 0 0
\(919\) 486.761i 0.529664i 0.964295 + 0.264832i \(0.0853164\pi\)
−0.964295 + 0.264832i \(0.914684\pi\)
\(920\) 0 0
\(921\) 142.651 0.154887
\(922\) 0 0
\(923\) 294.996 0.319606
\(924\) 0 0
\(925\) 952.118i 1.02932i
\(926\) 0 0
\(927\) − 380.648i − 0.410624i
\(928\) 0 0
\(929\) −625.749 −0.673573 −0.336786 0.941581i \(-0.609340\pi\)
−0.336786 + 0.941581i \(0.609340\pi\)
\(930\) 0 0
\(931\) −72.4797 −0.0778515
\(932\) 0 0
\(933\) − 757.020i − 0.811382i
\(934\) 0 0
\(935\) − 316.664i − 0.338678i
\(936\) 0 0
\(937\) 528.405 0.563933 0.281966 0.959424i \(-0.409013\pi\)
0.281966 + 0.959424i \(0.409013\pi\)
\(938\) 0 0
\(939\) −394.847 −0.420497
\(940\) 0 0
\(941\) − 293.800i − 0.312221i −0.987740 0.156110i \(-0.950104\pi\)
0.987740 0.156110i \(-0.0498956\pi\)
\(942\) 0 0
\(943\) − 975.838i − 1.03482i
\(944\) 0 0
\(945\) 509.077 0.538706
\(946\) 0 0
\(947\) 234.376 0.247494 0.123747 0.992314i \(-0.460509\pi\)
0.123747 + 0.992314i \(0.460509\pi\)
\(948\) 0 0
\(949\) 251.454i 0.264967i
\(950\) 0 0
\(951\) 257.297i 0.270554i
\(952\) 0 0
\(953\) −17.5138 −0.0183775 −0.00918876 0.999958i \(-0.502925\pi\)
−0.00918876 + 0.999958i \(0.502925\pi\)
\(954\) 0 0
\(955\) −798.996 −0.836645
\(956\) 0 0
\(957\) 284.162i 0.296930i
\(958\) 0 0
\(959\) − 434.782i − 0.453370i
\(960\) 0 0
\(961\) 666.328 0.693369
\(962\) 0 0
\(963\) −260.575 −0.270587
\(964\) 0 0
\(965\) 85.0928i 0.0881791i
\(966\) 0 0
\(967\) − 482.146i − 0.498600i −0.968426 0.249300i \(-0.919799\pi\)
0.968426 0.249300i \(-0.0802005\pi\)
\(968\) 0 0
\(969\) 214.421 0.221281
\(970\) 0 0
\(971\) −784.524 −0.807955 −0.403977 0.914769i \(-0.632373\pi\)
−0.403977 + 0.914769i \(0.632373\pi\)
\(972\) 0 0
\(973\) − 469.342i − 0.482366i
\(974\) 0 0
\(975\) − 239.757i − 0.245905i
\(976\) 0 0
\(977\) 1158.97 1.18626 0.593128 0.805108i \(-0.297893\pi\)
0.593128 + 0.805108i \(0.297893\pi\)
\(978\) 0 0
\(979\) −170.065 −0.173713
\(980\) 0 0
\(981\) 551.793i 0.562481i
\(982\) 0 0
\(983\) − 559.629i − 0.569307i −0.958630 0.284653i \(-0.908121\pi\)
0.958630 0.284653i \(-0.0918785\pi\)
\(984\) 0 0
\(985\) −2287.97 −2.32281
\(986\) 0 0
\(987\) 323.660 0.327923
\(988\) 0 0
\(989\) − 1443.04i − 1.45909i
\(990\) 0 0
\(991\) 641.093i 0.646915i 0.946243 + 0.323458i \(0.104845\pi\)
−0.946243 + 0.323458i \(0.895155\pi\)
\(992\) 0 0
\(993\) 339.231 0.341623
\(994\) 0 0
\(995\) −2325.55 −2.33723
\(996\) 0 0
\(997\) 1114.86i 1.11822i 0.829094 + 0.559109i \(0.188857\pi\)
−0.829094 + 0.559109i \(0.811143\pi\)
\(998\) 0 0
\(999\) − 716.162i − 0.716879i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.g.b.351.1 yes 4
4.3 odd 2 448.3.g.a.351.3 4
8.3 odd 2 inner 448.3.g.b.351.2 yes 4
8.5 even 2 448.3.g.a.351.4 yes 4
16.3 odd 4 1792.3.d.a.1023.3 4
16.5 even 4 1792.3.d.c.1023.3 4
16.11 odd 4 1792.3.d.c.1023.2 4
16.13 even 4 1792.3.d.a.1023.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.3.g.a.351.3 4 4.3 odd 2
448.3.g.a.351.4 yes 4 8.5 even 2
448.3.g.b.351.1 yes 4 1.1 even 1 trivial
448.3.g.b.351.2 yes 4 8.3 odd 2 inner
1792.3.d.a.1023.2 4 16.13 even 4
1792.3.d.a.1023.3 4 16.3 odd 4
1792.3.d.c.1023.2 4 16.11 odd 4
1792.3.d.c.1023.3 4 16.5 even 4