Properties

Label 448.3.g.b
Level $448$
Weight $3$
Character orbit 448.g
Analytic conductor $12.207$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(351,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.351"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + ( - \beta_{3} + 5 \beta_1) q^{5} + \beta_{3} q^{7} + (2 \beta_{2} - 1) q^{9} + (2 \beta_{2} + 2) q^{11} + (\beta_{3} + 7 \beta_1) q^{13} + (4 \beta_{3} - 2 \beta_1) q^{15} + (4 \beta_{2} - 2) q^{17}+ \cdots + (2 \beta_{2} + 26) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{9} + 8 q^{11} - 8 q^{17} + 52 q^{19} - 28 q^{25} + 16 q^{27} + 64 q^{33} + 28 q^{35} + 8 q^{41} - 280 q^{43} - 28 q^{49} + 104 q^{51} + 80 q^{57} - 276 q^{59} - 112 q^{65} - 32 q^{67}+ \cdots + 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 5\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{2} + 5\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
351.1
−1.32288 0.500000i
−1.32288 + 0.500000i
1.32288 0.500000i
1.32288 + 0.500000i
0 −1.64575 0 7.64575i 0 2.64575i 0 −6.29150 0
351.2 0 −1.64575 0 7.64575i 0 2.64575i 0 −6.29150 0
351.3 0 3.64575 0 2.35425i 0 2.64575i 0 4.29150 0
351.4 0 3.64575 0 2.35425i 0 2.64575i 0 4.29150 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.3.g.b yes 4
4.b odd 2 1 448.3.g.a 4
8.b even 2 1 448.3.g.a 4
8.d odd 2 1 inner 448.3.g.b yes 4
16.e even 4 1 1792.3.d.a 4
16.e even 4 1 1792.3.d.c 4
16.f odd 4 1 1792.3.d.a 4
16.f odd 4 1 1792.3.d.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
448.3.g.a 4 4.b odd 2 1
448.3.g.a 4 8.b even 2 1
448.3.g.b yes 4 1.a even 1 1 trivial
448.3.g.b yes 4 8.d odd 2 1 inner
1792.3.d.a 4 16.e even 4 1
1792.3.d.a 4 16.f odd 4 1
1792.3.d.c 4 16.e even 4 1
1792.3.d.c 4 16.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 2T_{3} - 6 \) acting on \(S_{3}^{\mathrm{new}}(448, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T - 6)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 64T^{2} + 324 \) Copy content Toggle raw display
$7$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 4 T - 24)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 112T^{2} + 1764 \) Copy content Toggle raw display
$17$ \( (T^{2} + 4 T - 108)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 26 T + 162)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 904 T^{2} + 197136 \) Copy content Toggle raw display
$29$ \( T^{4} + 2752T^{2} + 576 \) Copy content Toggle raw display
$31$ \( T^{4} + 928 T^{2} + 186624 \) Copy content Toggle raw display
$37$ \( T^{4} + 1408 T^{2} + 484416 \) Copy content Toggle raw display
$41$ \( (T^{2} - 4 T - 2796)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 140 T + 4872)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 5632 T^{2} + 589824 \) Copy content Toggle raw display
$53$ \( T^{4} + 9472 T^{2} + 746496 \) Copy content Toggle raw display
$59$ \( (T^{2} + 138 T + 4194)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 10656 T^{2} + 23794884 \) Copy content Toggle raw display
$67$ \( (T^{2} + 16 T - 11136)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 4608 T^{2} + 82944 \) Copy content Toggle raw display
$73$ \( (T^{2} + 52 T - 332)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 5632 T^{2} + 6718464 \) Copy content Toggle raw display
$83$ \( (T^{2} - 86 T - 4038)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 188 T + 7044)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 76 T - 14684)^{2} \) Copy content Toggle raw display
show more
show less