Properties

Label 448.2.j.d.111.5
Level $448$
Weight $2$
Character 448.111
Analytic conductor $3.577$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,2,Mod(111,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.111"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 6x^{12} - 12x^{10} + 33x^{8} - 48x^{6} + 96x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 111.5
Root \(1.36166 + 0.381939i\) of defining polynomial
Character \(\chi\) \(=\) 448.111
Dual form 448.2.j.d.335.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03649 + 1.03649i) q^{3} +(-1.68683 - 1.68683i) q^{5} +(-1.38554 - 2.25395i) q^{7} -0.851361i q^{9} +(2.00000 + 2.00000i) q^{11} +(4.80976 - 4.80976i) q^{13} -3.49678i q^{15} -1.13424i q^{17} +(-1.21746 - 1.21746i) q^{19} +(0.900103 - 3.77231i) q^{21} +1.33620 q^{23} +0.690788i q^{25} +(3.99191 - 3.99191i) q^{27} +(5.26785 + 5.26785i) q^{29} -8.31885 q^{31} +4.14598i q^{33} +(-1.46486 + 6.13919i) q^{35} +(-4.18757 + 4.18757i) q^{37} +9.97057 q^{39} -1.63570 q^{41} +(1.33620 + 1.33620i) q^{43} +(-1.43610 + 1.43610i) q^{45} +1.93345 q^{47} +(-3.16057 + 6.24586i) q^{49} +(1.17563 - 1.17563i) q^{51} +(6.34814 - 6.34814i) q^{53} -6.74732i q^{55} -2.52377i q^{57} +(3.29044 - 3.29044i) q^{59} +(-2.04875 + 2.04875i) q^{61} +(-1.91892 + 1.17959i) q^{63} -16.2265 q^{65} +(-0.107279 + 0.107279i) q^{67} +(1.38497 + 1.38497i) q^{69} -13.0475 q^{71} -6.24586 q^{73} +(-0.715998 + 0.715998i) q^{75} +(1.73682 - 7.27897i) q^{77} -4.51184i q^{79} +5.72110 q^{81} +(9.71727 + 9.71727i) q^{83} +(-1.91327 + 1.91327i) q^{85} +10.9202i q^{87} +11.6171 q^{89} +(-17.5051 - 4.17685i) q^{91} +(-8.62244 - 8.62244i) q^{93} +4.10728i q^{95} +3.23412i q^{97} +(1.70272 - 1.70272i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 32 q^{11} + 16 q^{21} - 8 q^{35} - 16 q^{39} - 16 q^{49} + 32 q^{51} - 80 q^{65} + 48 q^{67} - 32 q^{71} - 16 q^{77} + 32 q^{81} + 64 q^{85} - 8 q^{91} - 64 q^{93} - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.03649 + 1.03649i 0.598420 + 0.598420i 0.939892 0.341472i \(-0.110925\pi\)
−0.341472 + 0.939892i \(0.610925\pi\)
\(4\) 0 0
\(5\) −1.68683 1.68683i −0.754373 0.754373i 0.220919 0.975292i \(-0.429094\pi\)
−0.975292 + 0.220919i \(0.929094\pi\)
\(6\) 0 0
\(7\) −1.38554 2.25395i −0.523684 0.851913i
\(8\) 0 0
\(9\) 0.851361i 0.283787i
\(10\) 0 0
\(11\) 2.00000 + 2.00000i 0.603023 + 0.603023i 0.941113 0.338091i \(-0.109781\pi\)
−0.338091 + 0.941113i \(0.609781\pi\)
\(12\) 0 0
\(13\) 4.80976 4.80976i 1.33399 1.33399i 0.432219 0.901769i \(-0.357731\pi\)
0.901769 0.432219i \(-0.142269\pi\)
\(14\) 0 0
\(15\) 3.49678i 0.902864i
\(16\) 0 0
\(17\) 1.13424i 0.275093i −0.990495 0.137547i \(-0.956078\pi\)
0.990495 0.137547i \(-0.0439217\pi\)
\(18\) 0 0
\(19\) −1.21746 1.21746i −0.279303 0.279303i 0.553528 0.832831i \(-0.313281\pi\)
−0.832831 + 0.553528i \(0.813281\pi\)
\(20\) 0 0
\(21\) 0.900103 3.77231i 0.196419 0.823184i
\(22\) 0 0
\(23\) 1.33620 0.278618 0.139309 0.990249i \(-0.455512\pi\)
0.139309 + 0.990249i \(0.455512\pi\)
\(24\) 0 0
\(25\) 0.690788i 0.138158i
\(26\) 0 0
\(27\) 3.99191 3.99191i 0.768244 0.768244i
\(28\) 0 0
\(29\) 5.26785 + 5.26785i 0.978215 + 0.978215i 0.999768 0.0215522i \(-0.00686082\pi\)
−0.0215522 + 0.999768i \(0.506861\pi\)
\(30\) 0 0
\(31\) −8.31885 −1.49411 −0.747055 0.664763i \(-0.768533\pi\)
−0.747055 + 0.664763i \(0.768533\pi\)
\(32\) 0 0
\(33\) 4.14598i 0.721722i
\(34\) 0 0
\(35\) −1.46486 + 6.13919i −0.247607 + 1.03771i
\(36\) 0 0
\(37\) −4.18757 + 4.18757i −0.688431 + 0.688431i −0.961885 0.273454i \(-0.911834\pi\)
0.273454 + 0.961885i \(0.411834\pi\)
\(38\) 0 0
\(39\) 9.97057 1.59657
\(40\) 0 0
\(41\) −1.63570 −0.255453 −0.127726 0.991809i \(-0.540768\pi\)
−0.127726 + 0.991809i \(0.540768\pi\)
\(42\) 0 0
\(43\) 1.33620 + 1.33620i 0.203769 + 0.203769i 0.801613 0.597844i \(-0.203976\pi\)
−0.597844 + 0.801613i \(0.703976\pi\)
\(44\) 0 0
\(45\) −1.43610 + 1.43610i −0.214081 + 0.214081i
\(46\) 0 0
\(47\) 1.93345 0.282023 0.141012 0.990008i \(-0.454965\pi\)
0.141012 + 0.990008i \(0.454965\pi\)
\(48\) 0 0
\(49\) −3.16057 + 6.24586i −0.451510 + 0.892266i
\(50\) 0 0
\(51\) 1.17563 1.17563i 0.164621 0.164621i
\(52\) 0 0
\(53\) 6.34814 6.34814i 0.871984 0.871984i −0.120705 0.992688i \(-0.538515\pi\)
0.992688 + 0.120705i \(0.0385154\pi\)
\(54\) 0 0
\(55\) 6.74732i 0.909808i
\(56\) 0 0
\(57\) 2.52377i 0.334281i
\(58\) 0 0
\(59\) 3.29044 3.29044i 0.428379 0.428379i −0.459697 0.888076i \(-0.652042\pi\)
0.888076 + 0.459697i \(0.152042\pi\)
\(60\) 0 0
\(61\) −2.04875 + 2.04875i −0.262316 + 0.262316i −0.825994 0.563678i \(-0.809386\pi\)
0.563678 + 0.825994i \(0.309386\pi\)
\(62\) 0 0
\(63\) −1.91892 + 1.17959i −0.241762 + 0.148615i
\(64\) 0 0
\(65\) −16.2265 −2.01265
\(66\) 0 0
\(67\) −0.107279 + 0.107279i −0.0131062 + 0.0131062i −0.713630 0.700523i \(-0.752950\pi\)
0.700523 + 0.713630i \(0.252950\pi\)
\(68\) 0 0
\(69\) 1.38497 + 1.38497i 0.166731 + 0.166731i
\(70\) 0 0
\(71\) −13.0475 −1.54846 −0.774229 0.632906i \(-0.781862\pi\)
−0.774229 + 0.632906i \(0.781862\pi\)
\(72\) 0 0
\(73\) −6.24586 −0.731023 −0.365511 0.930807i \(-0.619106\pi\)
−0.365511 + 0.930807i \(0.619106\pi\)
\(74\) 0 0
\(75\) −0.715998 + 0.715998i −0.0826763 + 0.0826763i
\(76\) 0 0
\(77\) 1.73682 7.27897i 0.197929 0.829516i
\(78\) 0 0
\(79\) 4.51184i 0.507621i −0.967254 0.253811i \(-0.918316\pi\)
0.967254 0.253811i \(-0.0816840\pi\)
\(80\) 0 0
\(81\) 5.72110 0.635678
\(82\) 0 0
\(83\) 9.71727 + 9.71727i 1.06661 + 1.06661i 0.997617 + 0.0689912i \(0.0219780\pi\)
0.0689912 + 0.997617i \(0.478022\pi\)
\(84\) 0 0
\(85\) −1.91327 + 1.91327i −0.207523 + 0.207523i
\(86\) 0 0
\(87\) 10.9202i 1.17077i
\(88\) 0 0
\(89\) 11.6171 1.23141 0.615707 0.787975i \(-0.288870\pi\)
0.615707 + 0.787975i \(0.288870\pi\)
\(90\) 0 0
\(91\) −17.5051 4.17685i −1.83503 0.437853i
\(92\) 0 0
\(93\) −8.62244 8.62244i −0.894105 0.894105i
\(94\) 0 0
\(95\) 4.10728i 0.421398i
\(96\) 0 0
\(97\) 3.23412i 0.328376i 0.986429 + 0.164188i \(0.0525003\pi\)
−0.986429 + 0.164188i \(0.947500\pi\)
\(98\) 0 0
\(99\) 1.70272 1.70272i 0.171130 0.171130i
\(100\) 0 0
\(101\) 5.94400 + 5.94400i 0.591450 + 0.591450i 0.938023 0.346573i \(-0.112655\pi\)
−0.346573 + 0.938023i \(0.612655\pi\)
\(102\) 0 0
\(103\) 7.44427i 0.733505i 0.930318 + 0.366753i \(0.119530\pi\)
−0.930318 + 0.366753i \(0.880470\pi\)
\(104\) 0 0
\(105\) −7.88156 + 4.84492i −0.769161 + 0.472815i
\(106\) 0 0
\(107\) 2.83298 + 2.83298i 0.273875 + 0.273875i 0.830658 0.556783i \(-0.187965\pi\)
−0.556783 + 0.830658i \(0.687965\pi\)
\(108\) 0 0
\(109\) 5.51516 + 5.51516i 0.528256 + 0.528256i 0.920052 0.391796i \(-0.128146\pi\)
−0.391796 + 0.920052i \(0.628146\pi\)
\(110\) 0 0
\(111\) −8.68077 −0.823942
\(112\) 0 0
\(113\) 13.5173 1.27160 0.635801 0.771853i \(-0.280670\pi\)
0.635801 + 0.771853i \(0.280670\pi\)
\(114\) 0 0
\(115\) −2.25395 2.25395i −0.210182 0.210182i
\(116\) 0 0
\(117\) −4.09484 4.09484i −0.378568 0.378568i
\(118\) 0 0
\(119\) −2.55652 + 1.57153i −0.234355 + 0.144062i
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) −1.69539 1.69539i −0.152868 0.152868i
\(124\) 0 0
\(125\) −7.26891 + 7.26891i −0.650151 + 0.650151i
\(126\) 0 0
\(127\) 2.87835i 0.255413i 0.991812 + 0.127706i \(0.0407615\pi\)
−0.991812 + 0.127706i \(0.959239\pi\)
\(128\) 0 0
\(129\) 2.76994i 0.243879i
\(130\) 0 0
\(131\) −5.20937 5.20937i −0.455145 0.455145i 0.441913 0.897058i \(-0.354300\pi\)
−0.897058 + 0.441913i \(0.854300\pi\)
\(132\) 0 0
\(133\) −1.05725 + 4.43091i −0.0916754 + 0.384209i
\(134\) 0 0
\(135\) −13.4674 −1.15908
\(136\) 0 0
\(137\) 15.8805i 1.35676i 0.734709 + 0.678382i \(0.237319\pi\)
−0.734709 + 0.678382i \(0.762681\pi\)
\(138\) 0 0
\(139\) −11.7757 + 11.7757i −0.998804 + 0.998804i −0.999999 0.00119539i \(-0.999619\pi\)
0.00119539 + 0.999999i \(0.499619\pi\)
\(140\) 0 0
\(141\) 2.00401 + 2.00401i 0.168768 + 0.168768i
\(142\) 0 0
\(143\) 19.2390 1.60885
\(144\) 0 0
\(145\) 17.7719i 1.47588i
\(146\) 0 0
\(147\) −9.74971 + 3.19788i −0.804143 + 0.263757i
\(148\) 0 0
\(149\) −7.72570 + 7.72570i −0.632914 + 0.632914i −0.948798 0.315884i \(-0.897699\pi\)
0.315884 + 0.948798i \(0.397699\pi\)
\(150\) 0 0
\(151\) 20.5443 1.67187 0.835936 0.548826i \(-0.184925\pi\)
0.835936 + 0.548826i \(0.184925\pi\)
\(152\) 0 0
\(153\) −0.965647 −0.0780679
\(154\) 0 0
\(155\) 14.0325 + 14.0325i 1.12712 + 1.12712i
\(156\) 0 0
\(157\) −3.07180 + 3.07180i −0.245156 + 0.245156i −0.818979 0.573823i \(-0.805460\pi\)
0.573823 + 0.818979i \(0.305460\pi\)
\(158\) 0 0
\(159\) 13.1596 1.04363
\(160\) 0 0
\(161\) −1.85136 3.01174i −0.145908 0.237358i
\(162\) 0 0
\(163\) −3.22893 + 3.22893i −0.252909 + 0.252909i −0.822162 0.569253i \(-0.807232\pi\)
0.569253 + 0.822162i \(0.307232\pi\)
\(164\) 0 0
\(165\) 6.99355 6.99355i 0.544447 0.544447i
\(166\) 0 0
\(167\) 6.05037i 0.468192i 0.972214 + 0.234096i \(0.0752130\pi\)
−0.972214 + 0.234096i \(0.924787\pi\)
\(168\) 0 0
\(169\) 33.2676i 2.55905i
\(170\) 0 0
\(171\) −1.03649 + 1.03649i −0.0792627 + 0.0792627i
\(172\) 0 0
\(173\) −4.44784 + 4.44784i −0.338163 + 0.338163i −0.855676 0.517513i \(-0.826858\pi\)
0.517513 + 0.855676i \(0.326858\pi\)
\(174\) 0 0
\(175\) 1.55700 0.957113i 0.117698 0.0723509i
\(176\) 0 0
\(177\) 6.82105 0.512701
\(178\) 0 0
\(179\) 9.36007 9.36007i 0.699605 0.699605i −0.264721 0.964325i \(-0.585280\pi\)
0.964325 + 0.264721i \(0.0852797\pi\)
\(180\) 0 0
\(181\) 0.190668 + 0.190668i 0.0141722 + 0.0141722i 0.714157 0.699985i \(-0.246810\pi\)
−0.699985 + 0.714157i \(0.746810\pi\)
\(182\) 0 0
\(183\) −4.24704 −0.313950
\(184\) 0 0
\(185\) 14.1274 1.03867
\(186\) 0 0
\(187\) 2.26848 2.26848i 0.165888 0.165888i
\(188\) 0 0
\(189\) −14.5285 3.46662i −1.05679 0.252160i
\(190\) 0 0
\(191\) 3.90133i 0.282291i 0.989989 + 0.141145i \(0.0450785\pi\)
−0.989989 + 0.141145i \(0.954922\pi\)
\(192\) 0 0
\(193\) 9.87523 0.710834 0.355417 0.934708i \(-0.384339\pi\)
0.355417 + 0.934708i \(0.384339\pi\)
\(194\) 0 0
\(195\) −16.8187 16.8187i −1.20441 1.20441i
\(196\) 0 0
\(197\) −14.4021 + 14.4021i −1.02611 + 1.02611i −0.0264589 + 0.999650i \(0.508423\pi\)
−0.999650 + 0.0264589i \(0.991577\pi\)
\(198\) 0 0
\(199\) 25.6513i 1.81837i −0.416387 0.909187i \(-0.636704\pi\)
0.416387 0.909187i \(-0.363296\pi\)
\(200\) 0 0
\(201\) −0.222388 −0.0156860
\(202\) 0 0
\(203\) 4.57466 19.1723i 0.321078 1.34563i
\(204\) 0 0
\(205\) 2.75914 + 2.75914i 0.192707 + 0.192707i
\(206\) 0 0
\(207\) 1.13759i 0.0790681i
\(208\) 0 0
\(209\) 4.86982i 0.336853i
\(210\) 0 0
\(211\) 15.4141 15.4141i 1.06115 1.06115i 0.0631429 0.998004i \(-0.479888\pi\)
0.998004 0.0631429i \(-0.0201124\pi\)
\(212\) 0 0
\(213\) −13.5237 13.5237i −0.926628 0.926628i
\(214\) 0 0
\(215\) 4.50790i 0.307436i
\(216\) 0 0
\(217\) 11.5261 + 18.7503i 0.782441 + 1.27285i
\(218\) 0 0
\(219\) −6.47380 6.47380i −0.437459 0.437459i
\(220\) 0 0
\(221\) −5.45542 5.45542i −0.366971 0.366971i
\(222\) 0 0
\(223\) 15.4012 1.03134 0.515670 0.856787i \(-0.327543\pi\)
0.515670 + 0.856787i \(0.327543\pi\)
\(224\) 0 0
\(225\) 0.588110 0.0392073
\(226\) 0 0
\(227\) −7.60285 7.60285i −0.504619 0.504619i 0.408251 0.912870i \(-0.366139\pi\)
−0.912870 + 0.408251i \(0.866139\pi\)
\(228\) 0 0
\(229\) 17.6096 + 17.6096i 1.16368 + 1.16368i 0.983665 + 0.180011i \(0.0576134\pi\)
0.180011 + 0.983665i \(0.442387\pi\)
\(230\) 0 0
\(231\) 9.34482 5.74440i 0.614844 0.377954i
\(232\) 0 0
\(233\) 6.72639i 0.440661i −0.975425 0.220330i \(-0.929286\pi\)
0.975425 0.220330i \(-0.0707135\pi\)
\(234\) 0 0
\(235\) −3.26141 3.26141i −0.212751 0.212751i
\(236\) 0 0
\(237\) 4.67649 4.67649i 0.303771 0.303771i
\(238\) 0 0
\(239\) 9.53354i 0.616673i 0.951277 + 0.308337i \(0.0997723\pi\)
−0.951277 + 0.308337i \(0.900228\pi\)
\(240\) 0 0
\(241\) 21.3762i 1.37696i −0.725255 0.688481i \(-0.758278\pi\)
0.725255 0.688481i \(-0.241722\pi\)
\(242\) 0 0
\(243\) −6.04585 6.04585i −0.387841 0.387841i
\(244\) 0 0
\(245\) 15.8671 5.20436i 1.01371 0.332494i
\(246\) 0 0
\(247\) −11.7113 −0.745174
\(248\) 0 0
\(249\) 20.1438i 1.27656i
\(250\) 0 0
\(251\) 3.97286 3.97286i 0.250765 0.250765i −0.570519 0.821284i \(-0.693258\pi\)
0.821284 + 0.570519i \(0.193258\pi\)
\(252\) 0 0
\(253\) 2.67241 + 2.67241i 0.168013 + 0.168013i
\(254\) 0 0
\(255\) −3.96618 −0.248372
\(256\) 0 0
\(257\) 6.91591i 0.431403i 0.976459 + 0.215701i \(0.0692038\pi\)
−0.976459 + 0.215701i \(0.930796\pi\)
\(258\) 0 0
\(259\) 15.2406 + 3.63653i 0.947004 + 0.225963i
\(260\) 0 0
\(261\) 4.48484 4.48484i 0.277605 0.277605i
\(262\) 0 0
\(263\) 17.7806 1.09640 0.548199 0.836348i \(-0.315314\pi\)
0.548199 + 0.836348i \(0.315314\pi\)
\(264\) 0 0
\(265\) −21.4165 −1.31560
\(266\) 0 0
\(267\) 12.0411 + 12.0411i 0.736903 + 0.736903i
\(268\) 0 0
\(269\) 9.95044 9.95044i 0.606689 0.606689i −0.335390 0.942079i \(-0.608868\pi\)
0.942079 + 0.335390i \(0.108868\pi\)
\(270\) 0 0
\(271\) −19.6010 −1.19067 −0.595337 0.803476i \(-0.702981\pi\)
−0.595337 + 0.803476i \(0.702981\pi\)
\(272\) 0 0
\(273\) −13.8146 22.4732i −0.836098 1.36014i
\(274\) 0 0
\(275\) −1.38158 + 1.38158i −0.0833122 + 0.0833122i
\(276\) 0 0
\(277\) 13.6430 13.6430i 0.819727 0.819727i −0.166341 0.986068i \(-0.553195\pi\)
0.986068 + 0.166341i \(0.0531952\pi\)
\(278\) 0 0
\(279\) 7.08234i 0.424009i
\(280\) 0 0
\(281\) 7.16702i 0.427548i 0.976883 + 0.213774i \(0.0685757\pi\)
−0.976883 + 0.213774i \(0.931424\pi\)
\(282\) 0 0
\(283\) −11.6238 + 11.6238i −0.690964 + 0.690964i −0.962444 0.271480i \(-0.912487\pi\)
0.271480 + 0.962444i \(0.412487\pi\)
\(284\) 0 0
\(285\) −4.25717 + 4.25717i −0.252173 + 0.252173i
\(286\) 0 0
\(287\) 2.26632 + 3.68678i 0.133777 + 0.217624i
\(288\) 0 0
\(289\) 15.7135 0.924324
\(290\) 0 0
\(291\) −3.35215 + 3.35215i −0.196507 + 0.196507i
\(292\) 0 0
\(293\) −0.108531 0.108531i −0.00634048 0.00634048i 0.703929 0.710270i \(-0.251427\pi\)
−0.710270 + 0.703929i \(0.751427\pi\)
\(294\) 0 0
\(295\) −11.1008 −0.646315
\(296\) 0 0
\(297\) 15.9676 0.926537
\(298\) 0 0
\(299\) 6.42682 6.42682i 0.371673 0.371673i
\(300\) 0 0
\(301\) 1.16038 4.86310i 0.0668829 0.280304i
\(302\) 0 0
\(303\) 12.3218i 0.707871i
\(304\) 0 0
\(305\) 6.91179 0.395768
\(306\) 0 0
\(307\) −1.23198 1.23198i −0.0703130 0.0703130i 0.671076 0.741389i \(-0.265833\pi\)
−0.741389 + 0.671076i \(0.765833\pi\)
\(308\) 0 0
\(309\) −7.71594 + 7.71594i −0.438944 + 0.438944i
\(310\) 0 0
\(311\) 15.0393i 0.852799i 0.904535 + 0.426399i \(0.140218\pi\)
−0.904535 + 0.426399i \(0.859782\pi\)
\(312\) 0 0
\(313\) −33.6455 −1.90176 −0.950879 0.309563i \(-0.899817\pi\)
−0.950879 + 0.309563i \(0.899817\pi\)
\(314\) 0 0
\(315\) 5.22667 + 1.24713i 0.294489 + 0.0702676i
\(316\) 0 0
\(317\) 4.05086 + 4.05086i 0.227519 + 0.227519i 0.811655 0.584136i \(-0.198567\pi\)
−0.584136 + 0.811655i \(0.698567\pi\)
\(318\) 0 0
\(319\) 21.0714i 1.17977i
\(320\) 0 0
\(321\) 5.87274i 0.327784i
\(322\) 0 0
\(323\) −1.38089 + 1.38089i −0.0768345 + 0.0768345i
\(324\) 0 0
\(325\) 3.32253 + 3.32253i 0.184301 + 0.184301i
\(326\) 0 0
\(327\) 11.4329i 0.632238i
\(328\) 0 0
\(329\) −2.67887 4.35790i −0.147691 0.240259i
\(330\) 0 0
\(331\) −11.3981 11.3981i −0.626497 0.626497i 0.320688 0.947185i \(-0.396086\pi\)
−0.947185 + 0.320688i \(0.896086\pi\)
\(332\) 0 0
\(333\) 3.56513 + 3.56513i 0.195368 + 0.195368i
\(334\) 0 0
\(335\) 0.361923 0.0197739
\(336\) 0 0
\(337\) −11.0356 −0.601148 −0.300574 0.953759i \(-0.597178\pi\)
−0.300574 + 0.953759i \(0.597178\pi\)
\(338\) 0 0
\(339\) 14.0106 + 14.0106i 0.760953 + 0.760953i
\(340\) 0 0
\(341\) −16.6377 16.6377i −0.900982 0.900982i
\(342\) 0 0
\(343\) 18.4569 1.53010i 0.996581 0.0826178i
\(344\) 0 0
\(345\) 4.67241i 0.251554i
\(346\) 0 0
\(347\) −13.6494 13.6494i −0.732740 0.732740i 0.238422 0.971162i \(-0.423370\pi\)
−0.971162 + 0.238422i \(0.923370\pi\)
\(348\) 0 0
\(349\) −5.59100 + 5.59100i −0.299280 + 0.299280i −0.840732 0.541452i \(-0.817875\pi\)
0.541452 + 0.840732i \(0.317875\pi\)
\(350\) 0 0
\(351\) 38.4003i 2.04966i
\(352\) 0 0
\(353\) 31.8994i 1.69783i 0.528528 + 0.848916i \(0.322744\pi\)
−0.528528 + 0.848916i \(0.677256\pi\)
\(354\) 0 0
\(355\) 22.0090 + 22.0090i 1.16812 + 1.16812i
\(356\) 0 0
\(357\) −4.27870 1.02093i −0.226453 0.0540335i
\(358\) 0 0
\(359\) −8.42050 −0.444417 −0.222209 0.974999i \(-0.571327\pi\)
−0.222209 + 0.974999i \(0.571327\pi\)
\(360\) 0 0
\(361\) 16.0356i 0.843979i
\(362\) 0 0
\(363\) 3.10948 3.10948i 0.163205 0.163205i
\(364\) 0 0
\(365\) 10.5357 + 10.5357i 0.551464 + 0.551464i
\(366\) 0 0
\(367\) 10.0187 0.522972 0.261486 0.965207i \(-0.415787\pi\)
0.261486 + 0.965207i \(0.415787\pi\)
\(368\) 0 0
\(369\) 1.39257i 0.0724942i
\(370\) 0 0
\(371\) −23.1040 5.51280i −1.19950 0.286210i
\(372\) 0 0
\(373\) −1.13115 + 1.13115i −0.0585685 + 0.0585685i −0.735784 0.677216i \(-0.763186\pi\)
0.677216 + 0.735784i \(0.263186\pi\)
\(374\) 0 0
\(375\) −15.0684 −0.778126
\(376\) 0 0
\(377\) 50.6742 2.60985
\(378\) 0 0
\(379\) 12.6191 + 12.6191i 0.648200 + 0.648200i 0.952558 0.304357i \(-0.0984417\pi\)
−0.304357 + 0.952558i \(0.598442\pi\)
\(380\) 0 0
\(381\) −2.98340 + 2.98340i −0.152844 + 0.152844i
\(382\) 0 0
\(383\) −16.6646 −0.851521 −0.425761 0.904836i \(-0.639993\pi\)
−0.425761 + 0.904836i \(0.639993\pi\)
\(384\) 0 0
\(385\) −15.2081 + 9.34866i −0.775077 + 0.476452i
\(386\) 0 0
\(387\) 1.13759 1.13759i 0.0578271 0.0578271i
\(388\) 0 0
\(389\) 2.85997 2.85997i 0.145006 0.145006i −0.630877 0.775883i \(-0.717305\pi\)
0.775883 + 0.630877i \(0.217305\pi\)
\(390\) 0 0
\(391\) 1.51557i 0.0766459i
\(392\) 0 0
\(393\) 10.7990i 0.544735i
\(394\) 0 0
\(395\) −7.61070 + 7.61070i −0.382936 + 0.382936i
\(396\) 0 0
\(397\) 12.0302 12.0302i 0.603778 0.603778i −0.337535 0.941313i \(-0.609593\pi\)
0.941313 + 0.337535i \(0.109593\pi\)
\(398\) 0 0
\(399\) −5.68845 + 3.49678i −0.284779 + 0.175058i
\(400\) 0 0
\(401\) 3.88812 0.194163 0.0970817 0.995276i \(-0.469049\pi\)
0.0970817 + 0.995276i \(0.469049\pi\)
\(402\) 0 0
\(403\) −40.0117 + 40.0117i −1.99312 + 1.99312i
\(404\) 0 0
\(405\) −9.65052 9.65052i −0.479538 0.479538i
\(406\) 0 0
\(407\) −16.7503 −0.830280
\(408\) 0 0
\(409\) −25.7267 −1.27210 −0.636052 0.771646i \(-0.719434\pi\)
−0.636052 + 0.771646i \(0.719434\pi\)
\(410\) 0 0
\(411\) −16.4601 + 16.4601i −0.811915 + 0.811915i
\(412\) 0 0
\(413\) −11.9755 2.85746i −0.589277 0.140606i
\(414\) 0 0
\(415\) 32.7827i 1.60924i
\(416\) 0 0
\(417\) −24.4109 −1.19541
\(418\) 0 0
\(419\) 15.4348 + 15.4348i 0.754038 + 0.754038i 0.975230 0.221192i \(-0.0709948\pi\)
−0.221192 + 0.975230i \(0.570995\pi\)
\(420\) 0 0
\(421\) −14.9338 + 14.9338i −0.727830 + 0.727830i −0.970187 0.242357i \(-0.922079\pi\)
0.242357 + 0.970187i \(0.422079\pi\)
\(422\) 0 0
\(423\) 1.64607i 0.0800345i
\(424\) 0 0
\(425\) 0.783519 0.0380063
\(426\) 0 0
\(427\) 7.45641 + 1.77916i 0.360841 + 0.0860996i
\(428\) 0 0
\(429\) 19.9411 + 19.9411i 0.962768 + 0.962768i
\(430\) 0 0
\(431\) 23.6114i 1.13732i −0.822572 0.568660i \(-0.807462\pi\)
0.822572 0.568660i \(-0.192538\pi\)
\(432\) 0 0
\(433\) 1.78643i 0.0858505i 0.999078 + 0.0429253i \(0.0136677\pi\)
−0.999078 + 0.0429253i \(0.986332\pi\)
\(434\) 0 0
\(435\) 18.4205 18.4205i 0.883196 0.883196i
\(436\) 0 0
\(437\) −1.62677 1.62677i −0.0778189 0.0778189i
\(438\) 0 0
\(439\) 26.6274i 1.27085i −0.772161 0.635427i \(-0.780824\pi\)
0.772161 0.635427i \(-0.219176\pi\)
\(440\) 0 0
\(441\) 5.31748 + 2.69079i 0.253213 + 0.128133i
\(442\) 0 0
\(443\) 16.9403 + 16.9403i 0.804856 + 0.804856i 0.983850 0.178994i \(-0.0572843\pi\)
−0.178994 + 0.983850i \(0.557284\pi\)
\(444\) 0 0
\(445\) −19.5961 19.5961i −0.928946 0.928946i
\(446\) 0 0
\(447\) −16.0153 −0.757497
\(448\) 0 0
\(449\) −6.76315 −0.319173 −0.159586 0.987184i \(-0.551016\pi\)
−0.159586 + 0.987184i \(0.551016\pi\)
\(450\) 0 0
\(451\) −3.27139 3.27139i −0.154044 0.154044i
\(452\) 0 0
\(453\) 21.2941 + 21.2941i 1.00048 + 1.00048i
\(454\) 0 0
\(455\) 22.4824 + 36.5737i 1.05399 + 1.71460i
\(456\) 0 0
\(457\) 3.79073i 0.177323i 0.996062 + 0.0886615i \(0.0282590\pi\)
−0.996062 + 0.0886615i \(0.971741\pi\)
\(458\) 0 0
\(459\) −4.52778 4.52778i −0.211339 0.211339i
\(460\) 0 0
\(461\) −3.04346 + 3.04346i −0.141748 + 0.141748i −0.774420 0.632672i \(-0.781958\pi\)
0.632672 + 0.774420i \(0.281958\pi\)
\(462\) 0 0
\(463\) 1.44348i 0.0670844i 0.999437 + 0.0335422i \(0.0106788\pi\)
−0.999437 + 0.0335422i \(0.989321\pi\)
\(464\) 0 0
\(465\) 29.0892i 1.34898i
\(466\) 0 0
\(467\) 10.9302 + 10.9302i 0.505789 + 0.505789i 0.913231 0.407442i \(-0.133579\pi\)
−0.407442 + 0.913231i \(0.633579\pi\)
\(468\) 0 0
\(469\) 0.390440 + 0.0931623i 0.0180289 + 0.00430184i
\(470\) 0 0
\(471\) −6.36780 −0.293413
\(472\) 0 0
\(473\) 5.34482i 0.245755i
\(474\) 0 0
\(475\) 0.841004 0.841004i 0.0385879 0.0385879i
\(476\) 0 0
\(477\) −5.40456 5.40456i −0.247458 0.247458i
\(478\) 0 0
\(479\) −22.3261 −1.02011 −0.510054 0.860142i \(-0.670375\pi\)
−0.510054 + 0.860142i \(0.670375\pi\)
\(480\) 0 0
\(481\) 40.2824i 1.83672i
\(482\) 0 0
\(483\) 1.20272 5.04057i 0.0547258 0.229354i
\(484\) 0 0
\(485\) 5.45542 5.45542i 0.247718 0.247718i
\(486\) 0 0
\(487\) 5.13887 0.232865 0.116432 0.993199i \(-0.462854\pi\)
0.116432 + 0.993199i \(0.462854\pi\)
\(488\) 0 0
\(489\) −6.69352 −0.302692
\(490\) 0 0
\(491\) −6.24398 6.24398i −0.281787 0.281787i 0.552034 0.833821i \(-0.313852\pi\)
−0.833821 + 0.552034i \(0.813852\pi\)
\(492\) 0 0
\(493\) 5.97500 5.97500i 0.269101 0.269101i
\(494\) 0 0
\(495\) −5.74440 −0.258192
\(496\) 0 0
\(497\) 18.0779 + 29.4085i 0.810903 + 1.31915i
\(498\) 0 0
\(499\) −7.56730 + 7.56730i −0.338759 + 0.338759i −0.855900 0.517141i \(-0.826996\pi\)
0.517141 + 0.855900i \(0.326996\pi\)
\(500\) 0 0
\(501\) −6.27117 + 6.27117i −0.280175 + 0.280175i
\(502\) 0 0
\(503\) 11.7969i 0.525999i −0.964796 0.263000i \(-0.915288\pi\)
0.964796 0.263000i \(-0.0847118\pi\)
\(504\) 0 0
\(505\) 20.0530i 0.892348i
\(506\) 0 0
\(507\) 34.4816 34.4816i 1.53138 1.53138i
\(508\) 0 0
\(509\) 24.1062 24.1062i 1.06849 1.06849i 0.0710131 0.997475i \(-0.477377\pi\)
0.997475 0.0710131i \(-0.0226232\pi\)
\(510\) 0 0
\(511\) 8.65387 + 14.0779i 0.382825 + 0.622768i
\(512\) 0 0
\(513\) −9.71995 −0.429146
\(514\) 0 0
\(515\) 12.5572 12.5572i 0.553337 0.553337i
\(516\) 0 0
\(517\) 3.86691 + 3.86691i 0.170066 + 0.170066i
\(518\) 0 0
\(519\) −9.22031 −0.404727
\(520\) 0 0
\(521\) −42.1032 −1.84457 −0.922287 0.386506i \(-0.873682\pi\)
−0.922287 + 0.386506i \(0.873682\pi\)
\(522\) 0 0
\(523\) 6.62683 6.62683i 0.289771 0.289771i −0.547219 0.836990i \(-0.684313\pi\)
0.836990 + 0.547219i \(0.184313\pi\)
\(524\) 0 0
\(525\) 2.60586 + 0.621781i 0.113729 + 0.0271367i
\(526\) 0 0
\(527\) 9.43556i 0.411020i
\(528\) 0 0
\(529\) −21.2146 −0.922372
\(530\) 0 0
\(531\) −2.80135 2.80135i −0.121568 0.121568i
\(532\) 0 0
\(533\) −7.86731 + 7.86731i −0.340771 + 0.340771i
\(534\) 0 0
\(535\) 9.55751i 0.413207i
\(536\) 0 0
\(537\) 19.4033 0.837315
\(538\) 0 0
\(539\) −18.8129 + 6.17058i −0.810328 + 0.265786i
\(540\) 0 0
\(541\) 1.70184 + 1.70184i 0.0731676 + 0.0731676i 0.742744 0.669576i \(-0.233524\pi\)
−0.669576 + 0.742744i \(0.733524\pi\)
\(542\) 0 0
\(543\) 0.395252i 0.0169619i
\(544\) 0 0
\(545\) 18.6063i 0.797005i
\(546\) 0 0
\(547\) −8.86974 + 8.86974i −0.379243 + 0.379243i −0.870829 0.491586i \(-0.836417\pi\)
0.491586 + 0.870829i \(0.336417\pi\)
\(548\) 0 0
\(549\) 1.74423 + 1.74423i 0.0744418 + 0.0744418i
\(550\) 0 0
\(551\) 12.8267i 0.546438i
\(552\) 0 0
\(553\) −10.1694 + 6.25132i −0.432449 + 0.265833i
\(554\) 0 0
\(555\) 14.6430 + 14.6430i 0.621560 + 0.621560i
\(556\) 0 0
\(557\) −9.83630 9.83630i −0.416777 0.416777i 0.467314 0.884091i \(-0.345222\pi\)
−0.884091 + 0.467314i \(0.845222\pi\)
\(558\) 0 0
\(559\) 12.8536 0.543651
\(560\) 0 0
\(561\) 4.70253 0.198541
\(562\) 0 0
\(563\) 3.26139 + 3.26139i 0.137451 + 0.137451i 0.772485 0.635034i \(-0.219014\pi\)
−0.635034 + 0.772485i \(0.719014\pi\)
\(564\) 0 0
\(565\) −22.8014 22.8014i −0.959263 0.959263i
\(566\) 0 0
\(567\) −7.92680 12.8951i −0.332894 0.541542i
\(568\) 0 0
\(569\) 7.26970i 0.304762i 0.988322 + 0.152381i \(0.0486940\pi\)
−0.988322 + 0.152381i \(0.951306\pi\)
\(570\) 0 0
\(571\) 1.22962 + 1.22962i 0.0514579 + 0.0514579i 0.732367 0.680910i \(-0.238415\pi\)
−0.680910 + 0.732367i \(0.738415\pi\)
\(572\) 0 0
\(573\) −4.04371 + 4.04371i −0.168928 + 0.168928i
\(574\) 0 0
\(575\) 0.923034i 0.0384932i
\(576\) 0 0
\(577\) 20.1315i 0.838084i −0.907967 0.419042i \(-0.862366\pi\)
0.907967 0.419042i \(-0.137634\pi\)
\(578\) 0 0
\(579\) 10.2356 + 10.2356i 0.425378 + 0.425378i
\(580\) 0 0
\(581\) 8.43859 35.3659i 0.350092 1.46722i
\(582\) 0 0
\(583\) 25.3926 1.05165
\(584\) 0 0
\(585\) 13.8146i 0.571163i
\(586\) 0 0
\(587\) 13.6801 13.6801i 0.564639 0.564639i −0.365983 0.930622i \(-0.619267\pi\)
0.930622 + 0.365983i \(0.119267\pi\)
\(588\) 0 0
\(589\) 10.1278 + 10.1278i 0.417310 + 0.417310i
\(590\) 0 0
\(591\) −29.8554 −1.22809
\(592\) 0 0
\(593\) 24.4282i 1.00315i −0.865115 0.501573i \(-0.832755\pi\)
0.865115 0.501573i \(-0.167245\pi\)
\(594\) 0 0
\(595\) 6.96331 + 1.66150i 0.285468 + 0.0681150i
\(596\) 0 0
\(597\) 26.5875 26.5875i 1.08815 1.08815i
\(598\) 0 0
\(599\) −25.1701 −1.02842 −0.514211 0.857664i \(-0.671915\pi\)
−0.514211 + 0.857664i \(0.671915\pi\)
\(600\) 0 0
\(601\) −9.34866 −0.381340 −0.190670 0.981654i \(-0.561066\pi\)
−0.190670 + 0.981654i \(0.561066\pi\)
\(602\) 0 0
\(603\) 0.0913331 + 0.0913331i 0.00371937 + 0.00371937i
\(604\) 0 0
\(605\) −5.06049 + 5.06049i −0.205738 + 0.205738i
\(606\) 0 0
\(607\) 27.5600 1.11863 0.559314 0.828956i \(-0.311065\pi\)
0.559314 + 0.828956i \(0.311065\pi\)
\(608\) 0 0
\(609\) 24.6136 15.1303i 0.997392 0.613112i
\(610\) 0 0
\(611\) 9.29945 9.29945i 0.376215 0.376215i
\(612\) 0 0
\(613\) −6.51272 + 6.51272i −0.263046 + 0.263046i −0.826291 0.563244i \(-0.809553\pi\)
0.563244 + 0.826291i \(0.309553\pi\)
\(614\) 0 0
\(615\) 5.71967i 0.230639i
\(616\) 0 0
\(617\) 18.3569i 0.739023i 0.929226 + 0.369511i \(0.120475\pi\)
−0.929226 + 0.369511i \(0.879525\pi\)
\(618\) 0 0
\(619\) −12.2627 + 12.2627i −0.492878 + 0.492878i −0.909212 0.416334i \(-0.863315\pi\)
0.416334 + 0.909212i \(0.363315\pi\)
\(620\) 0 0
\(621\) 5.33401 5.33401i 0.214046 0.214046i
\(622\) 0 0
\(623\) −16.0960 26.1844i −0.644872 1.04906i
\(624\) 0 0
\(625\) 27.9768 1.11907
\(626\) 0 0
\(627\) 5.04754 5.04754i 0.201579 0.201579i
\(628\) 0 0
\(629\) 4.74970 + 4.74970i 0.189383 + 0.189383i
\(630\) 0 0
\(631\) 24.0987 0.959353 0.479676 0.877445i \(-0.340754\pi\)
0.479676 + 0.877445i \(0.340754\pi\)
\(632\) 0 0
\(633\) 31.9532 1.27002
\(634\) 0 0
\(635\) 4.85529 4.85529i 0.192676 0.192676i
\(636\) 0 0
\(637\) 14.8395 + 45.2427i 0.587962 + 1.79258i
\(638\) 0 0
\(639\) 11.1082i 0.439432i
\(640\) 0 0
\(641\) −33.0833 −1.30671 −0.653357 0.757050i \(-0.726640\pi\)
−0.653357 + 0.757050i \(0.726640\pi\)
\(642\) 0 0
\(643\) −4.99031 4.99031i −0.196798 0.196798i 0.601828 0.798626i \(-0.294439\pi\)
−0.798626 + 0.601828i \(0.794439\pi\)
\(644\) 0 0
\(645\) 4.67241 4.67241i 0.183976 0.183976i
\(646\) 0 0
\(647\) 16.2489i 0.638809i 0.947618 + 0.319405i \(0.103483\pi\)
−0.947618 + 0.319405i \(0.896517\pi\)
\(648\) 0 0
\(649\) 13.1618 0.516645
\(650\) 0 0
\(651\) −7.48782 + 31.3812i −0.293471 + 1.22993i
\(652\) 0 0
\(653\) −1.10728 1.10728i −0.0433312 0.0433312i 0.685109 0.728440i \(-0.259754\pi\)
−0.728440 + 0.685109i \(0.759754\pi\)
\(654\) 0 0
\(655\) 17.5746i 0.686698i
\(656\) 0 0
\(657\) 5.31748i 0.207455i
\(658\) 0 0
\(659\) −23.8965 + 23.8965i −0.930874 + 0.930874i −0.997761 0.0668864i \(-0.978693\pi\)
0.0668864 + 0.997761i \(0.478693\pi\)
\(660\) 0 0
\(661\) 17.0306 + 17.0306i 0.662414 + 0.662414i 0.955949 0.293534i \(-0.0948314\pi\)
−0.293534 + 0.955949i \(0.594831\pi\)
\(662\) 0 0
\(663\) 11.3090i 0.439206i
\(664\) 0 0
\(665\) 9.25760 5.69079i 0.358994 0.220679i
\(666\) 0 0
\(667\) 7.03893 + 7.03893i 0.272548 + 0.272548i
\(668\) 0 0
\(669\) 15.9632 + 15.9632i 0.617175 + 0.617175i
\(670\) 0 0
\(671\) −8.19501 −0.316365
\(672\) 0 0
\(673\) 2.21456 0.0853649 0.0426825 0.999089i \(-0.486410\pi\)
0.0426825 + 0.999089i \(0.486410\pi\)
\(674\) 0 0
\(675\) 2.75757 + 2.75757i 0.106139 + 0.106139i
\(676\) 0 0
\(677\) −10.3945 10.3945i −0.399493 0.399493i 0.478561 0.878054i \(-0.341158\pi\)
−0.878054 + 0.478561i \(0.841158\pi\)
\(678\) 0 0
\(679\) 7.28955 4.48100i 0.279747 0.171965i
\(680\) 0 0
\(681\) 15.7606i 0.603948i
\(682\) 0 0
\(683\) −17.8265 17.8265i −0.682113 0.682113i 0.278363 0.960476i \(-0.410208\pi\)
−0.960476 + 0.278363i \(0.910208\pi\)
\(684\) 0 0
\(685\) 26.7877 26.7877i 1.02351 1.02351i
\(686\) 0 0
\(687\) 36.5045i 1.39273i
\(688\) 0 0
\(689\) 61.0660i 2.32643i
\(690\) 0 0
\(691\) −28.7899 28.7899i −1.09522 1.09522i −0.994962 0.100257i \(-0.968034\pi\)
−0.100257 0.994962i \(-0.531966\pi\)
\(692\) 0 0
\(693\) −6.19703 1.47866i −0.235406 0.0561698i
\(694\) 0 0
\(695\) 39.7273 1.50694
\(696\) 0 0
\(697\) 1.85527i 0.0702734i
\(698\) 0 0
\(699\) 6.97187 6.97187i 0.263700 0.263700i
\(700\) 0 0
\(701\) −8.26141 8.26141i −0.312029 0.312029i 0.533666 0.845695i \(-0.320814\pi\)
−0.845695 + 0.533666i \(0.820814\pi\)
\(702\) 0 0
\(703\) 10.1963 0.384562
\(704\) 0 0
\(705\) 6.76085i 0.254628i
\(706\) 0 0
\(707\) 5.16184 21.6331i 0.194131 0.813597i
\(708\) 0 0
\(709\) −26.9918 + 26.9918i −1.01370 + 1.01370i −0.0137939 + 0.999905i \(0.504391\pi\)
−0.999905 + 0.0137939i \(0.995609\pi\)
\(710\) 0 0
\(711\) −3.84120 −0.144056
\(712\) 0 0
\(713\) −11.1157 −0.416286
\(714\) 0 0
\(715\) −32.4530 32.4530i −1.21367 1.21367i
\(716\) 0 0
\(717\) −9.88145 + 9.88145i −0.369030 + 0.369030i
\(718\) 0 0
\(719\) 6.92495 0.258257 0.129129 0.991628i \(-0.458782\pi\)
0.129129 + 0.991628i \(0.458782\pi\)
\(720\) 0 0
\(721\) 16.7790 10.3143i 0.624882 0.384125i
\(722\) 0 0
\(723\) 22.1563 22.1563i 0.824001 0.824001i
\(724\) 0 0
\(725\) −3.63897 + 3.63897i −0.135148 + 0.135148i
\(726\) 0 0
\(727\) 39.9958i 1.48336i 0.670752 + 0.741681i \(0.265971\pi\)
−0.670752 + 0.741681i \(0.734029\pi\)
\(728\) 0 0
\(729\) 29.6963i 1.09986i
\(730\) 0 0
\(731\) 1.51557 1.51557i 0.0560556 0.0560556i
\(732\) 0 0
\(733\) 10.2496 10.2496i 0.378579 0.378579i −0.492010 0.870589i \(-0.663738\pi\)
0.870589 + 0.492010i \(0.163738\pi\)
\(734\) 0 0
\(735\) 21.8404 + 11.0518i 0.805595 + 0.407652i
\(736\) 0 0
\(737\) −0.429116 −0.0158067
\(738\) 0 0
\(739\) 0.573743 0.573743i 0.0211055 0.0211055i −0.696475 0.717581i \(-0.745249\pi\)
0.717581 + 0.696475i \(0.245249\pi\)
\(740\) 0 0
\(741\) −12.1387 12.1387i −0.445927 0.445927i
\(742\) 0 0
\(743\) −25.9627 −0.952477 −0.476239 0.879316i \(-0.658000\pi\)
−0.476239 + 0.879316i \(0.658000\pi\)
\(744\) 0 0
\(745\) 26.0639 0.954907
\(746\) 0 0
\(747\) 8.27290 8.27290i 0.302690 0.302690i
\(748\) 0 0
\(749\) 2.46019 10.3106i 0.0898935 0.376741i
\(750\) 0 0
\(751\) 13.9799i 0.510133i −0.966924 0.255067i \(-0.917903\pi\)
0.966924 0.255067i \(-0.0820974\pi\)
\(752\) 0 0
\(753\) 8.23569 0.300125
\(754\) 0 0
\(755\) −34.6548 34.6548i −1.26122 1.26122i
\(756\) 0 0
\(757\) 31.6014 31.6014i 1.14857 1.14857i 0.161737 0.986834i \(-0.448290\pi\)
0.986834 0.161737i \(-0.0517096\pi\)
\(758\) 0 0
\(759\) 5.53987i 0.201085i
\(760\) 0 0
\(761\) −35.0216 −1.26953 −0.634765 0.772705i \(-0.718903\pi\)
−0.634765 + 0.772705i \(0.718903\pi\)
\(762\) 0 0
\(763\) 4.78943 20.0723i 0.173389 0.726667i
\(764\) 0 0
\(765\) 1.62888 + 1.62888i 0.0588923 + 0.0588923i
\(766\) 0 0
\(767\) 31.6525i 1.14290i
\(768\) 0 0
\(769\) 10.9708i 0.395618i −0.980241 0.197809i \(-0.936617\pi\)
0.980241 0.197809i \(-0.0633826\pi\)
\(770\) 0 0
\(771\) −7.16830 + 7.16830i −0.258160 + 0.258160i
\(772\) 0 0
\(773\) 7.67303 + 7.67303i 0.275980 + 0.275980i 0.831502 0.555522i \(-0.187482\pi\)
−0.555522 + 0.831502i \(0.687482\pi\)
\(774\) 0 0
\(775\) 5.74656i 0.206423i
\(776\) 0 0
\(777\) 12.0275 + 19.5660i 0.431485 + 0.701927i
\(778\) 0 0
\(779\) 1.99139 + 1.99139i 0.0713488 + 0.0713488i
\(780\) 0 0
\(781\) −26.0951 26.0951i −0.933755 0.933755i
\(782\) 0 0
\(783\) 42.0576 1.50302
\(784\) 0 0
\(785\) 10.3632 0.369878
\(786\) 0 0
\(787\) 18.2461 + 18.2461i 0.650404 + 0.650404i 0.953090 0.302686i \(-0.0978833\pi\)
−0.302686 + 0.953090i \(0.597883\pi\)
\(788\) 0 0
\(789\) 18.4295 + 18.4295i 0.656106 + 0.656106i
\(790\) 0 0
\(791\) −18.7288 30.4674i −0.665918 1.08329i
\(792\) 0 0
\(793\) 19.7080i 0.699852i
\(794\) 0 0
\(795\) −22.1980 22.1980i −0.787283 0.787283i
\(796\) 0 0
\(797\) −22.4616 + 22.4616i −0.795630 + 0.795630i −0.982403 0.186773i \(-0.940197\pi\)
0.186773 + 0.982403i \(0.440197\pi\)
\(798\) 0 0
\(799\) 2.19300i 0.0775827i
\(800\) 0 0
\(801\) 9.89038i 0.349459i
\(802\) 0 0
\(803\) −12.4917 12.4917i −0.440823 0.440823i
\(804\) 0 0
\(805\) −1.95736 + 8.20322i −0.0689877 + 0.289125i
\(806\) 0 0
\(807\) 20.6271 0.726110
\(808\) 0 0
\(809\) 24.7622i 0.870592i −0.900287 0.435296i \(-0.856644\pi\)
0.900287 0.435296i \(-0.143356\pi\)
\(810\) 0 0
\(811\) 5.40486 5.40486i 0.189790 0.189790i −0.605815 0.795605i \(-0.707153\pi\)
0.795605 + 0.605815i \(0.207153\pi\)
\(812\) 0 0
\(813\) −20.3163 20.3163i −0.712523 0.712523i
\(814\) 0 0
\(815\) 10.8933 0.381575
\(816\) 0 0
\(817\) 3.25354i 0.113827i
\(818\) 0 0
\(819\) −3.55601 + 14.9031i −0.124257 + 0.520757i
\(820\) 0 0
\(821\) −0.191577 + 0.191577i −0.00668610 + 0.00668610i −0.710442 0.703756i \(-0.751505\pi\)
0.703756 + 0.710442i \(0.251505\pi\)
\(822\) 0 0
\(823\) −43.4293 −1.51385 −0.756925 0.653501i \(-0.773299\pi\)
−0.756925 + 0.653501i \(0.773299\pi\)
\(824\) 0 0
\(825\) −2.86399 −0.0997114
\(826\) 0 0
\(827\) 38.0398 + 38.0398i 1.32277 + 1.32277i 0.911522 + 0.411252i \(0.134909\pi\)
0.411252 + 0.911522i \(0.365091\pi\)
\(828\) 0 0
\(829\) −2.08602 + 2.08602i −0.0724505 + 0.0724505i −0.742403 0.669953i \(-0.766314\pi\)
0.669953 + 0.742403i \(0.266314\pi\)
\(830\) 0 0
\(831\) 28.2817 0.981083
\(832\) 0 0
\(833\) 7.08430 + 3.58484i 0.245456 + 0.124207i
\(834\) 0 0
\(835\) 10.2059 10.2059i 0.353191 0.353191i
\(836\) 0 0
\(837\) −33.2081 + 33.2081i −1.14784 + 1.14784i
\(838\) 0 0
\(839\) 37.7564i 1.30350i −0.758436 0.651748i \(-0.774036\pi\)
0.758436 0.651748i \(-0.225964\pi\)
\(840\) 0 0
\(841\) 26.5005i 0.913811i
\(842\) 0 0
\(843\) −7.42857 + 7.42857i −0.255854 + 0.255854i
\(844\) 0 0
\(845\) −56.1167 + 56.1167i −1.93047 + 1.93047i
\(846\) 0 0
\(847\) −6.76185 + 4.15661i −0.232340 + 0.142823i
\(848\) 0 0
\(849\) −24.0960 −0.826974
\(850\) 0 0
\(851\) −5.59544 + 5.59544i −0.191809 + 0.191809i
\(852\) 0 0
\(853\) 37.7120 + 37.7120i 1.29124 + 1.29124i 0.934023 + 0.357212i \(0.116273\pi\)
0.357212 + 0.934023i \(0.383727\pi\)
\(854\) 0 0
\(855\) 3.49678 0.119587
\(856\) 0 0
\(857\) −15.3930 −0.525814 −0.262907 0.964821i \(-0.584681\pi\)
−0.262907 + 0.964821i \(0.584681\pi\)
\(858\) 0 0
\(859\) −34.6738 + 34.6738i −1.18306 + 1.18306i −0.204106 + 0.978949i \(0.565429\pi\)
−0.978949 + 0.204106i \(0.934571\pi\)
\(860\) 0 0
\(861\) −1.47230 + 6.17035i −0.0501757 + 0.210285i
\(862\) 0 0
\(863\) 45.6641i 1.55443i 0.629238 + 0.777213i \(0.283367\pi\)
−0.629238 + 0.777213i \(0.716633\pi\)
\(864\) 0 0
\(865\) 15.0055 0.510202
\(866\) 0 0
\(867\) 16.2869 + 16.2869i 0.553134 + 0.553134i
\(868\) 0 0
\(869\) 9.02367 9.02367i 0.306107 0.306107i
\(870\) 0 0
\(871\) 1.03197i 0.0349670i
\(872\) 0 0
\(873\) 2.75341 0.0931887
\(874\) 0 0
\(875\) 26.4551 + 6.31240i 0.894345 + 0.213398i
\(876\) 0 0
\(877\) −37.0077 37.0077i −1.24966 1.24966i −0.955870 0.293790i \(-0.905083\pi\)
−0.293790 0.955870i \(-0.594917\pi\)
\(878\) 0 0
\(879\) 0.224984i 0.00758854i
\(880\) 0 0
\(881\) 17.8630i 0.601820i 0.953653 + 0.300910i \(0.0972903\pi\)
−0.953653 + 0.300910i \(0.902710\pi\)
\(882\) 0 0
\(883\) 24.7949 24.7949i 0.834416 0.834416i −0.153701 0.988117i \(-0.549119\pi\)
0.988117 + 0.153701i \(0.0491193\pi\)
\(884\) 0 0
\(885\) −11.5059 11.5059i −0.386768 0.386768i
\(886\) 0 0
\(887\) 50.7922i 1.70543i 0.522373 + 0.852717i \(0.325047\pi\)
−0.522373 + 0.852717i \(0.674953\pi\)
\(888\) 0 0
\(889\) 6.48766 3.98807i 0.217589 0.133755i
\(890\) 0 0
\(891\) 11.4422 + 11.4422i 0.383328 + 0.383328i
\(892\) 0 0
\(893\) −2.35389 2.35389i −0.0787700 0.0787700i
\(894\) 0 0
\(895\) −31.5777 −1.05553
\(896\) 0 0
\(897\) 13.3227 0.444833
\(898\) 0 0
\(899\) −43.8225 43.8225i −1.46156 1.46156i
\(900\) 0 0
\(901\) −7.20031 7.20031i −0.239877 0.239877i
\(902\) 0 0
\(903\) 6.24329 3.83785i 0.207764 0.127716i
\(904\) 0 0
\(905\) 0.643249i 0.0213823i
\(906\) 0 0
\(907\) 34.2341 + 34.2341i 1.13673 + 1.13673i 0.989033 + 0.147693i \(0.0471847\pi\)
0.147693 + 0.989033i \(0.452815\pi\)
\(908\) 0 0
\(909\) 5.06049 5.06049i 0.167846 0.167846i
\(910\) 0 0
\(911\) 7.50342i 0.248599i 0.992245 + 0.124300i \(0.0396684\pi\)
−0.992245 + 0.124300i \(0.960332\pi\)
\(912\) 0 0
\(913\) 38.8691i 1.28638i
\(914\) 0 0
\(915\) 7.16403 + 7.16403i 0.236836 + 0.236836i
\(916\) 0 0
\(917\) −4.52388 + 18.9594i −0.149392 + 0.626095i
\(918\) 0 0
\(919\) 29.0806 0.959281 0.479640 0.877465i \(-0.340767\pi\)
0.479640 + 0.877465i \(0.340767\pi\)
\(920\) 0 0
\(921\) 2.55389i 0.0841535i
\(922\) 0 0
\(923\) −62.7555 + 62.7555i −2.06562 + 2.06562i
\(924\) 0 0
\(925\) −2.89272 2.89272i −0.0951121 0.0951121i
\(926\) 0 0
\(927\) 6.33776 0.208159
\(928\) 0 0
\(929\) 25.2998i 0.830059i 0.909808 + 0.415029i \(0.136229\pi\)
−0.909808 + 0.415029i \(0.863771\pi\)
\(930\) 0 0
\(931\) 11.4519 3.75620i 0.375321 0.123104i
\(932\) 0 0
\(933\) −15.5881 + 15.5881i −0.510332 + 0.510332i
\(934\) 0 0
\(935\) −7.65307 −0.250282
\(936\) 0 0
\(937\) 17.3615 0.567177 0.283588 0.958946i \(-0.408475\pi\)
0.283588 + 0.958946i \(0.408475\pi\)
\(938\) 0 0
\(939\) −34.8734 34.8734i −1.13805 1.13805i
\(940\) 0 0
\(941\) −10.8511 + 10.8511i −0.353735 + 0.353735i −0.861497 0.507762i \(-0.830473\pi\)
0.507762 + 0.861497i \(0.330473\pi\)
\(942\) 0 0
\(943\) −2.18562 −0.0711737
\(944\) 0 0
\(945\) 18.6595 + 30.3547i 0.606994 + 0.987439i
\(946\) 0 0
\(947\) 26.4451 26.4451i 0.859349 0.859349i −0.131912 0.991261i \(-0.542112\pi\)
0.991261 + 0.131912i \(0.0421117\pi\)
\(948\) 0 0
\(949\) −30.0411 + 30.0411i −0.975175 + 0.975175i
\(950\) 0 0
\(951\) 8.39738i 0.272304i
\(952\) 0 0
\(953\) 37.5483i 1.21631i 0.793819 + 0.608154i \(0.208090\pi\)
−0.793819 + 0.608154i \(0.791910\pi\)
\(954\) 0 0
\(955\) 6.58089 6.58089i 0.212952 0.212952i
\(956\) 0 0
\(957\) −21.8404 + 21.8404i −0.705999 + 0.705999i
\(958\) 0 0
\(959\) 35.7939 22.0031i 1.15584 0.710516i
\(960\) 0 0
\(961\) 38.2032 1.23236
\(962\) 0 0
\(963\) 2.41189 2.41189i 0.0777221 0.0777221i
\(964\) 0 0
\(965\) −16.6578 16.6578i −0.536234 0.536234i
\(966\) 0 0
\(967\) −37.9785 −1.22131 −0.610653 0.791898i \(-0.709093\pi\)
−0.610653 + 0.791898i \(0.709093\pi\)
\(968\) 0 0
\(969\) −2.86256 −0.0919586
\(970\) 0 0
\(971\) −6.43134 + 6.43134i −0.206392 + 0.206392i −0.802732 0.596340i \(-0.796621\pi\)
0.596340 + 0.802732i \(0.296621\pi\)
\(972\) 0 0
\(973\) 42.8576 + 10.2262i 1.37395 + 0.327836i
\(974\) 0 0
\(975\) 6.88756i 0.220578i
\(976\) 0 0
\(977\) −3.72659 −0.119224 −0.0596121 0.998222i \(-0.518986\pi\)
−0.0596121 + 0.998222i \(0.518986\pi\)
\(978\) 0 0
\(979\) 23.2343 + 23.2343i 0.742571 + 0.742571i
\(980\) 0 0
\(981\) 4.69539 4.69539i 0.149912 0.149912i
\(982\) 0 0
\(983\) 17.5847i 0.560863i −0.959874 0.280432i \(-0.909522\pi\)
0.959874 0.280432i \(-0.0904776\pi\)
\(984\) 0 0
\(985\) 48.5879 1.54814
\(986\) 0 0
\(987\) 1.74031 7.29357i 0.0553946 0.232157i
\(988\) 0 0
\(989\) 1.78544 + 1.78544i 0.0567738 + 0.0567738i
\(990\) 0 0
\(991\) 44.7264i 1.42078i 0.703808 + 0.710390i \(0.251482\pi\)
−0.703808 + 0.710390i \(0.748518\pi\)
\(992\) 0 0
\(993\) 23.6281i 0.749816i
\(994\) 0 0
\(995\) −43.2694 + 43.2694i −1.37173 + 1.37173i
\(996\) 0 0
\(997\) 0.273521 + 0.273521i 0.00866251 + 0.00866251i 0.711425 0.702762i \(-0.248050\pi\)
−0.702762 + 0.711425i \(0.748050\pi\)
\(998\) 0 0
\(999\) 33.4328i 1.05777i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.j.d.111.5 16
4.3 odd 2 112.2.j.d.83.5 yes 16
7.6 odd 2 inner 448.2.j.d.111.4 16
8.3 odd 2 896.2.j.h.223.5 16
8.5 even 2 896.2.j.g.223.4 16
16.3 odd 4 896.2.j.g.671.5 16
16.5 even 4 112.2.j.d.27.6 yes 16
16.11 odd 4 inner 448.2.j.d.335.4 16
16.13 even 4 896.2.j.h.671.4 16
28.3 even 6 784.2.w.e.19.8 32
28.11 odd 6 784.2.w.e.19.7 32
28.19 even 6 784.2.w.e.227.1 32
28.23 odd 6 784.2.w.e.227.2 32
28.27 even 2 112.2.j.d.83.6 yes 16
56.13 odd 2 896.2.j.g.223.5 16
56.27 even 2 896.2.j.h.223.4 16
112.5 odd 12 784.2.w.e.619.7 32
112.13 odd 4 896.2.j.h.671.5 16
112.27 even 4 inner 448.2.j.d.335.5 16
112.37 even 12 784.2.w.e.619.8 32
112.53 even 12 784.2.w.e.411.1 32
112.69 odd 4 112.2.j.d.27.5 16
112.83 even 4 896.2.j.g.671.4 16
112.101 odd 12 784.2.w.e.411.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.j.d.27.5 16 112.69 odd 4
112.2.j.d.27.6 yes 16 16.5 even 4
112.2.j.d.83.5 yes 16 4.3 odd 2
112.2.j.d.83.6 yes 16 28.27 even 2
448.2.j.d.111.4 16 7.6 odd 2 inner
448.2.j.d.111.5 16 1.1 even 1 trivial
448.2.j.d.335.4 16 16.11 odd 4 inner
448.2.j.d.335.5 16 112.27 even 4 inner
784.2.w.e.19.7 32 28.11 odd 6
784.2.w.e.19.8 32 28.3 even 6
784.2.w.e.227.1 32 28.19 even 6
784.2.w.e.227.2 32 28.23 odd 6
784.2.w.e.411.1 32 112.53 even 12
784.2.w.e.411.2 32 112.101 odd 12
784.2.w.e.619.7 32 112.5 odd 12
784.2.w.e.619.8 32 112.37 even 12
896.2.j.g.223.4 16 8.5 even 2
896.2.j.g.223.5 16 56.13 odd 2
896.2.j.g.671.4 16 112.83 even 4
896.2.j.g.671.5 16 16.3 odd 4
896.2.j.h.223.4 16 56.27 even 2
896.2.j.h.223.5 16 8.3 odd 2
896.2.j.h.671.4 16 16.13 even 4
896.2.j.h.671.5 16 112.13 odd 4