Properties

Label 112.2.j.d.27.5
Level $112$
Weight $2$
Character 112.27
Analytic conductor $0.894$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,2,Mod(27,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.27"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 112.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.894324502638\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 6x^{12} - 12x^{10} + 33x^{8} - 48x^{6} + 96x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 27.5
Root \(-1.36166 - 0.381939i\) of defining polynomial
Character \(\chi\) \(=\) 112.27
Dual form 112.2.j.d.83.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.192769 + 1.40101i) q^{2} +(-1.03649 + 1.03649i) q^{3} +(-1.92568 + 0.540143i) q^{4} +(-1.68683 + 1.68683i) q^{5} +(-1.65195 - 1.25234i) q^{6} +(1.38554 - 2.25395i) q^{7} +(-1.12796 - 2.59378i) q^{8} +0.851361i q^{9} +(-2.68844 - 2.03810i) q^{10} +(-2.00000 + 2.00000i) q^{11} +(1.43610 - 2.55581i) q^{12} +(4.80976 + 4.80976i) q^{13} +(3.42490 + 1.50667i) q^{14} -3.49678i q^{15} +(3.41649 - 2.08029i) q^{16} +1.13424i q^{17} +(-1.19277 + 0.164116i) q^{18} +(1.21746 - 1.21746i) q^{19} +(2.33717 - 4.15942i) q^{20} +(0.900103 + 3.77231i) q^{21} +(-3.18757 - 2.41649i) q^{22} -1.33620 q^{23} +(3.85756 + 1.51932i) q^{24} -0.690788i q^{25} +(-5.81137 + 7.66571i) q^{26} +(-3.99191 - 3.99191i) q^{27} +(-1.45065 + 5.08877i) q^{28} +(5.26785 - 5.26785i) q^{29} +(4.89903 - 0.674069i) q^{30} +8.31885 q^{31} +(3.57310 + 4.38554i) q^{32} -4.14598i q^{33} +(-1.58908 + 0.218646i) q^{34} +(1.46486 + 6.13919i) q^{35} +(-0.459857 - 1.63945i) q^{36} +(-4.18757 - 4.18757i) q^{37} +(1.94036 + 1.47098i) q^{38} -9.97057 q^{39} +(6.27794 + 2.47259i) q^{40} -1.63570 q^{41} +(-5.11154 + 1.98824i) q^{42} +(-1.33620 + 1.33620i) q^{43} +(2.77107 - 4.93165i) q^{44} +(-1.43610 - 1.43610i) q^{45} +(-0.257578 - 1.87204i) q^{46} -1.93345 q^{47} +(-1.38497 + 5.69738i) q^{48} +(-3.16057 - 6.24586i) q^{49} +(0.967804 - 0.133162i) q^{50} +(-1.17563 - 1.17563i) q^{51} +(-11.8600 - 6.66410i) q^{52} +(6.34814 + 6.34814i) q^{53} +(4.82321 - 6.36224i) q^{54} -6.74732i q^{55} +(-7.40908 - 1.05142i) q^{56} +2.52377i q^{57} +(8.39581 + 6.36486i) q^{58} +(-3.29044 - 3.29044i) q^{59} +(1.88876 + 6.73368i) q^{60} +(-2.04875 - 2.04875i) q^{61} +(1.60361 + 11.6548i) q^{62} +(1.91892 + 1.17959i) q^{63} +(-5.45542 + 5.85136i) q^{64} -16.2265 q^{65} +(5.80857 - 0.799214i) q^{66} +(0.107279 + 0.107279i) q^{67} +(-0.612651 - 2.18418i) q^{68} +(1.38497 - 1.38497i) q^{69} +(-8.31872 + 3.23574i) q^{70} +13.0475 q^{71} +(2.20825 - 0.960300i) q^{72} -6.24586 q^{73} +(5.05961 - 6.67407i) q^{74} +(0.715998 + 0.715998i) q^{75} +(-1.68683 + 3.00203i) q^{76} +(1.73682 + 7.27897i) q^{77} +(-1.92201 - 13.9689i) q^{78} -4.51184i q^{79} +(-2.25395 + 9.27213i) q^{80} +5.72110 q^{81} +(-0.315311 - 2.29163i) q^{82} +(-9.71727 + 9.71727i) q^{83} +(-3.77090 - 6.77807i) q^{84} +(-1.91327 - 1.91327i) q^{85} +(-2.12962 - 1.61446i) q^{86} +10.9202i q^{87} +(7.44348 + 2.93165i) q^{88} +11.6171 q^{89} +(1.73516 - 2.28883i) q^{90} +(17.5051 - 4.17685i) q^{91} +(2.57310 - 0.721742i) q^{92} +(-8.62244 + 8.62244i) q^{93} +(-0.372709 - 2.70879i) q^{94} +4.10728i q^{95} +(-8.24908 - 0.842084i) q^{96} -3.23412i q^{97} +(8.14128 - 5.63201i) q^{98} +(-1.70272 - 1.70272i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 8 q^{4} + 8 q^{7} - 16 q^{8} - 32 q^{11} + 20 q^{14} + 16 q^{16} - 12 q^{18} + 16 q^{21} + 16 q^{22} - 32 q^{28} + 48 q^{30} - 24 q^{32} + 8 q^{35} - 16 q^{36} + 16 q^{39} - 40 q^{42} + 16 q^{44}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.192769 + 1.40101i 0.136308 + 0.990667i
\(3\) −1.03649 + 1.03649i −0.598420 + 0.598420i −0.939892 0.341472i \(-0.889075\pi\)
0.341472 + 0.939892i \(0.389075\pi\)
\(4\) −1.92568 + 0.540143i −0.962840 + 0.270072i
\(5\) −1.68683 + 1.68683i −0.754373 + 0.754373i −0.975292 0.220919i \(-0.929094\pi\)
0.220919 + 0.975292i \(0.429094\pi\)
\(6\) −1.65195 1.25234i −0.674404 0.511265i
\(7\) 1.38554 2.25395i 0.523684 0.851913i
\(8\) −1.12796 2.59378i −0.398794 0.917041i
\(9\) 0.851361i 0.283787i
\(10\) −2.68844 2.03810i −0.850159 0.644505i
\(11\) −2.00000 + 2.00000i −0.603023 + 0.603023i −0.941113 0.338091i \(-0.890219\pi\)
0.338091 + 0.941113i \(0.390219\pi\)
\(12\) 1.43610 2.55581i 0.414567 0.737799i
\(13\) 4.80976 + 4.80976i 1.33399 + 1.33399i 0.901769 + 0.432219i \(0.142269\pi\)
0.432219 + 0.901769i \(0.357731\pi\)
\(14\) 3.42490 + 1.50667i 0.915344 + 0.402674i
\(15\) 3.49678i 0.902864i
\(16\) 3.41649 2.08029i 0.854123 0.520072i
\(17\) 1.13424i 0.275093i 0.990495 + 0.137547i \(0.0439217\pi\)
−0.990495 + 0.137547i \(0.956078\pi\)
\(18\) −1.19277 + 0.164116i −0.281138 + 0.0386824i
\(19\) 1.21746 1.21746i 0.279303 0.279303i −0.553528 0.832831i \(-0.686719\pi\)
0.832831 + 0.553528i \(0.186719\pi\)
\(20\) 2.33717 4.15942i 0.522606 0.930076i
\(21\) 0.900103 + 3.77231i 0.196419 + 0.823184i
\(22\) −3.18757 2.41649i −0.679591 0.515198i
\(23\) −1.33620 −0.278618 −0.139309 0.990249i \(-0.544488\pi\)
−0.139309 + 0.990249i \(0.544488\pi\)
\(24\) 3.85756 + 1.51932i 0.787422 + 0.310129i
\(25\) 0.690788i 0.138158i
\(26\) −5.81137 + 7.66571i −1.13970 + 1.50337i
\(27\) −3.99191 3.99191i −0.768244 0.768244i
\(28\) −1.45065 + 5.08877i −0.274147 + 0.961688i
\(29\) 5.26785 5.26785i 0.978215 0.978215i −0.0215522 0.999768i \(-0.506861\pi\)
0.999768 + 0.0215522i \(0.00686082\pi\)
\(30\) 4.89903 0.674069i 0.894437 0.123068i
\(31\) 8.31885 1.49411 0.747055 0.664763i \(-0.231467\pi\)
0.747055 + 0.664763i \(0.231467\pi\)
\(32\) 3.57310 + 4.38554i 0.631641 + 0.775261i
\(33\) 4.14598i 0.721722i
\(34\) −1.58908 + 0.218646i −0.272526 + 0.0374974i
\(35\) 1.46486 + 6.13919i 0.247607 + 1.03771i
\(36\) −0.459857 1.63945i −0.0766428 0.273242i
\(37\) −4.18757 4.18757i −0.688431 0.688431i 0.273454 0.961885i \(-0.411834\pi\)
−0.961885 + 0.273454i \(0.911834\pi\)
\(38\) 1.94036 + 1.47098i 0.314768 + 0.238625i
\(39\) −9.97057 −1.59657
\(40\) 6.27794 + 2.47259i 0.992630 + 0.390952i
\(41\) −1.63570 −0.255453 −0.127726 0.991809i \(-0.540768\pi\)
−0.127726 + 0.991809i \(0.540768\pi\)
\(42\) −5.11154 + 1.98824i −0.788728 + 0.306792i
\(43\) −1.33620 + 1.33620i −0.203769 + 0.203769i −0.801613 0.597844i \(-0.796024\pi\)
0.597844 + 0.801613i \(0.296024\pi\)
\(44\) 2.77107 4.93165i 0.417755 0.743474i
\(45\) −1.43610 1.43610i −0.214081 0.214081i
\(46\) −0.257578 1.87204i −0.0379779 0.276017i
\(47\) −1.93345 −0.282023 −0.141012 0.990008i \(-0.545035\pi\)
−0.141012 + 0.990008i \(0.545035\pi\)
\(48\) −1.38497 + 5.69738i −0.199903 + 0.822345i
\(49\) −3.16057 6.24586i −0.451510 0.892266i
\(50\) 0.967804 0.133162i 0.136868 0.0188320i
\(51\) −1.17563 1.17563i −0.164621 0.164621i
\(52\) −11.8600 6.66410i −1.64469 0.924145i
\(53\) 6.34814 + 6.34814i 0.871984 + 0.871984i 0.992688 0.120705i \(-0.0385154\pi\)
−0.120705 + 0.992688i \(0.538515\pi\)
\(54\) 4.82321 6.36224i 0.656356 0.865791i
\(55\) 6.74732i 0.909808i
\(56\) −7.40908 1.05142i −0.990080 0.140502i
\(57\) 2.52377i 0.334281i
\(58\) 8.39581 + 6.36486i 1.10242 + 0.835747i
\(59\) −3.29044 3.29044i −0.428379 0.428379i 0.459697 0.888076i \(-0.347958\pi\)
−0.888076 + 0.459697i \(0.847958\pi\)
\(60\) 1.88876 + 6.73368i 0.243838 + 0.869314i
\(61\) −2.04875 2.04875i −0.262316 0.262316i 0.563678 0.825994i \(-0.309386\pi\)
−0.825994 + 0.563678i \(0.809386\pi\)
\(62\) 1.60361 + 11.6548i 0.203659 + 1.48016i
\(63\) 1.91892 + 1.17959i 0.241762 + 0.148615i
\(64\) −5.45542 + 5.85136i −0.681927 + 0.731420i
\(65\) −16.2265 −2.01265
\(66\) 5.80857 0.799214i 0.714985 0.0983765i
\(67\) 0.107279 + 0.107279i 0.0131062 + 0.0131062i 0.713630 0.700523i \(-0.247050\pi\)
−0.700523 + 0.713630i \(0.747050\pi\)
\(68\) −0.612651 2.18418i −0.0742949 0.264871i
\(69\) 1.38497 1.38497i 0.166731 0.166731i
\(70\) −8.31872 + 3.23574i −0.994277 + 0.386745i
\(71\) 13.0475 1.54846 0.774229 0.632906i \(-0.218138\pi\)
0.774229 + 0.632906i \(0.218138\pi\)
\(72\) 2.20825 0.960300i 0.260244 0.113172i
\(73\) −6.24586 −0.731023 −0.365511 0.930807i \(-0.619106\pi\)
−0.365511 + 0.930807i \(0.619106\pi\)
\(74\) 5.05961 6.67407i 0.588167 0.775845i
\(75\) 0.715998 + 0.715998i 0.0826763 + 0.0826763i
\(76\) −1.68683 + 3.00203i −0.193493 + 0.344356i
\(77\) 1.73682 + 7.27897i 0.197929 + 0.829516i
\(78\) −1.92201 13.9689i −0.217625 1.58167i
\(79\) 4.51184i 0.507621i −0.967254 0.253811i \(-0.918316\pi\)
0.967254 0.253811i \(-0.0816840\pi\)
\(80\) −2.25395 + 9.27213i −0.251999 + 1.03666i
\(81\) 5.72110 0.635678
\(82\) −0.315311 2.29163i −0.0348203 0.253069i
\(83\) −9.71727 + 9.71727i −1.06661 + 1.06661i −0.0689912 + 0.997617i \(0.521978\pi\)
−0.997617 + 0.0689912i \(0.978022\pi\)
\(84\) −3.77090 6.77807i −0.411439 0.739548i
\(85\) −1.91327 1.91327i −0.207523 0.207523i
\(86\) −2.12962 1.61446i −0.229643 0.174092i
\(87\) 10.9202i 1.17077i
\(88\) 7.44348 + 2.93165i 0.793478 + 0.312515i
\(89\) 11.6171 1.23141 0.615707 0.787975i \(-0.288870\pi\)
0.615707 + 0.787975i \(0.288870\pi\)
\(90\) 1.73516 2.28883i 0.182902 0.241264i
\(91\) 17.5051 4.17685i 1.83503 0.437853i
\(92\) 2.57310 0.721742i 0.268264 0.0752468i
\(93\) −8.62244 + 8.62244i −0.894105 + 0.894105i
\(94\) −0.372709 2.70879i −0.0384420 0.279391i
\(95\) 4.10728i 0.421398i
\(96\) −8.24908 0.842084i −0.841918 0.0859448i
\(97\) 3.23412i 0.328376i −0.986429 0.164188i \(-0.947500\pi\)
0.986429 0.164188i \(-0.0525003\pi\)
\(98\) 8.14128 5.63201i 0.822393 0.568919i
\(99\) −1.70272 1.70272i −0.171130 0.171130i
\(100\) 0.373125 + 1.33024i 0.0373125 + 0.133024i
\(101\) 5.94400 5.94400i 0.591450 0.591450i −0.346573 0.938023i \(-0.612655\pi\)
0.938023 + 0.346573i \(0.112655\pi\)
\(102\) 1.42045 1.87370i 0.140646 0.185524i
\(103\) 7.44427i 0.733505i 0.930318 + 0.366753i \(0.119530\pi\)
−0.930318 + 0.366753i \(0.880470\pi\)
\(104\) 7.05026 17.9007i 0.691335 1.75531i
\(105\) −7.88156 4.84492i −0.769161 0.472815i
\(106\) −7.67011 + 10.1176i −0.744987 + 0.982704i
\(107\) −2.83298 + 2.83298i −0.273875 + 0.273875i −0.830658 0.556783i \(-0.812035\pi\)
0.556783 + 0.830658i \(0.312035\pi\)
\(108\) 9.84335 + 5.53094i 0.947177 + 0.532215i
\(109\) 5.51516 5.51516i 0.528256 0.528256i −0.391796 0.920052i \(-0.628146\pi\)
0.920052 + 0.391796i \(0.128146\pi\)
\(110\) 9.45309 1.30067i 0.901317 0.124014i
\(111\) 8.68077 0.823942
\(112\) 0.0448159 10.5829i 0.00423470 0.999991i
\(113\) 13.5173 1.27160 0.635801 0.771853i \(-0.280670\pi\)
0.635801 + 0.771853i \(0.280670\pi\)
\(114\) −3.53584 + 0.486504i −0.331161 + 0.0455652i
\(115\) 2.25395 2.25395i 0.210182 0.210182i
\(116\) −7.29881 + 12.9896i −0.677677 + 1.20605i
\(117\) −4.09484 + 4.09484i −0.378568 + 0.378568i
\(118\) 3.97566 5.24425i 0.365989 0.482772i
\(119\) 2.55652 + 1.57153i 0.234355 + 0.144062i
\(120\) −9.06988 + 3.94422i −0.827963 + 0.360056i
\(121\) 3.00000i 0.272727i
\(122\) 2.47540 3.26527i 0.224112 0.295623i
\(123\) 1.69539 1.69539i 0.152868 0.152868i
\(124\) −16.0194 + 4.49337i −1.43859 + 0.403516i
\(125\) −7.26891 7.26891i −0.650151 0.650151i
\(126\) −1.28272 + 2.91583i −0.114274 + 0.259763i
\(127\) 2.87835i 0.255413i 0.991812 + 0.127706i \(0.0407615\pi\)
−0.991812 + 0.127706i \(0.959239\pi\)
\(128\) −9.24947 6.51516i −0.817546 0.575864i
\(129\) 2.76994i 0.243879i
\(130\) −3.12796 22.7335i −0.274340 1.99386i
\(131\) 5.20937 5.20937i 0.455145 0.455145i −0.441913 0.897058i \(-0.645700\pi\)
0.897058 + 0.441913i \(0.145700\pi\)
\(132\) 2.23942 + 7.98382i 0.194917 + 0.694903i
\(133\) −1.05725 4.43091i −0.0916754 0.384209i
\(134\) −0.129619 + 0.170979i −0.0111974 + 0.0147704i
\(135\) 13.4674 1.15908
\(136\) 2.94197 1.27937i 0.252272 0.109705i
\(137\) 15.8805i 1.35676i −0.734709 0.678382i \(-0.762681\pi\)
0.734709 0.678382i \(-0.237319\pi\)
\(138\) 2.20734 + 1.67338i 0.187901 + 0.142448i
\(139\) 11.7757 + 11.7757i 0.998804 + 0.998804i 0.999999 0.00119539i \(-0.000380504\pi\)
−0.00119539 + 0.999999i \(0.500381\pi\)
\(140\) −6.13690 11.0309i −0.518663 0.932280i
\(141\) 2.00401 2.00401i 0.168768 0.168768i
\(142\) 2.51516 + 18.2798i 0.211067 + 1.53401i
\(143\) −19.2390 −1.60885
\(144\) 1.77107 + 2.90867i 0.147590 + 0.242389i
\(145\) 17.7719i 1.47588i
\(146\) −1.20401 8.75054i −0.0996443 0.724200i
\(147\) 9.74971 + 3.19788i 0.804143 + 0.263757i
\(148\) 10.3258 + 5.80203i 0.848775 + 0.476924i
\(149\) −7.72570 7.72570i −0.632914 0.632914i 0.315884 0.948798i \(-0.397699\pi\)
−0.948798 + 0.315884i \(0.897699\pi\)
\(150\) −0.865101 + 1.14114i −0.0706352 + 0.0931741i
\(151\) −20.5443 −1.67187 −0.835936 0.548826i \(-0.815075\pi\)
−0.835936 + 0.548826i \(0.815075\pi\)
\(152\) −4.53105 1.78457i −0.367517 0.144748i
\(153\) −0.965647 −0.0780679
\(154\) −9.86314 + 3.83647i −0.794794 + 0.309152i
\(155\) −14.0325 + 14.0325i −1.12712 + 1.12712i
\(156\) 19.2001 5.38554i 1.53724 0.431188i
\(157\) −3.07180 3.07180i −0.245156 0.245156i 0.573823 0.818979i \(-0.305460\pi\)
−0.818979 + 0.573823i \(0.805460\pi\)
\(158\) 6.32115 0.869741i 0.502883 0.0691928i
\(159\) −13.1596 −1.04363
\(160\) −13.4249 1.37044i −1.06133 0.108343i
\(161\) −1.85136 + 3.01174i −0.145908 + 0.237358i
\(162\) 1.10285 + 8.01534i 0.0866480 + 0.629745i
\(163\) 3.22893 + 3.22893i 0.252909 + 0.252909i 0.822162 0.569253i \(-0.192768\pi\)
−0.569253 + 0.822162i \(0.692768\pi\)
\(164\) 3.14983 0.883510i 0.245960 0.0689906i
\(165\) 6.99355 + 6.99355i 0.544447 + 0.544447i
\(166\) −15.4872 11.7408i −1.20204 0.911266i
\(167\) 6.05037i 0.468192i 0.972214 + 0.234096i \(0.0752130\pi\)
−0.972214 + 0.234096i \(0.924787\pi\)
\(168\) 8.76926 6.58968i 0.676563 0.508405i
\(169\) 33.2676i 2.55905i
\(170\) 2.31170 3.04933i 0.177299 0.233873i
\(171\) 1.03649 + 1.03649i 0.0792627 + 0.0792627i
\(172\) 1.85136 3.29484i 0.141165 0.251230i
\(173\) −4.44784 4.44784i −0.338163 0.338163i 0.517513 0.855676i \(-0.326858\pi\)
−0.855676 + 0.517513i \(0.826858\pi\)
\(174\) −15.2993 + 2.10507i −1.15984 + 0.159585i
\(175\) −1.55700 0.957113i −0.117698 0.0723509i
\(176\) −2.67241 + 10.9936i −0.201440 + 0.828670i
\(177\) 6.82105 0.512701
\(178\) 2.23942 + 16.2758i 0.167852 + 1.21992i
\(179\) −9.36007 9.36007i −0.699605 0.699605i 0.264721 0.964325i \(-0.414720\pi\)
−0.964325 + 0.264721i \(0.914720\pi\)
\(180\) 3.54117 + 1.98977i 0.263943 + 0.148309i
\(181\) 0.190668 0.190668i 0.0141722 0.0141722i −0.699985 0.714157i \(-0.746810\pi\)
0.714157 + 0.699985i \(0.246810\pi\)
\(182\) 9.22625 + 23.7197i 0.683895 + 1.75822i
\(183\) 4.24704 0.313950
\(184\) 1.50718 + 3.46582i 0.111111 + 0.255504i
\(185\) 14.1274 1.03867
\(186\) −13.7423 10.4180i −1.00763 0.763886i
\(187\) −2.26848 2.26848i −0.165888 0.165888i
\(188\) 3.72321 1.04434i 0.271543 0.0761664i
\(189\) −14.5285 + 3.46662i −1.05679 + 0.252160i
\(190\) −5.75436 + 0.791755i −0.417465 + 0.0574399i
\(191\) 3.90133i 0.282291i 0.989989 + 0.141145i \(0.0450785\pi\)
−0.989989 + 0.141145i \(0.954922\pi\)
\(192\) −0.410393 11.7194i −0.0296176 0.845775i
\(193\) 9.87523 0.710834 0.355417 0.934708i \(-0.384339\pi\)
0.355417 + 0.934708i \(0.384339\pi\)
\(194\) 4.53105 0.623438i 0.325311 0.0447602i
\(195\) 16.8187 16.8187i 1.20441 1.20441i
\(196\) 9.45991 + 10.3204i 0.675708 + 0.737169i
\(197\) −14.4021 14.4021i −1.02611 1.02611i −0.999650 0.0264589i \(-0.991577\pi\)
−0.0264589 0.999650i \(-0.508423\pi\)
\(198\) 2.05731 2.71377i 0.146206 0.192859i
\(199\) 25.6513i 1.81837i −0.416387 0.909187i \(-0.636704\pi\)
0.416387 0.909187i \(-0.363296\pi\)
\(200\) −1.79175 + 0.779181i −0.126696 + 0.0550964i
\(201\) −0.222388 −0.0156860
\(202\) 9.47344 + 7.18181i 0.666549 + 0.505310i
\(203\) −4.57466 19.1723i −0.321078 1.34563i
\(204\) 2.89890 + 1.62888i 0.202964 + 0.114045i
\(205\) 2.75914 2.75914i 0.192707 0.192707i
\(206\) −10.4295 + 1.43502i −0.726659 + 0.0999827i
\(207\) 1.13759i 0.0790681i
\(208\) 26.4382 + 6.42682i 1.83316 + 0.445620i
\(209\) 4.86982i 0.336853i
\(210\) 5.26848 11.9761i 0.363559 0.826431i
\(211\) −15.4141 15.4141i −1.06115 1.06115i −0.998004 0.0631429i \(-0.979888\pi\)
−0.0631429 0.998004i \(-0.520112\pi\)
\(212\) −15.6534 8.79558i −1.07508 0.604083i
\(213\) −13.5237 + 13.5237i −0.926628 + 0.926628i
\(214\) −4.51516 3.42294i −0.308650 0.233987i
\(215\) 4.50790i 0.307436i
\(216\) −5.85144 + 14.8569i −0.398140 + 1.01088i
\(217\) 11.5261 18.7503i 0.782441 1.27285i
\(218\) 8.78996 + 6.66366i 0.595331 + 0.451320i
\(219\) 6.47380 6.47380i 0.437459 0.437459i
\(220\) 3.64452 + 12.9932i 0.245713 + 0.876000i
\(221\) −5.45542 + 5.45542i −0.366971 + 0.366971i
\(222\) 1.67338 + 12.1619i 0.112310 + 0.816252i
\(223\) −15.4012 −1.03134 −0.515670 0.856787i \(-0.672457\pi\)
−0.515670 + 0.856787i \(0.672457\pi\)
\(224\) 14.8354 1.97727i 0.991235 0.132112i
\(225\) 0.588110 0.0392073
\(226\) 2.60572 + 18.9380i 0.173330 + 1.25973i
\(227\) 7.60285 7.60285i 0.504619 0.504619i −0.408251 0.912870i \(-0.633861\pi\)
0.912870 + 0.408251i \(0.133861\pi\)
\(228\) −1.36320 4.85997i −0.0902799 0.321860i
\(229\) 17.6096 17.6096i 1.16368 1.16368i 0.180011 0.983665i \(-0.442387\pi\)
0.983665 0.180011i \(-0.0576134\pi\)
\(230\) 3.59230 + 2.72332i 0.236870 + 0.179571i
\(231\) −9.34482 5.74440i −0.614844 0.377954i
\(232\) −19.6056 7.72174i −1.28717 0.506957i
\(233\) 6.72639i 0.440661i 0.975425 + 0.220330i \(0.0707135\pi\)
−0.975425 + 0.220330i \(0.929286\pi\)
\(234\) −6.52629 4.94757i −0.426637 0.323433i
\(235\) 3.26141 3.26141i 0.212751 0.212751i
\(236\) 8.11365 + 4.55903i 0.528154 + 0.296768i
\(237\) 4.67649 + 4.67649i 0.303771 + 0.303771i
\(238\) −1.70892 + 3.88466i −0.110773 + 0.251805i
\(239\) 9.53354i 0.616673i 0.951277 + 0.308337i \(0.0997723\pi\)
−0.951277 + 0.308337i \(0.900228\pi\)
\(240\) −7.27430 11.9467i −0.469554 0.771157i
\(241\) 21.3762i 1.37696i 0.725255 + 0.688481i \(0.241722\pi\)
−0.725255 + 0.688481i \(0.758278\pi\)
\(242\) −4.20304 + 0.578306i −0.270182 + 0.0371749i
\(243\) 6.04585 6.04585i 0.387841 0.387841i
\(244\) 5.05186 + 2.83862i 0.323412 + 0.181724i
\(245\) 15.8671 + 5.20436i 1.01371 + 0.332494i
\(246\) 2.70208 + 2.04845i 0.172278 + 0.130604i
\(247\) 11.7113 0.745174
\(248\) −9.38332 21.5773i −0.595841 1.37016i
\(249\) 20.1438i 1.27656i
\(250\) 8.78262 11.5851i 0.555462 0.732703i
\(251\) −3.97286 3.97286i −0.250765 0.250765i 0.570519 0.821284i \(-0.306742\pi\)
−0.821284 + 0.570519i \(0.806742\pi\)
\(252\) −4.33238 1.23502i −0.272915 0.0777992i
\(253\) 2.67241 2.67241i 0.168013 0.168013i
\(254\) −4.03261 + 0.554856i −0.253029 + 0.0348148i
\(255\) 3.96618 0.248372
\(256\) 7.34482 14.2146i 0.459051 0.888410i
\(257\) 6.91591i 0.431403i −0.976459 0.215701i \(-0.930796\pi\)
0.976459 0.215701i \(-0.0692038\pi\)
\(258\) 3.88072 0.533957i 0.241603 0.0332427i
\(259\) −15.2406 + 3.63653i −0.947004 + 0.225963i
\(260\) 31.2470 8.76463i 1.93786 0.543559i
\(261\) 4.48484 + 4.48484i 0.277605 + 0.277605i
\(262\) 8.30260 + 6.29419i 0.512936 + 0.388857i
\(263\) −17.7806 −1.09640 −0.548199 0.836348i \(-0.684686\pi\)
−0.548199 + 0.836348i \(0.684686\pi\)
\(264\) −10.7538 + 4.67649i −0.661848 + 0.287818i
\(265\) −21.4165 −1.31560
\(266\) 6.00396 2.33537i 0.368127 0.143190i
\(267\) −12.0411 + 12.0411i −0.736903 + 0.736903i
\(268\) −0.264531 0.148639i −0.0161588 0.00907957i
\(269\) 9.95044 + 9.95044i 0.606689 + 0.606689i 0.942079 0.335390i \(-0.108868\pi\)
−0.335390 + 0.942079i \(0.608868\pi\)
\(270\) 2.59608 + 18.8679i 0.157993 + 1.14827i
\(271\) 19.6010 1.19067 0.595337 0.803476i \(-0.297019\pi\)
0.595337 + 0.803476i \(0.297019\pi\)
\(272\) 2.35954 + 3.87512i 0.143068 + 0.234963i
\(273\) −13.8146 + 22.4732i −0.836098 + 1.36014i
\(274\) 22.2488 3.06127i 1.34410 0.184938i
\(275\) 1.38158 + 1.38158i 0.0833122 + 0.0833122i
\(276\) −1.91892 + 3.41509i −0.115506 + 0.205564i
\(277\) 13.6430 + 13.6430i 0.819727 + 0.819727i 0.986068 0.166341i \(-0.0531952\pi\)
−0.166341 + 0.986068i \(0.553195\pi\)
\(278\) −14.2280 + 18.7679i −0.853337 + 1.12563i
\(279\) 7.08234i 0.424009i
\(280\) 14.2714 10.7243i 0.852881 0.640899i
\(281\) 7.16702i 0.427548i −0.976883 0.213774i \(-0.931424\pi\)
0.976883 0.213774i \(-0.0685757\pi\)
\(282\) 3.19396 + 2.42134i 0.190198 + 0.144189i
\(283\) 11.6238 + 11.6238i 0.690964 + 0.690964i 0.962444 0.271480i \(-0.0875130\pi\)
−0.271480 + 0.962444i \(0.587513\pi\)
\(284\) −25.1254 + 7.04754i −1.49092 + 0.418195i
\(285\) −4.25717 4.25717i −0.252173 0.252173i
\(286\) −3.70868 26.9542i −0.219299 1.59383i
\(287\) −2.26632 + 3.68678i −0.133777 + 0.217624i
\(288\) −3.73368 + 3.04200i −0.220009 + 0.179252i
\(289\) 15.7135 0.924324
\(290\) −24.8987 + 3.42587i −1.46210 + 0.201174i
\(291\) 3.35215 + 3.35215i 0.196507 + 0.196507i
\(292\) 12.0275 3.37366i 0.703858 0.197428i
\(293\) −0.108531 + 0.108531i −0.00634048 + 0.00634048i −0.710270 0.703929i \(-0.751427\pi\)
0.703929 + 0.710270i \(0.251427\pi\)
\(294\) −2.60084 + 14.2759i −0.151684 + 0.832589i
\(295\) 11.1008 0.646315
\(296\) −6.13823 + 15.5850i −0.356778 + 0.905862i
\(297\) 15.9676 0.926537
\(298\) 9.33454 12.3131i 0.540736 0.713278i
\(299\) −6.42682 6.42682i −0.371673 0.371673i
\(300\) −1.76552 0.992042i −0.101933 0.0572756i
\(301\) 1.16038 + 4.86310i 0.0668829 + 0.280304i
\(302\) −3.96030 28.7829i −0.227890 1.65627i
\(303\) 12.3218i 0.707871i
\(304\) 1.62677 6.69208i 0.0933016 0.383817i
\(305\) 6.91179 0.395768
\(306\) −0.186146 1.35288i −0.0106413 0.0773393i
\(307\) 1.23198 1.23198i 0.0703130 0.0703130i −0.671076 0.741389i \(-0.734167\pi\)
0.741389 + 0.671076i \(0.234167\pi\)
\(308\) −7.27625 13.0788i −0.414603 0.745236i
\(309\) −7.71594 7.71594i −0.438944 0.438944i
\(310\) −22.3647 16.9547i −1.27023 0.962961i
\(311\) 15.0393i 0.852799i 0.904535 + 0.426399i \(0.140218\pi\)
−0.904535 + 0.426399i \(0.859782\pi\)
\(312\) 11.2464 + 25.8615i 0.636702 + 1.46412i
\(313\) −33.6455 −1.90176 −0.950879 0.309563i \(-0.899817\pi\)
−0.950879 + 0.309563i \(0.899817\pi\)
\(314\) 3.71148 4.89578i 0.209451 0.276285i
\(315\) −5.22667 + 1.24713i −0.294489 + 0.0702676i
\(316\) 2.43704 + 8.68835i 0.137094 + 0.488758i
\(317\) 4.05086 4.05086i 0.227519 0.227519i −0.584136 0.811655i \(-0.698567\pi\)
0.811655 + 0.584136i \(0.198567\pi\)
\(318\) −2.53676 18.4368i −0.142254 1.03388i
\(319\) 21.0714i 1.17977i
\(320\) −0.667890 19.0726i −0.0373362 1.06619i
\(321\) 5.87274i 0.327784i
\(322\) −4.57637 2.01321i −0.255031 0.112192i
\(323\) 1.38089 + 1.38089i 0.0768345 + 0.0768345i
\(324\) −11.0170 + 3.09021i −0.612056 + 0.171679i
\(325\) 3.32253 3.32253i 0.184301 0.184301i
\(326\) −3.90133 + 5.14621i −0.216075 + 0.285022i
\(327\) 11.4329i 0.632238i
\(328\) 1.84500 + 4.24264i 0.101873 + 0.234261i
\(329\) −2.67887 + 4.35790i −0.147691 + 0.240259i
\(330\) −8.44993 + 11.1462i −0.465153 + 0.613578i
\(331\) 11.3981 11.3981i 0.626497 0.626497i −0.320688 0.947185i \(-0.603914\pi\)
0.947185 + 0.320688i \(0.103914\pi\)
\(332\) 13.4636 23.9611i 0.738913 1.31503i
\(333\) 3.56513 3.56513i 0.195368 0.195368i
\(334\) −8.47665 + 1.16632i −0.463822 + 0.0638183i
\(335\) −0.361923 −0.0197739
\(336\) 10.9227 + 11.0156i 0.595881 + 0.600949i
\(337\) −11.0356 −0.601148 −0.300574 0.953759i \(-0.597178\pi\)
−0.300574 + 0.953759i \(0.597178\pi\)
\(338\) −46.6084 + 6.41295i −2.53516 + 0.348818i
\(339\) −14.0106 + 14.0106i −0.760953 + 0.760953i
\(340\) 4.71778 + 2.65090i 0.255858 + 0.143765i
\(341\) −16.6377 + 16.6377i −0.900982 + 0.900982i
\(342\) −1.25234 + 1.65195i −0.0677187 + 0.0893270i
\(343\) −18.4569 1.53010i −0.996581 0.0826178i
\(344\) 4.97301 + 1.95864i 0.268127 + 0.105603i
\(345\) 4.67241i 0.251554i
\(346\) 5.37408 7.08889i 0.288912 0.381101i
\(347\) 13.6494 13.6494i 0.732740 0.732740i −0.238422 0.971162i \(-0.576630\pi\)
0.971162 + 0.238422i \(0.0766301\pi\)
\(348\) −5.89847 21.0288i −0.316191 1.12726i
\(349\) −5.59100 5.59100i −0.299280 0.299280i 0.541452 0.840732i \(-0.317875\pi\)
−0.840732 + 0.541452i \(0.817875\pi\)
\(350\) 1.04079 2.36588i 0.0556324 0.126462i
\(351\) 38.4003i 2.04966i
\(352\) −15.9173 1.62487i −0.848394 0.0866058i
\(353\) 31.8994i 1.69783i −0.528528 0.848916i \(-0.677256\pi\)
0.528528 0.848916i \(-0.322744\pi\)
\(354\) 1.31488 + 9.55638i 0.0698853 + 0.507916i
\(355\) −22.0090 + 22.0090i −1.16812 + 1.16812i
\(356\) −22.3709 + 6.27492i −1.18566 + 0.332570i
\(357\) −4.27870 + 1.02093i −0.226453 + 0.0540335i
\(358\) 11.3093 14.9179i 0.597713 0.788437i
\(359\) 8.42050 0.444417 0.222209 0.974999i \(-0.428673\pi\)
0.222209 + 0.974999i \(0.428673\pi\)
\(360\) −2.10507 + 5.34480i −0.110947 + 0.281696i
\(361\) 16.0356i 0.843979i
\(362\) 0.303883 + 0.230374i 0.0159718 + 0.0121082i
\(363\) −3.10948 3.10948i −0.163205 0.163205i
\(364\) −31.4530 + 17.4985i −1.64859 + 0.917172i
\(365\) 10.5357 10.5357i 0.551464 0.551464i
\(366\) 0.818696 + 5.95016i 0.0427939 + 0.311020i
\(367\) −10.0187 −0.522972 −0.261486 0.965207i \(-0.584213\pi\)
−0.261486 + 0.965207i \(0.584213\pi\)
\(368\) −4.56513 + 2.77969i −0.237974 + 0.144901i
\(369\) 1.39257i 0.0724942i
\(370\) 2.72332 + 19.7927i 0.141579 + 1.02897i
\(371\) 23.1040 5.51280i 1.19950 0.286210i
\(372\) 11.9467 21.2614i 0.619408 1.10235i
\(373\) −1.13115 1.13115i −0.0585685 0.0585685i 0.677216 0.735784i \(-0.263186\pi\)
−0.735784 + 0.677216i \(0.763186\pi\)
\(374\) 2.74088 3.61546i 0.141727 0.186951i
\(375\) 15.0684 0.778126
\(376\) 2.18086 + 5.01496i 0.112469 + 0.258627i
\(377\) 50.6742 2.60985
\(378\) −7.65743 19.6864i −0.393856 1.01256i
\(379\) −12.6191 + 12.6191i −0.648200 + 0.648200i −0.952558 0.304357i \(-0.901558\pi\)
0.304357 + 0.952558i \(0.401558\pi\)
\(380\) −2.21852 7.90931i −0.113808 0.405739i
\(381\) −2.98340 2.98340i −0.152844 0.152844i
\(382\) −5.46582 + 0.752055i −0.279656 + 0.0384785i
\(383\) 16.6646 0.851521 0.425761 0.904836i \(-0.360007\pi\)
0.425761 + 0.904836i \(0.360007\pi\)
\(384\) 16.3399 2.83410i 0.833844 0.144627i
\(385\) −15.2081 9.34866i −0.775077 0.476452i
\(386\) 1.90363 + 13.8353i 0.0968924 + 0.704200i
\(387\) −1.13759 1.13759i −0.0578271 0.0578271i
\(388\) 1.74689 + 6.22789i 0.0886849 + 0.316173i
\(389\) 2.85997 + 2.85997i 0.145006 + 0.145006i 0.775883 0.630877i \(-0.217305\pi\)
−0.630877 + 0.775883i \(0.717305\pi\)
\(390\) 26.8053 + 20.3211i 1.35734 + 1.02900i
\(391\) 1.51557i 0.0766459i
\(392\) −12.6354 + 15.2429i −0.638185 + 0.769883i
\(393\) 10.7990i 0.544735i
\(394\) 17.4013 22.9539i 0.876665 1.15640i
\(395\) 7.61070 + 7.61070i 0.382936 + 0.382936i
\(396\) 4.19861 + 2.35918i 0.210988 + 0.118553i
\(397\) 12.0302 + 12.0302i 0.603778 + 0.603778i 0.941313 0.337535i \(-0.109593\pi\)
−0.337535 + 0.941313i \(0.609593\pi\)
\(398\) 35.9379 4.94477i 1.80140 0.247859i
\(399\) 5.68845 + 3.49678i 0.284779 + 0.175058i
\(400\) −1.43704 2.36007i −0.0718519 0.118004i
\(401\) 3.88812 0.194163 0.0970817 0.995276i \(-0.469049\pi\)
0.0970817 + 0.995276i \(0.469049\pi\)
\(402\) −0.0428694 0.311569i −0.00213813 0.0155396i
\(403\) 40.0117 + 40.0117i 1.99312 + 1.99312i
\(404\) −8.23563 + 14.6569i −0.409738 + 0.729206i
\(405\) −9.65052 + 9.65052i −0.479538 + 0.479538i
\(406\) 25.9788 10.1050i 1.28930 0.501502i
\(407\) 16.7503 0.830280
\(408\) −1.72327 + 4.37540i −0.0853145 + 0.216614i
\(409\) −25.7267 −1.27210 −0.636052 0.771646i \(-0.719434\pi\)
−0.636052 + 0.771646i \(0.719434\pi\)
\(410\) 4.39747 + 3.33372i 0.217176 + 0.164641i
\(411\) 16.4601 + 16.4601i 0.811915 + 0.811915i
\(412\) −4.02097 14.3353i −0.198099 0.706248i
\(413\) −11.9755 + 2.85746i −0.589277 + 0.140606i
\(414\) 1.59378 0.219292i 0.0783301 0.0107776i
\(415\) 32.7827i 1.60924i
\(416\) −3.90762 + 38.2791i −0.191587 + 1.87679i
\(417\) −24.4109 −1.19541
\(418\) −6.82269 + 0.938749i −0.333709 + 0.0459157i
\(419\) −15.4348 + 15.4348i −0.754038 + 0.754038i −0.975230 0.221192i \(-0.929005\pi\)
0.221192 + 0.975230i \(0.429005\pi\)
\(420\) 17.7943 + 5.07259i 0.868273 + 0.247517i
\(421\) −14.9338 14.9338i −0.727830 0.727830i 0.242357 0.970187i \(-0.422079\pi\)
−0.970187 + 0.242357i \(0.922079\pi\)
\(422\) 18.6240 24.5667i 0.906600 1.19589i
\(423\) 1.64607i 0.0800345i
\(424\) 9.30525 23.6261i 0.451903 1.14739i
\(425\) 0.783519 0.0380063
\(426\) −21.5538 16.3399i −1.04429 0.791673i
\(427\) −7.45641 + 1.77916i −0.360841 + 0.0860996i
\(428\) 3.92520 6.98563i 0.189732 0.337663i
\(429\) 19.9411 19.9411i 0.962768 0.962768i
\(430\) 6.31563 0.868981i 0.304567 0.0419060i
\(431\) 23.6114i 1.13732i −0.822572 0.568660i \(-0.807462\pi\)
0.822572 0.568660i \(-0.192538\pi\)
\(432\) −21.9427 5.33401i −1.05572 0.256633i
\(433\) 1.78643i 0.0858505i −0.999078 0.0429253i \(-0.986332\pi\)
0.999078 0.0429253i \(-0.0136677\pi\)
\(434\) 28.4912 + 12.5337i 1.36762 + 0.601638i
\(435\) −18.4205 18.4205i −0.883196 0.883196i
\(436\) −7.64146 + 13.5994i −0.365959 + 0.651293i
\(437\) −1.62677 + 1.62677i −0.0778189 + 0.0778189i
\(438\) 10.3178 + 7.82193i 0.493005 + 0.373746i
\(439\) 26.6274i 1.27085i −0.772161 0.635427i \(-0.780824\pi\)
0.772161 0.635427i \(-0.219176\pi\)
\(440\) −17.5011 + 7.61070i −0.834331 + 0.362826i
\(441\) 5.31748 2.69079i 0.253213 0.128133i
\(442\) −8.69475 6.59148i −0.413567 0.313525i
\(443\) −16.9403 + 16.9403i −0.804856 + 0.804856i −0.983850 0.178994i \(-0.942716\pi\)
0.178994 + 0.983850i \(0.442716\pi\)
\(444\) −16.7164 + 4.68886i −0.793325 + 0.222523i
\(445\) −19.5961 + 19.5961i −0.928946 + 0.928946i
\(446\) −2.96887 21.5773i −0.140580 1.02171i
\(447\) 16.0153 0.757497
\(448\) 5.62999 + 20.4035i 0.265992 + 0.963975i
\(449\) −6.76315 −0.319173 −0.159586 0.987184i \(-0.551016\pi\)
−0.159586 + 0.987184i \(0.551016\pi\)
\(450\) 0.113369 + 0.823951i 0.00534428 + 0.0388414i
\(451\) 3.27139 3.27139i 0.154044 0.154044i
\(452\) −26.0300 + 7.30129i −1.22435 + 0.343424i
\(453\) 21.2941 21.2941i 1.00048 1.00048i
\(454\) 12.1173 + 9.18611i 0.568693 + 0.431125i
\(455\) −22.4824 + 36.5737i −1.05399 + 1.71460i
\(456\) 6.54611 2.84671i 0.306550 0.133309i
\(457\) 3.79073i 0.177323i −0.996062 0.0886615i \(-0.971741\pi\)
0.996062 0.0886615i \(-0.0282590\pi\)
\(458\) 28.0659 + 21.2767i 1.31143 + 0.994196i
\(459\) 4.52778 4.52778i 0.211339 0.211339i
\(460\) −3.12293 + 5.55784i −0.145607 + 0.259136i
\(461\) −3.04346 3.04346i −0.141748 0.141748i 0.632672 0.774420i \(-0.281958\pi\)
−0.774420 + 0.632672i \(0.781958\pi\)
\(462\) 6.24660 14.1996i 0.290618 0.660623i
\(463\) 1.44348i 0.0670844i 0.999437 + 0.0335422i \(0.0106788\pi\)
−0.999437 + 0.0335422i \(0.989321\pi\)
\(464\) 7.03893 28.9562i 0.326774 1.34426i
\(465\) 29.0892i 1.34898i
\(466\) −9.42377 + 1.29664i −0.436548 + 0.0600656i
\(467\) −10.9302 + 10.9302i −0.505789 + 0.505789i −0.913231 0.407442i \(-0.866421\pi\)
0.407442 + 0.913231i \(0.366421\pi\)
\(468\) 5.67356 10.0972i 0.262260 0.466741i
\(469\) 0.390440 0.0931623i 0.0180289 0.00430184i
\(470\) 5.19797 + 3.94058i 0.239765 + 0.181765i
\(471\) 6.36780 0.293413
\(472\) −4.82321 + 12.2462i −0.222006 + 0.563676i
\(473\) 5.34482i 0.245755i
\(474\) −5.65035 + 7.45331i −0.259529 + 0.342342i
\(475\) −0.841004 0.841004i −0.0385879 0.0385879i
\(476\) −5.77189 1.64538i −0.264554 0.0754159i
\(477\) −5.40456 + 5.40456i −0.247458 + 0.247458i
\(478\) −13.3566 + 1.83777i −0.610917 + 0.0840575i
\(479\) 22.3261 1.02011 0.510054 0.860142i \(-0.329625\pi\)
0.510054 + 0.860142i \(0.329625\pi\)
\(480\) 15.3352 12.4943i 0.699955 0.570286i
\(481\) 40.2824i 1.83672i
\(482\) −29.9483 + 4.12066i −1.36411 + 0.187691i
\(483\) −1.20272 5.04057i −0.0547258 0.229354i
\(484\) −1.62043 5.77704i −0.0736559 0.262593i
\(485\) 5.45542 + 5.45542i 0.247718 + 0.247718i
\(486\) 9.63577 + 7.30487i 0.437087 + 0.331356i
\(487\) −5.13887 −0.232865 −0.116432 0.993199i \(-0.537146\pi\)
−0.116432 + 0.993199i \(0.537146\pi\)
\(488\) −3.00311 + 7.62493i −0.135944 + 0.345164i
\(489\) −6.69352 −0.302692
\(490\) −4.23271 + 23.2332i −0.191214 + 1.04957i
\(491\) 6.24398 6.24398i 0.281787 0.281787i −0.552034 0.833821i \(-0.686148\pi\)
0.833821 + 0.552034i \(0.186148\pi\)
\(492\) −2.34902 + 4.18053i −0.105902 + 0.188473i
\(493\) 5.97500 + 5.97500i 0.269101 + 0.269101i
\(494\) 2.25758 + 16.4077i 0.101573 + 0.738219i
\(495\) 5.74440 0.258192
\(496\) 28.4213 17.3056i 1.27615 0.777044i
\(497\) 18.0779 29.4085i 0.810903 1.31915i
\(498\) 28.2217 3.88309i 1.26464 0.174005i
\(499\) 7.56730 + 7.56730i 0.338759 + 0.338759i 0.855900 0.517141i \(-0.173004\pi\)
−0.517141 + 0.855900i \(0.673004\pi\)
\(500\) 17.9238 + 10.0713i 0.801579 + 0.450404i
\(501\) −6.27117 6.27117i −0.280175 0.280175i
\(502\) 4.80019 6.33188i 0.214243 0.282606i
\(503\) 11.7969i 0.525999i −0.964796 0.263000i \(-0.915288\pi\)
0.964796 0.263000i \(-0.0847118\pi\)
\(504\) 0.895138 6.30780i 0.0398726 0.280972i
\(505\) 20.0530i 0.892348i
\(506\) 4.25924 + 3.22893i 0.189346 + 0.143543i
\(507\) −34.4816 34.4816i −1.53138 1.53138i
\(508\) −1.55472 5.54279i −0.0689797 0.245922i
\(509\) 24.1062 + 24.1062i 1.06849 + 1.06849i 0.997475 + 0.0710131i \(0.0226232\pi\)
0.0710131 + 0.997475i \(0.477377\pi\)
\(510\) 0.764555 + 5.55667i 0.0338551 + 0.246054i
\(511\) −8.65387 + 14.0779i −0.382825 + 0.622768i
\(512\) 21.3306 + 7.55007i 0.942690 + 0.333669i
\(513\) −9.71995 −0.429146
\(514\) 9.68929 1.33317i 0.427376 0.0588036i
\(515\) −12.5572 12.5572i −0.553337 0.553337i
\(516\) 1.49616 + 5.33401i 0.0658648 + 0.234817i
\(517\) 3.86691 3.86691i 0.170066 0.170066i
\(518\) −8.03274 20.6513i −0.352938 0.907365i
\(519\) 9.22031 0.404727
\(520\) 18.3028 + 42.0880i 0.802632 + 1.84568i
\(521\) −42.1032 −1.84457 −0.922287 0.386506i \(-0.873682\pi\)
−0.922287 + 0.386506i \(0.873682\pi\)
\(522\) −5.41879 + 7.14787i −0.237174 + 0.312854i
\(523\) −6.62683 6.62683i −0.289771 0.289771i 0.547219 0.836990i \(-0.315687\pi\)
−0.836990 + 0.547219i \(0.815687\pi\)
\(524\) −7.21777 + 12.8454i −0.315310 + 0.561153i
\(525\) 2.60586 0.621781i 0.113729 0.0271367i
\(526\) −3.42754 24.9108i −0.149448 1.08616i
\(527\) 9.43556i 0.411020i
\(528\) −8.62482 14.1647i −0.375347 0.616439i
\(529\) −21.2146 −0.922372
\(530\) −4.12842 30.0048i −0.179327 1.30332i
\(531\) 2.80135 2.80135i 0.121568 0.121568i
\(532\) 4.42926 + 7.96145i 0.192033 + 0.345173i
\(533\) −7.86731 7.86731i −0.340771 0.340771i
\(534\) −19.1909 14.5486i −0.830471 0.629579i
\(535\) 9.55751i 0.413207i
\(536\) 0.157252 0.399265i 0.00679225 0.0172456i
\(537\) 19.4033 0.837315
\(538\) −12.0226 + 15.8588i −0.518330 + 0.683723i
\(539\) 18.8129 + 6.17058i 0.810328 + 0.265786i
\(540\) −25.9338 + 7.27430i −1.11601 + 0.313036i
\(541\) 1.70184 1.70184i 0.0731676 0.0731676i −0.669576 0.742744i \(-0.733524\pi\)
0.742744 + 0.669576i \(0.233524\pi\)
\(542\) 3.77845 + 27.4612i 0.162298 + 1.17956i
\(543\) 0.395252i 0.0169619i
\(544\) −4.97425 + 4.05275i −0.213269 + 0.173760i
\(545\) 18.6063i 0.797005i
\(546\) −34.1482 15.0223i −1.46141 0.642896i
\(547\) 8.86974 + 8.86974i 0.379243 + 0.379243i 0.870829 0.491586i \(-0.163583\pi\)
−0.491586 + 0.870829i \(0.663583\pi\)
\(548\) 8.57775 + 30.5808i 0.366424 + 1.30635i
\(549\) 1.74423 1.74423i 0.0744418 0.0744418i
\(550\) −1.66928 + 2.20193i −0.0711785 + 0.0938907i
\(551\) 12.8267i 0.546438i
\(552\) −5.15449 2.03012i −0.219390 0.0864076i
\(553\) −10.1694 6.25132i −0.432449 0.265833i
\(554\) −16.4841 + 21.7439i −0.700341 + 0.923812i
\(555\) −14.6430 + 14.6430i −0.621560 + 0.621560i
\(556\) −29.0369 16.3157i −1.23144 0.691940i
\(557\) −9.83630 + 9.83630i −0.416777 + 0.416777i −0.884091 0.467314i \(-0.845222\pi\)
0.467314 + 0.884091i \(0.345222\pi\)
\(558\) −9.92246 + 1.36525i −0.420051 + 0.0577958i
\(559\) −12.8536 −0.543651
\(560\) 17.7760 + 17.9272i 0.751172 + 0.757561i
\(561\) 4.70253 0.198541
\(562\) 10.0411 1.38158i 0.423558 0.0582783i
\(563\) −3.26139 + 3.26139i −0.137451 + 0.137451i −0.772485 0.635034i \(-0.780986\pi\)
0.635034 + 0.772485i \(0.280986\pi\)
\(564\) −2.77663 + 4.94154i −0.116917 + 0.208076i
\(565\) −22.8014 + 22.8014i −0.959263 + 0.959263i
\(566\) −14.0444 + 18.5258i −0.590331 + 0.778699i
\(567\) 7.92680 12.8951i 0.332894 0.541542i
\(568\) −14.7171 33.8425i −0.617515 1.42000i
\(569\) 7.26970i 0.304762i −0.988322 0.152381i \(-0.951306\pi\)
0.988322 0.152381i \(-0.0486940\pi\)
\(570\) 5.14371 6.78500i 0.215446 0.284192i
\(571\) −1.22962 + 1.22962i −0.0514579 + 0.0514579i −0.732367 0.680910i \(-0.761585\pi\)
0.680910 + 0.732367i \(0.261585\pi\)
\(572\) 37.0482 10.3918i 1.54906 0.434505i
\(573\) −4.04371 4.04371i −0.168928 0.168928i
\(574\) −5.60210 2.46445i −0.233827 0.102864i
\(575\) 0.923034i 0.0384932i
\(576\) −4.98162 4.64453i −0.207568 0.193522i
\(577\) 20.1315i 0.838084i 0.907967 + 0.419042i \(0.137634\pi\)
−0.907967 + 0.419042i \(0.862366\pi\)
\(578\) 3.02907 + 22.0148i 0.125993 + 0.915696i
\(579\) −10.2356 + 10.2356i −0.425378 + 0.425378i
\(580\) −9.59939 34.2231i −0.398593 1.42104i
\(581\) 8.43859 + 35.3659i 0.350092 + 1.46722i
\(582\) −4.05022 + 5.34260i −0.167887 + 0.221458i
\(583\) −25.3926 −1.05165
\(584\) 7.04508 + 16.2004i 0.291527 + 0.670378i
\(585\) 13.8146i 0.571163i
\(586\) −0.172976 0.131133i −0.00714556 0.00541704i
\(587\) −13.6801 13.6801i −0.564639 0.564639i 0.365983 0.930622i \(-0.380733\pi\)
−0.930622 + 0.365983i \(0.880733\pi\)
\(588\) −20.5021 0.891860i −0.845494 0.0367797i
\(589\) 10.1278 10.1278i 0.417310 0.417310i
\(590\) 2.13989 + 15.5524i 0.0880980 + 0.640283i
\(591\) 29.8554 1.22809
\(592\) −23.0181 5.59544i −0.946039 0.229971i
\(593\) 24.4282i 1.00315i 0.865115 + 0.501573i \(0.167245\pi\)
−0.865115 + 0.501573i \(0.832755\pi\)
\(594\) 3.07806 + 22.3709i 0.126294 + 0.917889i
\(595\) −6.96331 + 1.66150i −0.285468 + 0.0681150i
\(596\) 19.0502 + 10.7042i 0.780327 + 0.438463i
\(597\) 26.5875 + 26.5875i 1.08815 + 1.08815i
\(598\) 7.76518 10.2430i 0.317542 0.418866i
\(599\) 25.1701 1.02842 0.514211 0.857664i \(-0.328085\pi\)
0.514211 + 0.857664i \(0.328085\pi\)
\(600\) 1.04953 2.66476i 0.0428467 0.108788i
\(601\) −9.34866 −0.381340 −0.190670 0.981654i \(-0.561066\pi\)
−0.190670 + 0.981654i \(0.561066\pi\)
\(602\) −6.58958 + 2.56316i −0.268571 + 0.104466i
\(603\) −0.0913331 + 0.0913331i −0.00371937 + 0.00371937i
\(604\) 39.5618 11.0969i 1.60975 0.451525i
\(605\) −5.06049 5.06049i −0.205738 0.205738i
\(606\) −17.2631 + 2.37526i −0.701264 + 0.0964885i
\(607\) −27.5600 −1.11863 −0.559314 0.828956i \(-0.688935\pi\)
−0.559314 + 0.828956i \(0.688935\pi\)
\(608\) 9.68929 + 0.989103i 0.392953 + 0.0401134i
\(609\) 24.6136 + 15.1303i 0.997392 + 0.613112i
\(610\) 1.33238 + 9.68352i 0.0539464 + 0.392074i
\(611\) −9.29945 9.29945i −0.376215 0.376215i
\(612\) 1.85953 0.521587i 0.0751669 0.0210839i
\(613\) −6.51272 6.51272i −0.263046 0.263046i 0.563244 0.826291i \(-0.309553\pi\)
−0.826291 + 0.563244i \(0.809553\pi\)
\(614\) 1.96351 + 1.48854i 0.0792410 + 0.0600725i
\(615\) 5.71967i 0.230639i
\(616\) 16.9210 12.7153i 0.681767 0.512315i
\(617\) 18.3569i 0.739023i −0.929226 0.369511i \(-0.879525\pi\)
0.929226 0.369511i \(-0.120475\pi\)
\(618\) 9.32274 12.2975i 0.375016 0.494679i
\(619\) 12.2627 + 12.2627i 0.492878 + 0.492878i 0.909212 0.416334i \(-0.136685\pi\)
−0.416334 + 0.909212i \(0.636685\pi\)
\(620\) 19.4425 34.6016i 0.780831 1.38963i
\(621\) 5.33401 + 5.33401i 0.214046 + 0.214046i
\(622\) −21.0702 + 2.89910i −0.844839 + 0.116243i
\(623\) 16.0960 26.1844i 0.644872 1.04906i
\(624\) −34.0644 + 20.7416i −1.36367 + 0.830330i
\(625\) 27.9768 1.11907
\(626\) −6.48580 47.1379i −0.259225 1.88401i
\(627\) −5.04754 5.04754i −0.201579 0.201579i
\(628\) 7.57451 + 4.25609i 0.302256 + 0.169836i
\(629\) 4.74970 4.74970i 0.189383 0.189383i
\(630\) −2.75478 7.08223i −0.109753 0.282163i
\(631\) −24.0987 −0.959353 −0.479676 0.877445i \(-0.659246\pi\)
−0.479676 + 0.877445i \(0.659246\pi\)
\(632\) −11.7027 + 5.08917i −0.465509 + 0.202436i
\(633\) 31.9532 1.27002
\(634\) 6.45619 + 4.89443i 0.256408 + 0.194383i
\(635\) −4.85529 4.85529i −0.192676 0.192676i
\(636\) 25.3412 7.10807i 1.00484 0.281853i
\(637\) 14.8395 45.2427i 0.587962 1.79258i
\(638\) −29.5213 + 4.06191i −1.16876 + 0.160812i
\(639\) 11.1082i 0.439432i
\(640\) 26.5922 4.61232i 1.05115 0.182318i
\(641\) −33.0833 −1.30671 −0.653357 0.757050i \(-0.726640\pi\)
−0.653357 + 0.757050i \(0.726640\pi\)
\(642\) 8.22778 1.13208i 0.324725 0.0446796i
\(643\) 4.99031 4.99031i 0.196798 0.196798i −0.601828 0.798626i \(-0.705561\pi\)
0.798626 + 0.601828i \(0.205561\pi\)
\(644\) 1.93836 6.79964i 0.0763821 0.267943i
\(645\) 4.67241 + 4.67241i 0.183976 + 0.183976i
\(646\) −1.66845 + 2.20083i −0.0656442 + 0.0865905i
\(647\) 16.2489i 0.638809i 0.947618 + 0.319405i \(0.103483\pi\)
−0.947618 + 0.319405i \(0.896517\pi\)
\(648\) −6.45317 14.8393i −0.253504 0.582943i
\(649\) 13.1618 0.516645
\(650\) 5.29538 + 4.01443i 0.207702 + 0.157459i
\(651\) 7.48782 + 31.3812i 0.293471 + 1.22993i
\(652\) −7.96196 4.47380i −0.311814 0.175207i
\(653\) −1.10728 + 1.10728i −0.0433312 + 0.0433312i −0.728440 0.685109i \(-0.759754\pi\)
0.685109 + 0.728440i \(0.259754\pi\)
\(654\) −16.0176 + 2.20390i −0.626337 + 0.0861791i
\(655\) 17.5746i 0.686698i
\(656\) −5.58834 + 3.40272i −0.218188 + 0.132854i
\(657\) 5.31748i 0.207455i
\(658\) −6.62189 2.91307i −0.258148 0.113563i
\(659\) 23.8965 + 23.8965i 0.930874 + 0.930874i 0.997761 0.0668864i \(-0.0213065\pi\)
−0.0668864 + 0.997761i \(0.521307\pi\)
\(660\) −17.2449 9.68983i −0.671256 0.377176i
\(661\) 17.0306 17.0306i 0.662414 0.662414i −0.293534 0.955949i \(-0.594831\pi\)
0.955949 + 0.293534i \(0.0948314\pi\)
\(662\) 18.1661 + 13.7717i 0.706046 + 0.535253i
\(663\) 11.3090i 0.439206i
\(664\) 36.1652 + 14.2438i 1.40348 + 0.552767i
\(665\) 9.25760 + 5.69079i 0.358994 + 0.220679i
\(666\) 5.68204 + 4.30755i 0.220175 + 0.166914i
\(667\) −7.03893 + 7.03893i −0.272548 + 0.272548i
\(668\) −3.26807 11.6511i −0.126445 0.450794i
\(669\) 15.9632 15.9632i 0.617175 0.617175i
\(670\) −0.0697674 0.507059i −0.00269535 0.0195894i
\(671\) 8.19501 0.316365
\(672\) −13.3274 + 17.4263i −0.514117 + 0.672233i
\(673\) 2.21456 0.0853649 0.0426825 0.999089i \(-0.486410\pi\)
0.0426825 + 0.999089i \(0.486410\pi\)
\(674\) −2.12732 15.4610i −0.0819413 0.595537i
\(675\) −2.75757 + 2.75757i −0.106139 + 0.106139i
\(676\) −17.9693 64.0627i −0.691125 2.46395i
\(677\) −10.3945 + 10.3945i −0.399493 + 0.399493i −0.878054 0.478561i \(-0.841158\pi\)
0.478561 + 0.878054i \(0.341158\pi\)
\(678\) −22.3299 16.9283i −0.857574 0.650126i
\(679\) −7.28955 4.48100i −0.279747 0.171965i
\(680\) −2.80451 + 7.12069i −0.107548 + 0.273066i
\(681\) 15.7606i 0.603948i
\(682\) −26.5169 20.1024i −1.01538 0.769761i
\(683\) 17.8265 17.8265i 0.682113 0.682113i −0.278363 0.960476i \(-0.589792\pi\)
0.960476 + 0.278363i \(0.0897917\pi\)
\(684\) −2.55581 1.43610i −0.0977239 0.0549107i
\(685\) 26.7877 + 26.7877i 1.02351 + 1.02351i
\(686\) −1.41422 26.1534i −0.0539953 0.998541i
\(687\) 36.5045i 1.39273i
\(688\) −1.78544 + 7.34482i −0.0680693 + 0.280019i
\(689\) 61.0660i 2.32643i
\(690\) −6.54611 + 0.900694i −0.249206 + 0.0342888i
\(691\) 28.7899 28.7899i 1.09522 1.09522i 0.100257 0.994962i \(-0.468034\pi\)
0.994962 0.100257i \(-0.0319664\pi\)
\(692\) 10.9676 + 6.16264i 0.416925 + 0.234269i
\(693\) −6.19703 + 1.47866i −0.235406 + 0.0561698i
\(694\) 21.7542 + 16.4919i 0.825779 + 0.626022i
\(695\) −39.7273 −1.50694
\(696\) 28.3246 12.3175i 1.07364 0.466895i
\(697\) 1.85527i 0.0702734i
\(698\) 6.75530 8.91084i 0.255692 0.337280i
\(699\) −6.97187 6.97187i −0.263700 0.263700i
\(700\) 3.51527 + 1.00209i 0.132865 + 0.0378754i
\(701\) −8.26141 + 8.26141i −0.312029 + 0.312029i −0.845695 0.533666i \(-0.820814\pi\)
0.533666 + 0.845695i \(0.320814\pi\)
\(702\) 53.7993 7.40237i 2.03052 0.279384i
\(703\) −10.1963 −0.384562
\(704\) −0.791888 22.6136i −0.0298454 0.852280i
\(705\) 6.76085i 0.254628i
\(706\) 44.6914 6.14920i 1.68198 0.231428i
\(707\) −5.16184 21.6331i −0.194131 0.813597i
\(708\) −13.1352 + 3.68434i −0.493649 + 0.138466i
\(709\) −26.9918 26.9918i −1.01370 1.01370i −0.999905 0.0137939i \(-0.995609\pi\)
−0.0137939 0.999905i \(-0.504391\pi\)
\(710\) −35.0775 26.5922i −1.31644 0.997989i
\(711\) 3.84120 0.144056
\(712\) −13.1037 30.1323i −0.491080 1.12926i
\(713\) −11.1157 −0.416286
\(714\) −2.25514 5.79771i −0.0843964 0.216974i
\(715\) 32.4530 32.4530i 1.21367 1.21367i
\(716\) 23.0803 + 12.9687i 0.862551 + 0.484664i
\(717\) −9.88145 9.88145i −0.369030 0.369030i
\(718\) 1.62321 + 11.7972i 0.0605776 + 0.440269i
\(719\) −6.92495 −0.258257 −0.129129 0.991628i \(-0.541218\pi\)
−0.129129 + 0.991628i \(0.541218\pi\)
\(720\) −7.89393 1.91892i −0.294189 0.0715141i
\(721\) 16.7790 + 10.3143i 0.624882 + 0.384125i
\(722\) −22.4661 + 3.09116i −0.836102 + 0.115041i
\(723\) −22.1563 22.1563i −0.824001 0.824001i
\(724\) −0.264178 + 0.470154i −0.00981809 + 0.0174731i
\(725\) −3.63897 3.63897i −0.135148 0.135148i
\(726\) 3.75702 4.95584i 0.139436 0.183928i
\(727\) 39.9958i 1.48336i 0.670752 + 0.741681i \(0.265971\pi\)
−0.670752 + 0.741681i \(0.734029\pi\)
\(728\) −30.5788 40.6930i −1.13333 1.50818i
\(729\) 29.6963i 1.09986i
\(730\) 16.7916 + 12.7297i 0.621486 + 0.471148i
\(731\) −1.51557 1.51557i −0.0560556 0.0560556i
\(732\) −8.17844 + 2.29401i −0.302284 + 0.0847890i
\(733\) 10.2496 + 10.2496i 0.378579 + 0.378579i 0.870589 0.492010i \(-0.163738\pi\)
−0.492010 + 0.870589i \(0.663738\pi\)
\(734\) −1.93129 14.0364i −0.0712853 0.518091i
\(735\) −21.8404 + 11.0518i −0.805595 + 0.407652i
\(736\) −4.77440 5.85997i −0.175987 0.216002i
\(737\) −0.429116 −0.0158067
\(738\) 1.95101 0.268443i 0.0718176 0.00988154i
\(739\) −0.573743 0.573743i −0.0211055 0.0211055i 0.696475 0.717581i \(-0.254751\pi\)
−0.717581 + 0.696475i \(0.754751\pi\)
\(740\) −27.2049 + 7.63083i −1.00007 + 0.280515i
\(741\) −12.1387 + 12.1387i −0.445927 + 0.445927i
\(742\) 12.1772 + 31.3063i 0.447040 + 1.14929i
\(743\) 25.9627 0.952477 0.476239 0.879316i \(-0.342000\pi\)
0.476239 + 0.879316i \(0.342000\pi\)
\(744\) 32.0905 + 12.6390i 1.17649 + 0.463367i
\(745\) 26.0639 0.954907
\(746\) 1.36670 1.80280i 0.0500385 0.0660052i
\(747\) −8.27290 8.27290i −0.302690 0.302690i
\(748\) 5.59367 + 3.14306i 0.204525 + 0.114922i
\(749\) 2.46019 + 10.3106i 0.0898935 + 0.376741i
\(750\) 2.90471 + 21.1110i 0.106065 + 0.770864i
\(751\) 13.9799i 0.510133i −0.966924 0.255067i \(-0.917903\pi\)
0.966924 0.255067i \(-0.0820974\pi\)
\(752\) −6.60562 + 4.02214i −0.240882 + 0.146672i
\(753\) 8.23569 0.300125
\(754\) 9.76840 + 70.9953i 0.355744 + 2.58550i
\(755\) 34.6548 34.6548i 1.26122 1.26122i
\(756\) 26.1048 14.5231i 0.949422 0.528199i
\(757\) 31.6014 + 31.6014i 1.14857 + 1.14857i 0.986834 + 0.161737i \(0.0517096\pi\)
0.161737 + 0.986834i \(0.448290\pi\)
\(758\) −20.1121 15.2470i −0.730505 0.553796i
\(759\) 5.53987i 0.201085i
\(760\) 10.6534 4.63284i 0.386439 0.168051i
\(761\) −35.0216 −1.26953 −0.634765 0.772705i \(-0.718903\pi\)
−0.634765 + 0.772705i \(0.718903\pi\)
\(762\) 3.60467 4.75488i 0.130584 0.172251i
\(763\) −4.78943 20.0723i −0.173389 0.726667i
\(764\) −2.10728 7.51272i −0.0762387 0.271801i
\(765\) 1.62888 1.62888i 0.0588923 0.0588923i
\(766\) 3.21241 + 23.3473i 0.116069 + 0.843573i
\(767\) 31.6525i 1.14290i
\(768\) 7.12044 + 22.3462i 0.256937 + 0.806348i
\(769\) 10.9708i 0.395618i 0.980241 + 0.197809i \(0.0633826\pi\)
−0.980241 + 0.197809i \(0.936617\pi\)
\(770\) 10.1660 23.1089i 0.366356 0.832787i
\(771\) 7.16830 + 7.16830i 0.258160 + 0.258160i
\(772\) −19.0165 + 5.33404i −0.684420 + 0.191976i
\(773\) 7.67303 7.67303i 0.275980 0.275980i −0.555522 0.831502i \(-0.687482\pi\)
0.831502 + 0.555522i \(0.187482\pi\)
\(774\) 1.37449 1.81307i 0.0494050 0.0651696i
\(775\) 5.74656i 0.206423i
\(776\) −8.38862 + 3.64796i −0.301134 + 0.130954i
\(777\) 12.0275 19.5660i 0.431485 0.701927i
\(778\) −3.45555 + 4.55818i −0.123887 + 0.163419i
\(779\) −1.99139 + 1.99139i −0.0713488 + 0.0713488i
\(780\) −23.3029 + 41.4718i −0.834377 + 1.48493i
\(781\) −26.0951 + 26.0951i −0.933755 + 0.933755i
\(782\) 2.12334 0.292155i 0.0759305 0.0104475i
\(783\) −42.0576 −1.50302
\(784\) −23.7912 14.7640i −0.849687 0.527287i
\(785\) 10.3632 0.369878
\(786\) −15.1295 + 2.08170i −0.539651 + 0.0742518i
\(787\) −18.2461 + 18.2461i −0.650404 + 0.650404i −0.953090 0.302686i \(-0.902117\pi\)
0.302686 + 0.953090i \(0.402117\pi\)
\(788\) 35.5131 + 19.9547i 1.26510 + 0.710856i
\(789\) 18.4295 18.4295i 0.656106 0.656106i
\(790\) −9.19559 + 12.1298i −0.327164 + 0.431559i
\(791\) 18.7288 30.4674i 0.665918 1.08329i
\(792\) −2.49589 + 6.33709i −0.0886876 + 0.225179i
\(793\) 19.7080i 0.699852i
\(794\) −14.5354 + 19.1735i −0.515843 + 0.680443i
\(795\) 22.1980 22.1980i 0.787283 0.787283i
\(796\) 13.8554 + 49.3963i 0.491091 + 1.75080i
\(797\) −22.4616 22.4616i −0.795630 0.795630i 0.186773 0.982403i \(-0.440197\pi\)
−0.982403 + 0.186773i \(0.940197\pi\)
\(798\) −3.80248 + 8.64366i −0.134606 + 0.305982i
\(799\) 2.19300i 0.0775827i
\(800\) 3.02948 2.46826i 0.107108 0.0872661i
\(801\) 9.89038i 0.349459i
\(802\) 0.749508 + 5.44731i 0.0264660 + 0.192351i
\(803\) 12.4917 12.4917i 0.440823 0.440823i
\(804\) 0.428248 0.120121i 0.0151032 0.00423635i
\(805\) −1.95736 8.20322i −0.0689877 0.289125i
\(806\) −48.3439 + 63.7699i −1.70284 + 2.24620i
\(807\) −20.6271 −0.726110
\(808\) −22.1220 8.71285i −0.778250 0.306517i
\(809\) 24.7622i 0.870592i 0.900287 + 0.435296i \(0.143356\pi\)
−0.900287 + 0.435296i \(0.856644\pi\)
\(810\) −15.3808 11.6602i −0.540428 0.409698i
\(811\) −5.40486 5.40486i −0.189790 0.189790i 0.605815 0.795605i \(-0.292847\pi\)
−0.795605 + 0.605815i \(0.792847\pi\)
\(812\) 19.1651 + 34.4487i 0.672564 + 1.20891i
\(813\) −20.3163 + 20.3163i −0.712523 + 0.712523i
\(814\) 3.22893 + 23.4674i 0.113174 + 0.822530i
\(815\) −10.8933 −0.381575
\(816\) −6.46219 1.57088i −0.226222 0.0549919i
\(817\) 3.25354i 0.113827i
\(818\) −4.95930 36.0435i −0.173398 1.26023i
\(819\) 3.55601 + 14.9031i 0.124257 + 0.520757i
\(820\) −3.82289 + 6.80356i −0.133501 + 0.237590i
\(821\) −0.191577 0.191577i −0.00668610 0.00668610i 0.703756 0.710442i \(-0.251505\pi\)
−0.710442 + 0.703756i \(0.751505\pi\)
\(822\) −19.8878 + 26.2338i −0.693666 + 0.915008i
\(823\) 43.4293 1.51385 0.756925 0.653501i \(-0.226701\pi\)
0.756925 + 0.653501i \(0.226701\pi\)
\(824\) 19.3088 8.39683i 0.672654 0.292517i
\(825\) −2.86399 −0.0997114
\(826\) −6.31185 16.2270i −0.219617 0.564611i
\(827\) −38.0398 + 38.0398i −1.32277 + 1.32277i −0.411252 + 0.911522i \(0.634909\pi\)
−0.911522 + 0.411252i \(0.865091\pi\)
\(828\) 0.614463 + 2.19064i 0.0213541 + 0.0761300i
\(829\) −2.08602 2.08602i −0.0724505 0.0724505i 0.669953 0.742403i \(-0.266314\pi\)
−0.742403 + 0.669953i \(0.766314\pi\)
\(830\) 45.9291 6.31949i 1.59422 0.219353i
\(831\) −28.2817 −0.981083
\(832\) −54.3829 + 1.90440i −1.88539 + 0.0660230i
\(833\) 7.08430 3.58484i 0.245456 0.124207i
\(834\) −4.70566 34.2001i −0.162944 1.18425i
\(835\) −10.2059 10.2059i −0.353191 0.353191i
\(836\) −2.63040 9.37772i −0.0909743 0.324335i
\(837\) −33.2081 33.2081i −1.14784 1.14784i
\(838\) −24.5997 18.6490i −0.849782 0.644219i
\(839\) 37.7564i 1.30350i −0.758436 0.651748i \(-0.774036\pi\)
0.758436 0.651748i \(-0.225964\pi\)
\(840\) −3.67658 + 25.9079i −0.126854 + 0.893908i
\(841\) 26.5005i 0.913811i
\(842\) 18.0437 23.8013i 0.621827 0.820245i
\(843\) 7.42857 + 7.42857i 0.255854 + 0.255854i
\(844\) 38.0083 + 21.3568i 1.30830 + 0.735130i
\(845\) −56.1167 56.1167i −1.93047 1.93047i
\(846\) 2.30616 0.317310i 0.0792875 0.0109093i
\(847\) 6.76185 + 4.15661i 0.232340 + 0.142823i
\(848\) 34.8943 + 8.48241i 1.19828 + 0.291287i
\(849\) −24.0960 −0.826974
\(850\) 0.151038 + 1.09772i 0.00518056 + 0.0376515i
\(851\) 5.59544 + 5.59544i 0.191809 + 0.191809i
\(852\) 18.7376 33.3470i 0.641939 1.14245i
\(853\) 37.7120 37.7120i 1.29124 1.29124i 0.357212 0.934023i \(-0.383727\pi\)
0.934023 0.357212i \(-0.116273\pi\)
\(854\) −3.92999 10.1036i −0.134481 0.345737i
\(855\) −3.49678 −0.119587
\(856\) 10.5436 + 4.15265i 0.360374 + 0.141935i
\(857\) −15.3930 −0.525814 −0.262907 0.964821i \(-0.584681\pi\)
−0.262907 + 0.964821i \(0.584681\pi\)
\(858\) 31.7819 + 24.0938i 1.08501 + 0.822549i
\(859\) 34.6738 + 34.6738i 1.18306 + 1.18306i 0.978949 + 0.204106i \(0.0654289\pi\)
0.204106 + 0.978949i \(0.434571\pi\)
\(860\) 2.43491 + 8.68077i 0.0830298 + 0.296012i
\(861\) −1.47230 6.17035i −0.0501757 0.210285i
\(862\) 33.0799 4.55154i 1.12671 0.155026i
\(863\) 45.6641i 1.55443i 0.629238 + 0.777213i \(0.283367\pi\)
−0.629238 + 0.777213i \(0.716633\pi\)
\(864\) 3.24317 31.7702i 0.110335 1.08084i
\(865\) 15.0055 0.510202
\(866\) 2.50282 0.344368i 0.0850492 0.0117021i
\(867\) −16.2869 + 16.2869i −0.553134 + 0.553134i
\(868\) −12.0677 + 42.3327i −0.409605 + 1.43687i
\(869\) 9.02367 + 9.02367i 0.306107 + 0.306107i
\(870\) 22.2565 29.3583i 0.754566 0.995339i
\(871\) 1.03197i 0.0349670i
\(872\) −20.5260 8.08425i −0.695098 0.273767i
\(873\) 2.75341 0.0931887
\(874\) −2.59272 1.96554i −0.0876999 0.0664852i
\(875\) −26.4551 + 6.31240i −0.894345 + 0.213398i
\(876\) −8.96969 + 15.9632i −0.303058 + 0.539348i
\(877\) −37.0077 + 37.0077i −1.24966 + 1.24966i −0.293790 + 0.955870i \(0.594917\pi\)
−0.955870 + 0.293790i \(0.905083\pi\)
\(878\) 37.3053 5.13292i 1.25899 0.173228i
\(879\) 0.224984i 0.00758854i
\(880\) −14.0364 23.0522i −0.473165 0.777088i
\(881\) 17.8630i 0.601820i −0.953653 0.300910i \(-0.902710\pi\)
0.953653 0.300910i \(-0.0972903\pi\)
\(882\) 4.79488 + 6.93117i 0.161452 + 0.233385i
\(883\) −24.7949 24.7949i −0.834416 0.834416i 0.153701 0.988117i \(-0.450881\pi\)
−0.988117 + 0.153701i \(0.950881\pi\)
\(884\) 7.55868 13.4521i 0.254226 0.452443i
\(885\) −11.5059 + 11.5059i −0.386768 + 0.386768i
\(886\) −26.9991 20.4680i −0.907052 0.687636i
\(887\) 50.7922i 1.70543i 0.522373 + 0.852717i \(0.325047\pi\)
−0.522373 + 0.852717i \(0.674953\pi\)
\(888\) −9.79155 22.5160i −0.328583 0.755589i
\(889\) 6.48766 + 3.98807i 0.217589 + 0.133755i
\(890\) −31.2320 23.6769i −1.04690 0.793653i
\(891\) −11.4422 + 11.4422i −0.383328 + 0.383328i
\(892\) 29.6578 8.31885i 0.993016 0.278536i
\(893\) −2.35389 + 2.35389i −0.0787700 + 0.0787700i
\(894\) 3.08725 + 22.4376i 0.103253 + 0.750427i
\(895\) 31.5777 1.05553
\(896\) −27.5003 + 11.8208i −0.918721 + 0.394907i
\(897\) 13.3227 0.444833
\(898\) −1.30372 9.47527i −0.0435058 0.316194i
\(899\) 43.8225 43.8225i 1.46156 1.46156i
\(900\) −1.13251 + 0.317664i −0.0377504 + 0.0105888i
\(901\) −7.20031 + 7.20031i −0.239877 + 0.239877i
\(902\) 5.21389 + 3.95264i 0.173604 + 0.131609i
\(903\) −6.24329 3.83785i −0.207764 0.127716i
\(904\) −15.2470 35.0610i −0.507107 1.16611i
\(905\) 0.643249i 0.0213823i
\(906\) 33.9381 + 25.7284i 1.12752 + 0.854770i
\(907\) −34.2341 + 34.2341i −1.13673 + 1.13673i −0.147693 + 0.989033i \(0.547185\pi\)
−0.989033 + 0.147693i \(0.952815\pi\)
\(908\) −10.5340 + 18.7473i −0.349584 + 0.622151i
\(909\) 5.06049 + 5.06049i 0.167846 + 0.167846i
\(910\) −55.5741 24.4479i −1.84227 0.810440i
\(911\) 7.50342i 0.248599i 0.992245 + 0.124300i \(0.0396684\pi\)
−0.992245 + 0.124300i \(0.960332\pi\)
\(912\) 5.25016 + 8.62244i 0.173850 + 0.285517i
\(913\) 38.8691i 1.28638i
\(914\) 5.31087 0.730735i 0.175668 0.0241706i
\(915\) −7.16403 + 7.16403i −0.236836 + 0.236836i
\(916\) −24.3988 + 43.4222i −0.806158 + 1.43471i
\(917\) −4.52388 18.9594i −0.149392 0.626095i
\(918\) 7.21630 + 5.47067i 0.238173 + 0.180559i
\(919\) −29.0806 −0.959281 −0.479640 0.877465i \(-0.659233\pi\)
−0.479640 + 0.877465i \(0.659233\pi\)
\(920\) −8.38862 3.30389i −0.276564 0.108926i
\(921\) 2.55389i 0.0841535i
\(922\) 3.67724 4.85061i 0.121104 0.159746i
\(923\) 62.7555 + 62.7555i 2.06562 + 2.06562i
\(924\) 21.0979 + 6.01435i 0.694071 + 0.197857i
\(925\) −2.89272 + 2.89272i −0.0951121 + 0.0951121i
\(926\) −2.02234 + 0.278258i −0.0664582 + 0.00914414i
\(927\) −6.33776 −0.208159
\(928\) 41.9249 + 4.27979i 1.37625 + 0.140491i
\(929\) 25.2998i 0.830059i −0.909808 0.415029i \(-0.863771\pi\)
0.909808 0.415029i \(-0.136229\pi\)
\(930\) 40.7543 5.60748i 1.33639 0.183876i
\(931\) −11.4519 3.75620i −0.375321 0.123104i
\(932\) −3.63322 12.9529i −0.119010 0.424286i
\(933\) −15.5881 15.5881i −0.510332 0.510332i
\(934\) −17.4204 13.2064i −0.570012 0.432125i
\(935\) 7.65307 0.250282
\(936\) 15.2399 + 6.00232i 0.498133 + 0.196192i
\(937\) 17.3615 0.567177 0.283588 0.958946i \(-0.408475\pi\)
0.283588 + 0.958946i \(0.408475\pi\)
\(938\) 0.205786 + 0.529054i 0.00671916 + 0.0172742i
\(939\) 34.8734 34.8734i 1.13805 1.13805i
\(940\) −4.51880 + 8.04205i −0.147387 + 0.262303i
\(941\) −10.8511 10.8511i −0.353735 0.353735i 0.507762 0.861497i \(-0.330473\pi\)
−0.861497 + 0.507762i \(0.830473\pi\)
\(942\) 1.22751 + 8.92137i 0.0399945 + 0.290674i
\(943\) 2.18562 0.0711737
\(944\) −18.0868 4.39670i −0.588676 0.143101i
\(945\) 18.6595 30.3547i 0.606994 0.987439i
\(946\) 7.48816 1.03031i 0.243461 0.0334984i
\(947\) −26.4451 26.4451i −0.859349 0.859349i 0.131912 0.991261i \(-0.457888\pi\)
−0.991261 + 0.131912i \(0.957888\pi\)
\(948\) −11.5314 6.47945i −0.374522 0.210443i
\(949\) −30.0411 30.0411i −0.975175 0.975175i
\(950\) 1.01614 1.34038i 0.0329679 0.0434876i
\(951\) 8.39738i 0.272304i
\(952\) 1.19256 8.40367i 0.0386512 0.272365i
\(953\) 37.5483i 1.21631i −0.793819 0.608154i \(-0.791910\pi\)
0.793819 0.608154i \(-0.208090\pi\)
\(954\) −8.61369 6.53003i −0.278878 0.211418i
\(955\) −6.58089 6.58089i −0.212952 0.212952i
\(956\) −5.14947 18.3585i −0.166546 0.593758i
\(957\) −21.8404 21.8404i −0.705999 0.705999i
\(958\) 4.30378 + 31.2792i 0.139049 + 1.01059i
\(959\) −35.7939 22.0031i −1.15584 0.710516i
\(960\) 20.4609 + 19.0764i 0.660373 + 0.615687i
\(961\) 38.2032 1.23236
\(962\) 56.4362 7.76518i 1.81957 0.250359i
\(963\) −2.41189 2.41189i −0.0777221 0.0777221i
\(964\) −11.5462 41.1637i −0.371878 1.32579i
\(965\) −16.6578 + 16.6578i −0.536234 + 0.536234i
\(966\) 6.83006 2.65669i 0.219754 0.0854777i
\(967\) 37.9785 1.22131 0.610653 0.791898i \(-0.290907\pi\)
0.610653 + 0.791898i \(0.290907\pi\)
\(968\) 7.78135 3.38388i 0.250102 0.108762i
\(969\) −2.86256 −0.0919586
\(970\) −6.59148 + 8.69475i −0.211640 + 0.279172i
\(971\) 6.43134 + 6.43134i 0.206392 + 0.206392i 0.802732 0.596340i \(-0.203379\pi\)
−0.596340 + 0.802732i \(0.703379\pi\)
\(972\) −8.37675 + 14.9080i −0.268684 + 0.478174i
\(973\) 42.8576 10.2262i 1.37395 0.327836i
\(974\) −0.990614 7.19963i −0.0317413 0.230691i
\(975\) 6.88756i 0.220578i
\(976\) −11.2615 2.73755i −0.360473 0.0876269i
\(977\) −3.72659 −0.119224 −0.0596121 0.998222i \(-0.518986\pi\)
−0.0596121 + 0.998222i \(0.518986\pi\)
\(978\) −1.29030 9.37772i −0.0412593 0.299866i
\(979\) −23.2343 + 23.2343i −0.742571 + 0.742571i
\(980\) −33.3660 1.45145i −1.06584 0.0463648i
\(981\) 4.69539 + 4.69539i 0.149912 + 0.149912i
\(982\) 9.95155 + 7.54427i 0.317567 + 0.240747i
\(983\) 17.5847i 0.560863i −0.959874 0.280432i \(-0.909522\pi\)
0.959874 0.280432i \(-0.0904776\pi\)
\(984\) −6.30980 2.48514i −0.201149 0.0792234i
\(985\) 48.5879 1.54814
\(986\) −7.21927 + 9.52285i −0.229908 + 0.303269i
\(987\) −1.74031 7.29357i −0.0553946 0.232157i
\(988\) −22.5523 + 6.32580i −0.717484 + 0.201250i
\(989\) 1.78544 1.78544i 0.0567738 0.0567738i
\(990\) 1.10734 + 8.04799i 0.0351936 + 0.255782i
\(991\) 44.7264i 1.42078i 0.703808 + 0.710390i \(0.251482\pi\)
−0.703808 + 0.710390i \(0.748518\pi\)
\(992\) 29.7241 + 36.4826i 0.943741 + 1.15832i
\(993\) 23.6281i 0.749816i
\(994\) 44.6865 + 19.6583i 1.41737 + 0.623523i
\(995\) 43.2694 + 43.2694i 1.37173 + 1.37173i
\(996\) 10.8805 + 38.7905i 0.344762 + 1.22912i
\(997\) 0.273521 0.273521i 0.00866251 0.00866251i −0.702762 0.711425i \(-0.748050\pi\)
0.711425 + 0.702762i \(0.248050\pi\)
\(998\) −9.14315 + 12.0606i −0.289421 + 0.381772i
\(999\) 33.4328i 1.05777i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.2.j.d.27.5 16
4.3 odd 2 448.2.j.d.335.5 16
7.2 even 3 784.2.w.e.619.7 32
7.3 odd 6 784.2.w.e.411.1 32
7.4 even 3 784.2.w.e.411.2 32
7.5 odd 6 784.2.w.e.619.8 32
7.6 odd 2 inner 112.2.j.d.27.6 yes 16
8.3 odd 2 896.2.j.g.671.4 16
8.5 even 2 896.2.j.h.671.5 16
16.3 odd 4 inner 112.2.j.d.83.6 yes 16
16.5 even 4 896.2.j.g.223.5 16
16.11 odd 4 896.2.j.h.223.4 16
16.13 even 4 448.2.j.d.111.4 16
28.27 even 2 448.2.j.d.335.4 16
56.13 odd 2 896.2.j.h.671.4 16
56.27 even 2 896.2.j.g.671.5 16
112.3 even 12 784.2.w.e.19.7 32
112.13 odd 4 448.2.j.d.111.5 16
112.19 even 12 784.2.w.e.227.2 32
112.27 even 4 896.2.j.h.223.5 16
112.51 odd 12 784.2.w.e.227.1 32
112.67 odd 12 784.2.w.e.19.8 32
112.69 odd 4 896.2.j.g.223.4 16
112.83 even 4 inner 112.2.j.d.83.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.j.d.27.5 16 1.1 even 1 trivial
112.2.j.d.27.6 yes 16 7.6 odd 2 inner
112.2.j.d.83.5 yes 16 112.83 even 4 inner
112.2.j.d.83.6 yes 16 16.3 odd 4 inner
448.2.j.d.111.4 16 16.13 even 4
448.2.j.d.111.5 16 112.13 odd 4
448.2.j.d.335.4 16 28.27 even 2
448.2.j.d.335.5 16 4.3 odd 2
784.2.w.e.19.7 32 112.3 even 12
784.2.w.e.19.8 32 112.67 odd 12
784.2.w.e.227.1 32 112.51 odd 12
784.2.w.e.227.2 32 112.19 even 12
784.2.w.e.411.1 32 7.3 odd 6
784.2.w.e.411.2 32 7.4 even 3
784.2.w.e.619.7 32 7.2 even 3
784.2.w.e.619.8 32 7.5 odd 6
896.2.j.g.223.4 16 112.69 odd 4
896.2.j.g.223.5 16 16.5 even 4
896.2.j.g.671.4 16 8.3 odd 2
896.2.j.g.671.5 16 56.27 even 2
896.2.j.h.223.4 16 16.11 odd 4
896.2.j.h.223.5 16 112.27 even 4
896.2.j.h.671.4 16 56.13 odd 2
896.2.j.h.671.5 16 8.5 even 2