Properties

Label 446.2.a.f.1.5
Level $446$
Weight $2$
Character 446.1
Self dual yes
Analytic conductor $3.561$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [446,2,Mod(1,446)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(446, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("446.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 446 = 2 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 446.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.56132793015\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 12x^{6} + 46x^{5} + 54x^{4} - 148x^{3} - 98x^{2} + 126x + 69 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.517925\) of defining polynomial
Character \(\chi\) \(=\) 446.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.51793 q^{3} +1.00000 q^{4} +2.10687 q^{5} -1.51793 q^{6} +2.35547 q^{7} -1.00000 q^{8} -0.695903 q^{9} -2.10687 q^{10} -1.36297 q^{11} +1.51793 q^{12} +6.92929 q^{13} -2.35547 q^{14} +3.19807 q^{15} +1.00000 q^{16} -0.171333 q^{17} +0.695903 q^{18} -6.80032 q^{19} +2.10687 q^{20} +3.57543 q^{21} +1.36297 q^{22} -1.85608 q^{23} -1.51793 q^{24} -0.561091 q^{25} -6.92929 q^{26} -5.61010 q^{27} +2.35547 q^{28} -1.03585 q^{29} -3.19807 q^{30} +7.57814 q^{31} -1.00000 q^{32} -2.06888 q^{33} +0.171333 q^{34} +4.96267 q^{35} -0.695903 q^{36} +0.829338 q^{37} +6.80032 q^{38} +10.5181 q^{39} -2.10687 q^{40} -4.45177 q^{41} -3.57543 q^{42} +2.68998 q^{43} -1.36297 q^{44} -1.46618 q^{45} +1.85608 q^{46} +9.80625 q^{47} +1.51793 q^{48} -1.45177 q^{49} +0.561091 q^{50} -0.260070 q^{51} +6.92929 q^{52} +4.58658 q^{53} +5.61010 q^{54} -2.87160 q^{55} -2.35547 q^{56} -10.3224 q^{57} +1.03585 q^{58} -8.54953 q^{59} +3.19807 q^{60} +4.85077 q^{61} -7.57814 q^{62} -1.63918 q^{63} +1.00000 q^{64} +14.5991 q^{65} +2.06888 q^{66} +10.1639 q^{67} -0.171333 q^{68} -2.81739 q^{69} -4.96267 q^{70} -13.3869 q^{71} +0.695903 q^{72} -1.03805 q^{73} -0.829338 q^{74} -0.851694 q^{75} -6.80032 q^{76} -3.21043 q^{77} -10.5181 q^{78} -12.7446 q^{79} +2.10687 q^{80} -6.42801 q^{81} +4.45177 q^{82} -7.16289 q^{83} +3.57543 q^{84} -0.360976 q^{85} -2.68998 q^{86} -1.57234 q^{87} +1.36297 q^{88} +5.27074 q^{89} +1.46618 q^{90} +16.3217 q^{91} -1.85608 q^{92} +11.5030 q^{93} -9.80625 q^{94} -14.3274 q^{95} -1.51793 q^{96} +12.5216 q^{97} +1.45177 q^{98} +0.948494 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{5} - 4 q^{6} + 4 q^{7} - 8 q^{8} + 16 q^{9} - 4 q^{10} + 2 q^{11} + 4 q^{12} + 10 q^{13} - 4 q^{14} - 4 q^{15} + 8 q^{16} + 8 q^{17} - 16 q^{18} + 16 q^{19} + 4 q^{20}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.51793 0.876375 0.438187 0.898884i \(-0.355621\pi\)
0.438187 + 0.898884i \(0.355621\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.10687 0.942222 0.471111 0.882074i \(-0.343853\pi\)
0.471111 + 0.882074i \(0.343853\pi\)
\(6\) −1.51793 −0.619690
\(7\) 2.35547 0.890284 0.445142 0.895460i \(-0.353153\pi\)
0.445142 + 0.895460i \(0.353153\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.695903 −0.231968
\(10\) −2.10687 −0.666251
\(11\) −1.36297 −0.410951 −0.205475 0.978662i \(-0.565874\pi\)
−0.205475 + 0.978662i \(0.565874\pi\)
\(12\) 1.51793 0.438187
\(13\) 6.92929 1.92184 0.960919 0.276830i \(-0.0892838\pi\)
0.960919 + 0.276830i \(0.0892838\pi\)
\(14\) −2.35547 −0.629526
\(15\) 3.19807 0.825739
\(16\) 1.00000 0.250000
\(17\) −0.171333 −0.0415543 −0.0207771 0.999784i \(-0.506614\pi\)
−0.0207771 + 0.999784i \(0.506614\pi\)
\(18\) 0.695903 0.164026
\(19\) −6.80032 −1.56010 −0.780050 0.625717i \(-0.784807\pi\)
−0.780050 + 0.625717i \(0.784807\pi\)
\(20\) 2.10687 0.471111
\(21\) 3.57543 0.780222
\(22\) 1.36297 0.290586
\(23\) −1.85608 −0.387019 −0.193510 0.981098i \(-0.561987\pi\)
−0.193510 + 0.981098i \(0.561987\pi\)
\(24\) −1.51793 −0.309845
\(25\) −0.561091 −0.112218
\(26\) −6.92929 −1.35894
\(27\) −5.61010 −1.07967
\(28\) 2.35547 0.445142
\(29\) −1.03585 −0.192353 −0.0961763 0.995364i \(-0.530661\pi\)
−0.0961763 + 0.995364i \(0.530661\pi\)
\(30\) −3.19807 −0.583886
\(31\) 7.57814 1.36107 0.680537 0.732714i \(-0.261747\pi\)
0.680537 + 0.732714i \(0.261747\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.06888 −0.360147
\(34\) 0.171333 0.0293833
\(35\) 4.96267 0.838845
\(36\) −0.695903 −0.115984
\(37\) 0.829338 0.136342 0.0681711 0.997674i \(-0.478284\pi\)
0.0681711 + 0.997674i \(0.478284\pi\)
\(38\) 6.80032 1.10316
\(39\) 10.5181 1.68425
\(40\) −2.10687 −0.333126
\(41\) −4.45177 −0.695249 −0.347624 0.937634i \(-0.613012\pi\)
−0.347624 + 0.937634i \(0.613012\pi\)
\(42\) −3.57543 −0.551700
\(43\) 2.68998 0.410218 0.205109 0.978739i \(-0.434245\pi\)
0.205109 + 0.978739i \(0.434245\pi\)
\(44\) −1.36297 −0.205475
\(45\) −1.46618 −0.218565
\(46\) 1.85608 0.273664
\(47\) 9.80625 1.43039 0.715194 0.698926i \(-0.246338\pi\)
0.715194 + 0.698926i \(0.246338\pi\)
\(48\) 1.51793 0.219094
\(49\) −1.45177 −0.207395
\(50\) 0.561091 0.0793503
\(51\) −0.260070 −0.0364171
\(52\) 6.92929 0.960919
\(53\) 4.58658 0.630015 0.315007 0.949089i \(-0.397993\pi\)
0.315007 + 0.949089i \(0.397993\pi\)
\(54\) 5.61010 0.763439
\(55\) −2.87160 −0.387207
\(56\) −2.35547 −0.314763
\(57\) −10.3224 −1.36723
\(58\) 1.03585 0.136014
\(59\) −8.54953 −1.11305 −0.556527 0.830830i \(-0.687866\pi\)
−0.556527 + 0.830830i \(0.687866\pi\)
\(60\) 3.19807 0.412870
\(61\) 4.85077 0.621078 0.310539 0.950561i \(-0.399490\pi\)
0.310539 + 0.950561i \(0.399490\pi\)
\(62\) −7.57814 −0.962425
\(63\) −1.63918 −0.206517
\(64\) 1.00000 0.125000
\(65\) 14.5991 1.81080
\(66\) 2.06888 0.254662
\(67\) 10.1639 1.24172 0.620858 0.783923i \(-0.286784\pi\)
0.620858 + 0.783923i \(0.286784\pi\)
\(68\) −0.171333 −0.0207771
\(69\) −2.81739 −0.339174
\(70\) −4.96267 −0.593153
\(71\) −13.3869 −1.58873 −0.794366 0.607439i \(-0.792197\pi\)
−0.794366 + 0.607439i \(0.792197\pi\)
\(72\) 0.695903 0.0820130
\(73\) −1.03805 −0.121494 −0.0607470 0.998153i \(-0.519348\pi\)
−0.0607470 + 0.998153i \(0.519348\pi\)
\(74\) −0.829338 −0.0964085
\(75\) −0.851694 −0.0983452
\(76\) −6.80032 −0.780050
\(77\) −3.21043 −0.365863
\(78\) −10.5181 −1.19094
\(79\) −12.7446 −1.43388 −0.716940 0.697135i \(-0.754458\pi\)
−0.716940 + 0.697135i \(0.754458\pi\)
\(80\) 2.10687 0.235555
\(81\) −6.42801 −0.714223
\(82\) 4.45177 0.491615
\(83\) −7.16289 −0.786230 −0.393115 0.919489i \(-0.628603\pi\)
−0.393115 + 0.919489i \(0.628603\pi\)
\(84\) 3.57543 0.390111
\(85\) −0.360976 −0.0391533
\(86\) −2.68998 −0.290068
\(87\) −1.57234 −0.168573
\(88\) 1.36297 0.145293
\(89\) 5.27074 0.558697 0.279349 0.960190i \(-0.409881\pi\)
0.279349 + 0.960190i \(0.409881\pi\)
\(90\) 1.46618 0.154549
\(91\) 16.3217 1.71098
\(92\) −1.85608 −0.193510
\(93\) 11.5030 1.19281
\(94\) −9.80625 −1.01144
\(95\) −14.3274 −1.46996
\(96\) −1.51793 −0.154923
\(97\) 12.5216 1.27137 0.635687 0.771947i \(-0.280717\pi\)
0.635687 + 0.771947i \(0.280717\pi\)
\(98\) 1.45177 0.146650
\(99\) 0.948494 0.0953273
\(100\) −0.561091 −0.0561091
\(101\) 10.6788 1.06258 0.531290 0.847190i \(-0.321707\pi\)
0.531290 + 0.847190i \(0.321707\pi\)
\(102\) 0.260070 0.0257508
\(103\) −11.2884 −1.11228 −0.556140 0.831089i \(-0.687718\pi\)
−0.556140 + 0.831089i \(0.687718\pi\)
\(104\) −6.92929 −0.679472
\(105\) 7.53296 0.735142
\(106\) −4.58658 −0.445488
\(107\) −15.8258 −1.52993 −0.764967 0.644069i \(-0.777245\pi\)
−0.764967 + 0.644069i \(0.777245\pi\)
\(108\) −5.61010 −0.539833
\(109\) −10.6746 −1.02244 −0.511221 0.859449i \(-0.670807\pi\)
−0.511221 + 0.859449i \(0.670807\pi\)
\(110\) 2.87160 0.273796
\(111\) 1.25887 0.119487
\(112\) 2.35547 0.222571
\(113\) −10.1967 −0.959223 −0.479611 0.877481i \(-0.659222\pi\)
−0.479611 + 0.877481i \(0.659222\pi\)
\(114\) 10.3224 0.966779
\(115\) −3.91052 −0.364658
\(116\) −1.03585 −0.0961763
\(117\) −4.82211 −0.445804
\(118\) 8.54953 0.787048
\(119\) −0.403569 −0.0369951
\(120\) −3.19807 −0.291943
\(121\) −9.14232 −0.831120
\(122\) −4.85077 −0.439169
\(123\) −6.75745 −0.609298
\(124\) 7.57814 0.680537
\(125\) −11.7165 −1.04796
\(126\) 1.63918 0.146030
\(127\) −1.16477 −0.103357 −0.0516784 0.998664i \(-0.516457\pi\)
−0.0516784 + 0.998664i \(0.516457\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.08318 0.359504
\(130\) −14.5991 −1.28043
\(131\) 9.67725 0.845505 0.422753 0.906245i \(-0.361064\pi\)
0.422753 + 0.906245i \(0.361064\pi\)
\(132\) −2.06888 −0.180073
\(133\) −16.0179 −1.38893
\(134\) −10.1639 −0.878026
\(135\) −11.8198 −1.01728
\(136\) 0.171333 0.0146916
\(137\) −14.8925 −1.27236 −0.636178 0.771542i \(-0.719486\pi\)
−0.636178 + 0.771542i \(0.719486\pi\)
\(138\) 2.81739 0.239832
\(139\) −5.37395 −0.455813 −0.227906 0.973683i \(-0.573188\pi\)
−0.227906 + 0.973683i \(0.573188\pi\)
\(140\) 4.96267 0.419422
\(141\) 14.8851 1.25356
\(142\) 13.3869 1.12340
\(143\) −9.44440 −0.789780
\(144\) −0.695903 −0.0579919
\(145\) −2.18240 −0.181239
\(146\) 1.03805 0.0859093
\(147\) −2.20367 −0.181756
\(148\) 0.829338 0.0681711
\(149\) −3.70803 −0.303773 −0.151887 0.988398i \(-0.548535\pi\)
−0.151887 + 0.988398i \(0.548535\pi\)
\(150\) 0.851694 0.0695406
\(151\) 12.7944 1.04120 0.520598 0.853802i \(-0.325709\pi\)
0.520598 + 0.853802i \(0.325709\pi\)
\(152\) 6.80032 0.551579
\(153\) 0.119231 0.00963925
\(154\) 3.21043 0.258704
\(155\) 15.9662 1.28243
\(156\) 10.5181 0.842125
\(157\) 6.80948 0.543456 0.271728 0.962374i \(-0.412405\pi\)
0.271728 + 0.962374i \(0.412405\pi\)
\(158\) 12.7446 1.01391
\(159\) 6.96208 0.552129
\(160\) −2.10687 −0.166563
\(161\) −4.37194 −0.344557
\(162\) 6.42801 0.505032
\(163\) −18.2483 −1.42932 −0.714658 0.699474i \(-0.753418\pi\)
−0.714658 + 0.699474i \(0.753418\pi\)
\(164\) −4.45177 −0.347624
\(165\) −4.35888 −0.339338
\(166\) 7.16289 0.555948
\(167\) −13.8195 −1.06938 −0.534691 0.845048i \(-0.679572\pi\)
−0.534691 + 0.845048i \(0.679572\pi\)
\(168\) −3.57543 −0.275850
\(169\) 35.0150 2.69346
\(170\) 0.360976 0.0276856
\(171\) 4.73236 0.361893
\(172\) 2.68998 0.205109
\(173\) 7.58319 0.576539 0.288270 0.957549i \(-0.406920\pi\)
0.288270 + 0.957549i \(0.406920\pi\)
\(174\) 1.57234 0.119199
\(175\) −1.32163 −0.0999061
\(176\) −1.36297 −0.102738
\(177\) −12.9775 −0.975452
\(178\) −5.27074 −0.395059
\(179\) −6.37060 −0.476161 −0.238080 0.971245i \(-0.576518\pi\)
−0.238080 + 0.971245i \(0.576518\pi\)
\(180\) −1.46618 −0.109283
\(181\) 24.9674 1.85581 0.927905 0.372817i \(-0.121608\pi\)
0.927905 + 0.372817i \(0.121608\pi\)
\(182\) −16.3217 −1.20985
\(183\) 7.36311 0.544297
\(184\) 1.85608 0.136832
\(185\) 1.74731 0.128465
\(186\) −11.5030 −0.843444
\(187\) 0.233521 0.0170767
\(188\) 9.80625 0.715194
\(189\) −13.2144 −0.961208
\(190\) 14.3274 1.03942
\(191\) −6.57141 −0.475490 −0.237745 0.971328i \(-0.576408\pi\)
−0.237745 + 0.971328i \(0.576408\pi\)
\(192\) 1.51793 0.109547
\(193\) 25.1278 1.80874 0.904369 0.426751i \(-0.140342\pi\)
0.904369 + 0.426751i \(0.140342\pi\)
\(194\) −12.5216 −0.898998
\(195\) 22.1604 1.58694
\(196\) −1.45177 −0.103698
\(197\) 2.06999 0.147481 0.0737404 0.997277i \(-0.476506\pi\)
0.0737404 + 0.997277i \(0.476506\pi\)
\(198\) −0.948494 −0.0674066
\(199\) 10.7023 0.758665 0.379332 0.925260i \(-0.376154\pi\)
0.379332 + 0.925260i \(0.376154\pi\)
\(200\) 0.561091 0.0396751
\(201\) 15.4280 1.08821
\(202\) −10.6788 −0.751358
\(203\) −2.43991 −0.171248
\(204\) −0.260070 −0.0182085
\(205\) −9.37930 −0.655079
\(206\) 11.2884 0.786501
\(207\) 1.29165 0.0897760
\(208\) 6.92929 0.480460
\(209\) 9.26863 0.641124
\(210\) −7.53296 −0.519824
\(211\) −3.80476 −0.261930 −0.130965 0.991387i \(-0.541808\pi\)
−0.130965 + 0.991387i \(0.541808\pi\)
\(212\) 4.58658 0.315007
\(213\) −20.3203 −1.39232
\(214\) 15.8258 1.08183
\(215\) 5.66744 0.386516
\(216\) 5.61010 0.381719
\(217\) 17.8501 1.21174
\(218\) 10.6746 0.722976
\(219\) −1.57568 −0.106474
\(220\) −2.87160 −0.193603
\(221\) −1.18721 −0.0798606
\(222\) −1.25887 −0.0844900
\(223\) 1.00000 0.0669650
\(224\) −2.35547 −0.157381
\(225\) 0.390465 0.0260310
\(226\) 10.1967 0.678273
\(227\) −17.7192 −1.17607 −0.588033 0.808837i \(-0.700097\pi\)
−0.588033 + 0.808837i \(0.700097\pi\)
\(228\) −10.3224 −0.683616
\(229\) 19.7131 1.30268 0.651340 0.758786i \(-0.274207\pi\)
0.651340 + 0.758786i \(0.274207\pi\)
\(230\) 3.91052 0.257852
\(231\) −4.87319 −0.320633
\(232\) 1.03585 0.0680069
\(233\) −14.8042 −0.969856 −0.484928 0.874554i \(-0.661154\pi\)
−0.484928 + 0.874554i \(0.661154\pi\)
\(234\) 4.82211 0.315231
\(235\) 20.6605 1.34774
\(236\) −8.54953 −0.556527
\(237\) −19.3454 −1.25662
\(238\) 0.403569 0.0261595
\(239\) −0.421862 −0.0272880 −0.0136440 0.999907i \(-0.504343\pi\)
−0.0136440 + 0.999907i \(0.504343\pi\)
\(240\) 3.19807 0.206435
\(241\) −2.44571 −0.157542 −0.0787709 0.996893i \(-0.525100\pi\)
−0.0787709 + 0.996893i \(0.525100\pi\)
\(242\) 9.14232 0.587690
\(243\) 7.07308 0.453738
\(244\) 4.85077 0.310539
\(245\) −3.05868 −0.195412
\(246\) 6.75745 0.430839
\(247\) −47.1214 −2.99826
\(248\) −7.57814 −0.481212
\(249\) −10.8727 −0.689032
\(250\) 11.7165 0.741017
\(251\) 9.45022 0.596492 0.298246 0.954489i \(-0.403598\pi\)
0.298246 + 0.954489i \(0.403598\pi\)
\(252\) −1.63918 −0.103259
\(253\) 2.52978 0.159046
\(254\) 1.16477 0.0730843
\(255\) −0.547934 −0.0343130
\(256\) 1.00000 0.0625000
\(257\) 23.9764 1.49561 0.747805 0.663919i \(-0.231108\pi\)
0.747805 + 0.663919i \(0.231108\pi\)
\(258\) −4.08318 −0.254208
\(259\) 1.95348 0.121383
\(260\) 14.5991 0.905399
\(261\) 0.720852 0.0446196
\(262\) −9.67725 −0.597863
\(263\) 22.2382 1.37126 0.685632 0.727948i \(-0.259526\pi\)
0.685632 + 0.727948i \(0.259526\pi\)
\(264\) 2.06888 0.127331
\(265\) 9.66333 0.593614
\(266\) 16.0179 0.982123
\(267\) 8.00059 0.489628
\(268\) 10.1639 0.620858
\(269\) 21.3087 1.29921 0.649606 0.760271i \(-0.274934\pi\)
0.649606 + 0.760271i \(0.274934\pi\)
\(270\) 11.8198 0.719328
\(271\) −20.1222 −1.22234 −0.611169 0.791500i \(-0.709301\pi\)
−0.611169 + 0.791500i \(0.709301\pi\)
\(272\) −0.171333 −0.0103886
\(273\) 24.7751 1.49946
\(274\) 14.8925 0.899691
\(275\) 0.764750 0.0461161
\(276\) −2.81739 −0.169587
\(277\) −18.7305 −1.12541 −0.562703 0.826659i \(-0.690238\pi\)
−0.562703 + 0.826659i \(0.690238\pi\)
\(278\) 5.37395 0.322308
\(279\) −5.27365 −0.315725
\(280\) −4.96267 −0.296576
\(281\) −2.49592 −0.148894 −0.0744471 0.997225i \(-0.523719\pi\)
−0.0744471 + 0.997225i \(0.523719\pi\)
\(282\) −14.8851 −0.886398
\(283\) −3.05165 −0.181402 −0.0907010 0.995878i \(-0.528911\pi\)
−0.0907010 + 0.995878i \(0.528911\pi\)
\(284\) −13.3869 −0.794366
\(285\) −21.7479 −1.28824
\(286\) 9.44440 0.558459
\(287\) −10.4860 −0.618969
\(288\) 0.695903 0.0410065
\(289\) −16.9706 −0.998273
\(290\) 2.18240 0.128155
\(291\) 19.0068 1.11420
\(292\) −1.03805 −0.0607470
\(293\) 19.5632 1.14289 0.571447 0.820639i \(-0.306382\pi\)
0.571447 + 0.820639i \(0.306382\pi\)
\(294\) 2.20367 0.128521
\(295\) −18.0128 −1.04874
\(296\) −0.829338 −0.0482043
\(297\) 7.64640 0.443689
\(298\) 3.70803 0.214800
\(299\) −12.8613 −0.743788
\(300\) −0.851694 −0.0491726
\(301\) 6.33616 0.365210
\(302\) −12.7944 −0.736237
\(303\) 16.2096 0.931218
\(304\) −6.80032 −0.390025
\(305\) 10.2200 0.585193
\(306\) −0.119231 −0.00681598
\(307\) 11.2140 0.640014 0.320007 0.947415i \(-0.396315\pi\)
0.320007 + 0.947415i \(0.396315\pi\)
\(308\) −3.21043 −0.182931
\(309\) −17.1350 −0.974774
\(310\) −15.9662 −0.906817
\(311\) 10.4216 0.590955 0.295477 0.955350i \(-0.404521\pi\)
0.295477 + 0.955350i \(0.404521\pi\)
\(312\) −10.5181 −0.595472
\(313\) 10.4591 0.591182 0.295591 0.955315i \(-0.404484\pi\)
0.295591 + 0.955315i \(0.404484\pi\)
\(314\) −6.80948 −0.384281
\(315\) −3.45354 −0.194585
\(316\) −12.7446 −0.716940
\(317\) −23.3705 −1.31262 −0.656308 0.754493i \(-0.727883\pi\)
−0.656308 + 0.754493i \(0.727883\pi\)
\(318\) −6.96208 −0.390414
\(319\) 1.41183 0.0790474
\(320\) 2.10687 0.117778
\(321\) −24.0223 −1.34080
\(322\) 4.37194 0.243638
\(323\) 1.16512 0.0648288
\(324\) −6.42801 −0.357112
\(325\) −3.88796 −0.215665
\(326\) 18.2483 1.01068
\(327\) −16.2033 −0.896043
\(328\) 4.45177 0.245808
\(329\) 23.0983 1.27345
\(330\) 4.35888 0.239948
\(331\) 5.97727 0.328541 0.164270 0.986415i \(-0.447473\pi\)
0.164270 + 0.986415i \(0.447473\pi\)
\(332\) −7.16289 −0.393115
\(333\) −0.577139 −0.0316270
\(334\) 13.8195 0.756167
\(335\) 21.4140 1.16997
\(336\) 3.57543 0.195055
\(337\) −31.8872 −1.73701 −0.868504 0.495683i \(-0.834918\pi\)
−0.868504 + 0.495683i \(0.834918\pi\)
\(338\) −35.0150 −1.90456
\(339\) −15.4778 −0.840638
\(340\) −0.360976 −0.0195767
\(341\) −10.3288 −0.559334
\(342\) −4.73236 −0.255897
\(343\) −19.9079 −1.07492
\(344\) −2.68998 −0.145034
\(345\) −5.93588 −0.319577
\(346\) −7.58319 −0.407675
\(347\) −3.95241 −0.212176 −0.106088 0.994357i \(-0.533833\pi\)
−0.106088 + 0.994357i \(0.533833\pi\)
\(348\) −1.57234 −0.0842865
\(349\) −21.7402 −1.16372 −0.581862 0.813287i \(-0.697676\pi\)
−0.581862 + 0.813287i \(0.697676\pi\)
\(350\) 1.32163 0.0706443
\(351\) −38.8740 −2.07494
\(352\) 1.36297 0.0726465
\(353\) 33.5093 1.78352 0.891761 0.452508i \(-0.149470\pi\)
0.891761 + 0.452508i \(0.149470\pi\)
\(354\) 12.9775 0.689749
\(355\) −28.2045 −1.49694
\(356\) 5.27074 0.279349
\(357\) −0.612587 −0.0324215
\(358\) 6.37060 0.336696
\(359\) 17.7400 0.936280 0.468140 0.883654i \(-0.344924\pi\)
0.468140 + 0.883654i \(0.344924\pi\)
\(360\) 1.46618 0.0772744
\(361\) 27.2444 1.43391
\(362\) −24.9674 −1.31226
\(363\) −13.8774 −0.728372
\(364\) 16.3217 0.855490
\(365\) −2.18703 −0.114474
\(366\) −7.36311 −0.384876
\(367\) 15.3095 0.799149 0.399575 0.916701i \(-0.369158\pi\)
0.399575 + 0.916701i \(0.369158\pi\)
\(368\) −1.85608 −0.0967548
\(369\) 3.09800 0.161275
\(370\) −1.74731 −0.0908382
\(371\) 10.8035 0.560892
\(372\) 11.5030 0.596405
\(373\) −1.62350 −0.0840619 −0.0420309 0.999116i \(-0.513383\pi\)
−0.0420309 + 0.999116i \(0.513383\pi\)
\(374\) −0.233521 −0.0120751
\(375\) −17.7848 −0.918402
\(376\) −9.80625 −0.505719
\(377\) −7.17770 −0.369671
\(378\) 13.2144 0.679677
\(379\) −7.67269 −0.394120 −0.197060 0.980391i \(-0.563139\pi\)
−0.197060 + 0.980391i \(0.563139\pi\)
\(380\) −14.3274 −0.734980
\(381\) −1.76804 −0.0905793
\(382\) 6.57141 0.336223
\(383\) 27.3936 1.39975 0.699874 0.714266i \(-0.253239\pi\)
0.699874 + 0.714266i \(0.253239\pi\)
\(384\) −1.51793 −0.0774613
\(385\) −6.76397 −0.344724
\(386\) −25.1278 −1.27897
\(387\) −1.87196 −0.0951573
\(388\) 12.5216 0.635687
\(389\) 23.7356 1.20344 0.601722 0.798706i \(-0.294482\pi\)
0.601722 + 0.798706i \(0.294482\pi\)
\(390\) −22.1604 −1.12213
\(391\) 0.318007 0.0160823
\(392\) 1.45177 0.0733252
\(393\) 14.6893 0.740979
\(394\) −2.06999 −0.104285
\(395\) −26.8513 −1.35103
\(396\) 0.948494 0.0476636
\(397\) 15.7036 0.788142 0.394071 0.919080i \(-0.371066\pi\)
0.394071 + 0.919080i \(0.371066\pi\)
\(398\) −10.7023 −0.536457
\(399\) −24.3140 −1.21722
\(400\) −0.561091 −0.0280546
\(401\) 5.05626 0.252498 0.126249 0.991999i \(-0.459706\pi\)
0.126249 + 0.991999i \(0.459706\pi\)
\(402\) −15.4280 −0.769479
\(403\) 52.5111 2.61576
\(404\) 10.6788 0.531290
\(405\) −13.5430 −0.672957
\(406\) 2.43991 0.121091
\(407\) −1.13036 −0.0560299
\(408\) 0.260070 0.0128754
\(409\) −35.8885 −1.77457 −0.887285 0.461221i \(-0.847411\pi\)
−0.887285 + 0.461221i \(0.847411\pi\)
\(410\) 9.37930 0.463211
\(411\) −22.6058 −1.11506
\(412\) −11.2884 −0.556140
\(413\) −20.1381 −0.990934
\(414\) −1.29165 −0.0634812
\(415\) −15.0913 −0.740803
\(416\) −6.92929 −0.339736
\(417\) −8.15726 −0.399463
\(418\) −9.26863 −0.453343
\(419\) 12.3568 0.603668 0.301834 0.953360i \(-0.402401\pi\)
0.301834 + 0.953360i \(0.402401\pi\)
\(420\) 7.53296 0.367571
\(421\) 14.9471 0.728477 0.364239 0.931306i \(-0.381329\pi\)
0.364239 + 0.931306i \(0.381329\pi\)
\(422\) 3.80476 0.185213
\(423\) −6.82420 −0.331804
\(424\) −4.58658 −0.222744
\(425\) 0.0961332 0.00466315
\(426\) 20.3203 0.984522
\(427\) 11.4258 0.552936
\(428\) −15.8258 −0.764967
\(429\) −14.3359 −0.692143
\(430\) −5.66744 −0.273308
\(431\) 35.5998 1.71478 0.857391 0.514665i \(-0.172084\pi\)
0.857391 + 0.514665i \(0.172084\pi\)
\(432\) −5.61010 −0.269916
\(433\) 11.8926 0.571522 0.285761 0.958301i \(-0.407754\pi\)
0.285761 + 0.958301i \(0.407754\pi\)
\(434\) −17.8501 −0.856831
\(435\) −3.31273 −0.158833
\(436\) −10.6746 −0.511221
\(437\) 12.6219 0.603789
\(438\) 1.57568 0.0752887
\(439\) −10.8627 −0.518449 −0.259224 0.965817i \(-0.583467\pi\)
−0.259224 + 0.965817i \(0.583467\pi\)
\(440\) 2.87160 0.136898
\(441\) 1.01029 0.0481090
\(442\) 1.18721 0.0564699
\(443\) −28.7169 −1.36438 −0.682191 0.731174i \(-0.738973\pi\)
−0.682191 + 0.731174i \(0.738973\pi\)
\(444\) 1.25887 0.0597434
\(445\) 11.1048 0.526417
\(446\) −1.00000 −0.0473514
\(447\) −5.62851 −0.266219
\(448\) 2.35547 0.111285
\(449\) 19.7104 0.930190 0.465095 0.885261i \(-0.346020\pi\)
0.465095 + 0.885261i \(0.346020\pi\)
\(450\) −0.390465 −0.0184067
\(451\) 6.06762 0.285713
\(452\) −10.1967 −0.479611
\(453\) 19.4210 0.912478
\(454\) 17.7192 0.831604
\(455\) 34.3878 1.61212
\(456\) 10.3224 0.483390
\(457\) 21.5825 1.00959 0.504794 0.863240i \(-0.331568\pi\)
0.504794 + 0.863240i \(0.331568\pi\)
\(458\) −19.7131 −0.921134
\(459\) 0.961194 0.0448647
\(460\) −3.91052 −0.182329
\(461\) 1.17709 0.0548225 0.0274113 0.999624i \(-0.491274\pi\)
0.0274113 + 0.999624i \(0.491274\pi\)
\(462\) 4.87319 0.226722
\(463\) 11.6295 0.540469 0.270235 0.962794i \(-0.412899\pi\)
0.270235 + 0.962794i \(0.412899\pi\)
\(464\) −1.03585 −0.0480881
\(465\) 24.2354 1.12389
\(466\) 14.8042 0.685792
\(467\) −18.0809 −0.836682 −0.418341 0.908290i \(-0.637388\pi\)
−0.418341 + 0.908290i \(0.637388\pi\)
\(468\) −4.82211 −0.222902
\(469\) 23.9407 1.10548
\(470\) −20.6605 −0.952998
\(471\) 10.3363 0.476271
\(472\) 8.54953 0.393524
\(473\) −3.66636 −0.168579
\(474\) 19.3454 0.888562
\(475\) 3.81560 0.175072
\(476\) −0.403569 −0.0184975
\(477\) −3.19181 −0.146143
\(478\) 0.421862 0.0192955
\(479\) −33.4794 −1.52971 −0.764856 0.644201i \(-0.777190\pi\)
−0.764856 + 0.644201i \(0.777190\pi\)
\(480\) −3.19807 −0.145971
\(481\) 5.74672 0.262028
\(482\) 2.44571 0.111399
\(483\) −6.63627 −0.301961
\(484\) −9.14232 −0.415560
\(485\) 26.3814 1.19792
\(486\) −7.07308 −0.320841
\(487\) −14.4847 −0.656365 −0.328182 0.944614i \(-0.606436\pi\)
−0.328182 + 0.944614i \(0.606436\pi\)
\(488\) −4.85077 −0.219584
\(489\) −27.6995 −1.25262
\(490\) 3.05868 0.138177
\(491\) 35.7970 1.61550 0.807748 0.589528i \(-0.200686\pi\)
0.807748 + 0.589528i \(0.200686\pi\)
\(492\) −6.75745 −0.304649
\(493\) 0.177475 0.00799307
\(494\) 47.1214 2.12009
\(495\) 1.99836 0.0898194
\(496\) 7.57814 0.340268
\(497\) −31.5324 −1.41442
\(498\) 10.8727 0.487219
\(499\) 25.0571 1.12171 0.560854 0.827915i \(-0.310473\pi\)
0.560854 + 0.827915i \(0.310473\pi\)
\(500\) −11.7165 −0.523978
\(501\) −20.9769 −0.937179
\(502\) −9.45022 −0.421784
\(503\) 21.9912 0.980541 0.490271 0.871570i \(-0.336898\pi\)
0.490271 + 0.871570i \(0.336898\pi\)
\(504\) 1.63918 0.0730148
\(505\) 22.4989 1.00119
\(506\) −2.52978 −0.112462
\(507\) 53.1501 2.36048
\(508\) −1.16477 −0.0516784
\(509\) 5.12448 0.227139 0.113569 0.993530i \(-0.463772\pi\)
0.113569 + 0.993530i \(0.463772\pi\)
\(510\) 0.547934 0.0242629
\(511\) −2.44509 −0.108164
\(512\) −1.00000 −0.0441942
\(513\) 38.1505 1.68439
\(514\) −23.9764 −1.05756
\(515\) −23.7832 −1.04801
\(516\) 4.08318 0.179752
\(517\) −13.3656 −0.587819
\(518\) −1.95348 −0.0858310
\(519\) 11.5107 0.505265
\(520\) −14.5991 −0.640214
\(521\) 42.7902 1.87467 0.937336 0.348428i \(-0.113284\pi\)
0.937336 + 0.348428i \(0.113284\pi\)
\(522\) −0.720852 −0.0315508
\(523\) −17.6467 −0.771635 −0.385818 0.922575i \(-0.626081\pi\)
−0.385818 + 0.922575i \(0.626081\pi\)
\(524\) 9.67725 0.422753
\(525\) −2.00614 −0.0875551
\(526\) −22.2382 −0.969630
\(527\) −1.29838 −0.0565584
\(528\) −2.06888 −0.0900367
\(529\) −19.5550 −0.850216
\(530\) −9.66333 −0.419748
\(531\) 5.94964 0.258193
\(532\) −16.0179 −0.694466
\(533\) −30.8476 −1.33616
\(534\) −8.00059 −0.346219
\(535\) −33.3429 −1.44154
\(536\) −10.1639 −0.439013
\(537\) −9.67009 −0.417295
\(538\) −21.3087 −0.918682
\(539\) 1.97871 0.0852291
\(540\) −11.8198 −0.508642
\(541\) −23.0560 −0.991254 −0.495627 0.868535i \(-0.665062\pi\)
−0.495627 + 0.868535i \(0.665062\pi\)
\(542\) 20.1222 0.864324
\(543\) 37.8986 1.62638
\(544\) 0.171333 0.00734582
\(545\) −22.4901 −0.963368
\(546\) −24.7751 −1.06028
\(547\) −39.9822 −1.70952 −0.854758 0.519027i \(-0.826294\pi\)
−0.854758 + 0.519027i \(0.826294\pi\)
\(548\) −14.8925 −0.636178
\(549\) −3.37567 −0.144070
\(550\) −0.764750 −0.0326090
\(551\) 7.04412 0.300089
\(552\) 2.81739 0.119916
\(553\) −30.0195 −1.27656
\(554\) 18.7305 0.795782
\(555\) 2.65228 0.112583
\(556\) −5.37395 −0.227906
\(557\) −8.62860 −0.365606 −0.182803 0.983150i \(-0.558517\pi\)
−0.182803 + 0.983150i \(0.558517\pi\)
\(558\) 5.27365 0.223251
\(559\) 18.6396 0.788372
\(560\) 4.96267 0.209711
\(561\) 0.354467 0.0149656
\(562\) 2.49592 0.105284
\(563\) 26.8712 1.13249 0.566243 0.824239i \(-0.308397\pi\)
0.566243 + 0.824239i \(0.308397\pi\)
\(564\) 14.8851 0.626778
\(565\) −21.4831 −0.903800
\(566\) 3.05165 0.128271
\(567\) −15.1410 −0.635861
\(568\) 13.3869 0.561702
\(569\) 17.3129 0.725795 0.362897 0.931829i \(-0.381788\pi\)
0.362897 + 0.931829i \(0.381788\pi\)
\(570\) 21.7479 0.910920
\(571\) 7.10163 0.297194 0.148597 0.988898i \(-0.452524\pi\)
0.148597 + 0.988898i \(0.452524\pi\)
\(572\) −9.44440 −0.394890
\(573\) −9.97491 −0.416708
\(574\) 10.4860 0.437677
\(575\) 1.04143 0.0434306
\(576\) −0.695903 −0.0289960
\(577\) 8.75333 0.364406 0.182203 0.983261i \(-0.441677\pi\)
0.182203 + 0.983261i \(0.441677\pi\)
\(578\) 16.9706 0.705886
\(579\) 38.1421 1.58513
\(580\) −2.18240 −0.0906194
\(581\) −16.8720 −0.699967
\(582\) −19.0068 −0.787859
\(583\) −6.25136 −0.258905
\(584\) 1.03805 0.0429547
\(585\) −10.1596 −0.420047
\(586\) −19.5632 −0.808148
\(587\) −41.6533 −1.71922 −0.859608 0.510954i \(-0.829292\pi\)
−0.859608 + 0.510954i \(0.829292\pi\)
\(588\) −2.20367 −0.0908779
\(589\) −51.5338 −2.12341
\(590\) 18.0128 0.741574
\(591\) 3.14209 0.129248
\(592\) 0.829338 0.0340856
\(593\) 27.2431 1.11874 0.559369 0.828918i \(-0.311043\pi\)
0.559369 + 0.828918i \(0.311043\pi\)
\(594\) −7.64640 −0.313735
\(595\) −0.850267 −0.0348576
\(596\) −3.70803 −0.151887
\(597\) 16.2453 0.664874
\(598\) 12.8613 0.525938
\(599\) 15.4627 0.631789 0.315895 0.948794i \(-0.397695\pi\)
0.315895 + 0.948794i \(0.397695\pi\)
\(600\) 0.851694 0.0347703
\(601\) −22.1109 −0.901922 −0.450961 0.892544i \(-0.648919\pi\)
−0.450961 + 0.892544i \(0.648919\pi\)
\(602\) −6.33616 −0.258243
\(603\) −7.07308 −0.288038
\(604\) 12.7944 0.520598
\(605\) −19.2617 −0.783099
\(606\) −16.2096 −0.658471
\(607\) 19.9185 0.808466 0.404233 0.914656i \(-0.367538\pi\)
0.404233 + 0.914656i \(0.367538\pi\)
\(608\) 6.80032 0.275789
\(609\) −3.70361 −0.150078
\(610\) −10.2200 −0.413794
\(611\) 67.9503 2.74897
\(612\) 0.119231 0.00481962
\(613\) 25.1647 1.01639 0.508195 0.861242i \(-0.330313\pi\)
0.508195 + 0.861242i \(0.330313\pi\)
\(614\) −11.2140 −0.452558
\(615\) −14.2371 −0.574094
\(616\) 3.21043 0.129352
\(617\) −3.01547 −0.121398 −0.0606991 0.998156i \(-0.519333\pi\)
−0.0606991 + 0.998156i \(0.519333\pi\)
\(618\) 17.1350 0.689269
\(619\) −6.06667 −0.243840 −0.121920 0.992540i \(-0.538905\pi\)
−0.121920 + 0.992540i \(0.538905\pi\)
\(620\) 15.9662 0.641217
\(621\) 10.4128 0.417851
\(622\) −10.4216 −0.417868
\(623\) 12.4151 0.497399
\(624\) 10.5181 0.421062
\(625\) −21.8797 −0.875189
\(626\) −10.4591 −0.418028
\(627\) 14.0691 0.561865
\(628\) 6.80948 0.271728
\(629\) −0.142093 −0.00566560
\(630\) 3.45354 0.137592
\(631\) 4.12131 0.164067 0.0820334 0.996630i \(-0.473859\pi\)
0.0820334 + 0.996630i \(0.473859\pi\)
\(632\) 12.7446 0.506953
\(633\) −5.77534 −0.229549
\(634\) 23.3705 0.928160
\(635\) −2.45403 −0.0973850
\(636\) 6.96208 0.276064
\(637\) −10.0597 −0.398580
\(638\) −1.41183 −0.0558950
\(639\) 9.31598 0.368535
\(640\) −2.10687 −0.0832814
\(641\) 8.87808 0.350663 0.175332 0.984509i \(-0.443900\pi\)
0.175332 + 0.984509i \(0.443900\pi\)
\(642\) 24.0223 0.948086
\(643\) −6.90212 −0.272193 −0.136096 0.990696i \(-0.543456\pi\)
−0.136096 + 0.990696i \(0.543456\pi\)
\(644\) −4.37194 −0.172278
\(645\) 8.60275 0.338733
\(646\) −1.16512 −0.0458409
\(647\) 28.7014 1.12837 0.564184 0.825649i \(-0.309191\pi\)
0.564184 + 0.825649i \(0.309191\pi\)
\(648\) 6.42801 0.252516
\(649\) 11.6527 0.457410
\(650\) 3.88796 0.152498
\(651\) 27.0951 1.06194
\(652\) −18.2483 −0.714658
\(653\) −33.6638 −1.31736 −0.658682 0.752421i \(-0.728886\pi\)
−0.658682 + 0.752421i \(0.728886\pi\)
\(654\) 16.2033 0.633598
\(655\) 20.3887 0.796653
\(656\) −4.45177 −0.173812
\(657\) 0.722379 0.0281827
\(658\) −23.0983 −0.900466
\(659\) 5.39295 0.210079 0.105040 0.994468i \(-0.466503\pi\)
0.105040 + 0.994468i \(0.466503\pi\)
\(660\) −4.35888 −0.169669
\(661\) −40.3142 −1.56804 −0.784021 0.620734i \(-0.786835\pi\)
−0.784021 + 0.620734i \(0.786835\pi\)
\(662\) −5.97727 −0.232313
\(663\) −1.80210 −0.0699878
\(664\) 7.16289 0.277974
\(665\) −33.7478 −1.30868
\(666\) 0.577139 0.0223637
\(667\) 1.92262 0.0744441
\(668\) −13.8195 −0.534691
\(669\) 1.51793 0.0586864
\(670\) −21.4140 −0.827295
\(671\) −6.61146 −0.255232
\(672\) −3.57543 −0.137925
\(673\) 12.0463 0.464353 0.232176 0.972674i \(-0.425415\pi\)
0.232176 + 0.972674i \(0.425415\pi\)
\(674\) 31.8872 1.22825
\(675\) 3.14778 0.121158
\(676\) 35.0150 1.34673
\(677\) 30.9776 1.19057 0.595283 0.803516i \(-0.297040\pi\)
0.595283 + 0.803516i \(0.297040\pi\)
\(678\) 15.4778 0.594421
\(679\) 29.4942 1.13188
\(680\) 0.360976 0.0138428
\(681\) −26.8964 −1.03067
\(682\) 10.3288 0.395509
\(683\) −27.6910 −1.05957 −0.529783 0.848133i \(-0.677727\pi\)
−0.529783 + 0.848133i \(0.677727\pi\)
\(684\) 4.73236 0.180946
\(685\) −31.3767 −1.19884
\(686\) 19.9079 0.760086
\(687\) 29.9231 1.14164
\(688\) 2.68998 0.102554
\(689\) 31.7817 1.21079
\(690\) 5.93588 0.225975
\(691\) 27.7433 1.05540 0.527702 0.849430i \(-0.323054\pi\)
0.527702 + 0.849430i \(0.323054\pi\)
\(692\) 7.58319 0.288270
\(693\) 2.23415 0.0848683
\(694\) 3.95241 0.150031
\(695\) −11.3222 −0.429477
\(696\) 1.57234 0.0595995
\(697\) 0.762732 0.0288906
\(698\) 21.7402 0.822878
\(699\) −22.4717 −0.849957
\(700\) −1.32163 −0.0499530
\(701\) −34.1074 −1.28822 −0.644109 0.764934i \(-0.722772\pi\)
−0.644109 + 0.764934i \(0.722772\pi\)
\(702\) 38.8740 1.46721
\(703\) −5.63976 −0.212708
\(704\) −1.36297 −0.0513688
\(705\) 31.3611 1.18113
\(706\) −33.5093 −1.26114
\(707\) 25.1536 0.945998
\(708\) −12.9775 −0.487726
\(709\) −5.02486 −0.188713 −0.0943564 0.995538i \(-0.530079\pi\)
−0.0943564 + 0.995538i \(0.530079\pi\)
\(710\) 28.2045 1.05850
\(711\) 8.86901 0.332614
\(712\) −5.27074 −0.197529
\(713\) −14.0656 −0.526762
\(714\) 0.612587 0.0229255
\(715\) −19.8981 −0.744148
\(716\) −6.37060 −0.238080
\(717\) −0.640354 −0.0239145
\(718\) −17.7400 −0.662050
\(719\) 29.7339 1.10889 0.554443 0.832222i \(-0.312931\pi\)
0.554443 + 0.832222i \(0.312931\pi\)
\(720\) −1.46618 −0.0546413
\(721\) −26.5895 −0.990244
\(722\) −27.2444 −1.01393
\(723\) −3.71240 −0.138066
\(724\) 24.9674 0.927905
\(725\) 0.581207 0.0215855
\(726\) 13.8774 0.515037
\(727\) 45.2439 1.67801 0.839003 0.544127i \(-0.183139\pi\)
0.839003 + 0.544127i \(0.183139\pi\)
\(728\) −16.3217 −0.604923
\(729\) 30.0204 1.11187
\(730\) 2.18703 0.0809456
\(731\) −0.460881 −0.0170463
\(732\) 7.36311 0.272148
\(733\) −12.3998 −0.457997 −0.228999 0.973427i \(-0.573545\pi\)
−0.228999 + 0.973427i \(0.573545\pi\)
\(734\) −15.3095 −0.565084
\(735\) −4.64285 −0.171254
\(736\) 1.85608 0.0684160
\(737\) −13.8531 −0.510284
\(738\) −3.09800 −0.114039
\(739\) 14.9324 0.549298 0.274649 0.961545i \(-0.411438\pi\)
0.274649 + 0.961545i \(0.411438\pi\)
\(740\) 1.74731 0.0642323
\(741\) −71.5267 −2.62760
\(742\) −10.8035 −0.396610
\(743\) −41.9629 −1.53947 −0.769735 0.638364i \(-0.779611\pi\)
−0.769735 + 0.638364i \(0.779611\pi\)
\(744\) −11.5030 −0.421722
\(745\) −7.81233 −0.286222
\(746\) 1.62350 0.0594407
\(747\) 4.98468 0.182380
\(748\) 0.233521 0.00853837
\(749\) −37.2771 −1.36208
\(750\) 17.7848 0.649408
\(751\) 25.2863 0.922709 0.461355 0.887216i \(-0.347364\pi\)
0.461355 + 0.887216i \(0.347364\pi\)
\(752\) 9.80625 0.357597
\(753\) 14.3447 0.522751
\(754\) 7.17770 0.261397
\(755\) 26.9562 0.981037
\(756\) −13.2144 −0.480604
\(757\) 31.2666 1.13641 0.568203 0.822889i \(-0.307639\pi\)
0.568203 + 0.822889i \(0.307639\pi\)
\(758\) 7.67269 0.278685
\(759\) 3.84001 0.139384
\(760\) 14.3274 0.519710
\(761\) −50.2106 −1.82013 −0.910067 0.414461i \(-0.863970\pi\)
−0.910067 + 0.414461i \(0.863970\pi\)
\(762\) 1.76804 0.0640492
\(763\) −25.1437 −0.910264
\(764\) −6.57141 −0.237745
\(765\) 0.251204 0.00908231
\(766\) −27.3936 −0.989771
\(767\) −59.2421 −2.13911
\(768\) 1.51793 0.0547734
\(769\) −22.6772 −0.817762 −0.408881 0.912588i \(-0.634081\pi\)
−0.408881 + 0.912588i \(0.634081\pi\)
\(770\) 6.76397 0.243756
\(771\) 36.3944 1.31071
\(772\) 25.1278 0.904369
\(773\) 12.4465 0.447669 0.223835 0.974627i \(-0.428142\pi\)
0.223835 + 0.974627i \(0.428142\pi\)
\(774\) 1.87196 0.0672863
\(775\) −4.25203 −0.152737
\(776\) −12.5216 −0.449499
\(777\) 2.96524 0.106377
\(778\) −23.7356 −0.850963
\(779\) 30.2734 1.08466
\(780\) 22.1604 0.793468
\(781\) 18.2459 0.652891
\(782\) −0.318007 −0.0113719
\(783\) 5.81123 0.207676
\(784\) −1.45177 −0.0518488
\(785\) 14.3467 0.512056
\(786\) −14.6893 −0.523951
\(787\) −24.3081 −0.866489 −0.433244 0.901276i \(-0.642631\pi\)
−0.433244 + 0.901276i \(0.642631\pi\)
\(788\) 2.06999 0.0737404
\(789\) 33.7559 1.20174
\(790\) 26.8513 0.955325
\(791\) −24.0180 −0.853980
\(792\) −0.948494 −0.0337033
\(793\) 33.6124 1.19361
\(794\) −15.7036 −0.557300
\(795\) 14.6682 0.520228
\(796\) 10.7023 0.379332
\(797\) −1.06917 −0.0378721 −0.0189361 0.999821i \(-0.506028\pi\)
−0.0189361 + 0.999821i \(0.506028\pi\)
\(798\) 24.3140 0.860708
\(799\) −1.68013 −0.0594387
\(800\) 0.561091 0.0198376
\(801\) −3.66792 −0.129600
\(802\) −5.05626 −0.178543
\(803\) 1.41482 0.0499281
\(804\) 15.4280 0.544104
\(805\) −9.21111 −0.324649
\(806\) −52.5111 −1.84962
\(807\) 32.3450 1.13860
\(808\) −10.6788 −0.375679
\(809\) −2.16235 −0.0760243 −0.0380121 0.999277i \(-0.512103\pi\)
−0.0380121 + 0.999277i \(0.512103\pi\)
\(810\) 13.5430 0.475852
\(811\) −22.5152 −0.790615 −0.395307 0.918549i \(-0.629362\pi\)
−0.395307 + 0.918549i \(0.629362\pi\)
\(812\) −2.43991 −0.0856242
\(813\) −30.5440 −1.07123
\(814\) 1.13036 0.0396191
\(815\) −38.4468 −1.34673
\(816\) −0.260070 −0.00910427
\(817\) −18.2927 −0.639981
\(818\) 35.8885 1.25481
\(819\) −11.3583 −0.396892
\(820\) −9.37930 −0.327539
\(821\) −12.4958 −0.436108 −0.218054 0.975937i \(-0.569971\pi\)
−0.218054 + 0.975937i \(0.569971\pi\)
\(822\) 22.6058 0.788467
\(823\) 32.5601 1.13497 0.567487 0.823382i \(-0.307916\pi\)
0.567487 + 0.823382i \(0.307916\pi\)
\(824\) 11.2884 0.393250
\(825\) 1.16083 0.0404150
\(826\) 20.1381 0.700696
\(827\) −8.19538 −0.284981 −0.142491 0.989796i \(-0.545511\pi\)
−0.142491 + 0.989796i \(0.545511\pi\)
\(828\) 1.29165 0.0448880
\(829\) 36.9953 1.28490 0.642449 0.766328i \(-0.277918\pi\)
0.642449 + 0.766328i \(0.277918\pi\)
\(830\) 15.0913 0.523827
\(831\) −28.4315 −0.986276
\(832\) 6.92929 0.240230
\(833\) 0.248735 0.00861815
\(834\) 8.15726 0.282463
\(835\) −29.1158 −1.00760
\(836\) 9.26863 0.320562
\(837\) −42.5141 −1.46950
\(838\) −12.3568 −0.426858
\(839\) 22.6063 0.780456 0.390228 0.920718i \(-0.372396\pi\)
0.390228 + 0.920718i \(0.372396\pi\)
\(840\) −7.53296 −0.259912
\(841\) −27.9270 −0.963000
\(842\) −14.9471 −0.515111
\(843\) −3.78862 −0.130487
\(844\) −3.80476 −0.130965
\(845\) 73.7721 2.53784
\(846\) 6.82420 0.234621
\(847\) −21.5344 −0.739932
\(848\) 4.58658 0.157504
\(849\) −4.63218 −0.158976
\(850\) −0.0961332 −0.00329734
\(851\) −1.53932 −0.0527671
\(852\) −20.3203 −0.696162
\(853\) 21.9112 0.750224 0.375112 0.926979i \(-0.377604\pi\)
0.375112 + 0.926979i \(0.377604\pi\)
\(854\) −11.4258 −0.390985
\(855\) 9.97049 0.340983
\(856\) 15.8258 0.540914
\(857\) 38.6483 1.32020 0.660100 0.751178i \(-0.270514\pi\)
0.660100 + 0.751178i \(0.270514\pi\)
\(858\) 14.3359 0.489419
\(859\) 0.629990 0.0214950 0.0107475 0.999942i \(-0.496579\pi\)
0.0107475 + 0.999942i \(0.496579\pi\)
\(860\) 5.66744 0.193258
\(861\) −15.9170 −0.542448
\(862\) −35.5998 −1.21253
\(863\) −21.4888 −0.731487 −0.365744 0.930716i \(-0.619185\pi\)
−0.365744 + 0.930716i \(0.619185\pi\)
\(864\) 5.61010 0.190860
\(865\) 15.9768 0.543228
\(866\) −11.8926 −0.404127
\(867\) −25.7602 −0.874861
\(868\) 17.8501 0.605871
\(869\) 17.3705 0.589254
\(870\) 3.31273 0.112312
\(871\) 70.4284 2.38638
\(872\) 10.6746 0.361488
\(873\) −8.71381 −0.294918
\(874\) −12.6219 −0.426943
\(875\) −27.5979 −0.932978
\(876\) −1.57568 −0.0532372
\(877\) −50.2579 −1.69709 −0.848545 0.529123i \(-0.822521\pi\)
−0.848545 + 0.529123i \(0.822521\pi\)
\(878\) 10.8627 0.366599
\(879\) 29.6955 1.00160
\(880\) −2.87160 −0.0968016
\(881\) −11.8441 −0.399038 −0.199519 0.979894i \(-0.563938\pi\)
−0.199519 + 0.979894i \(0.563938\pi\)
\(882\) −1.01029 −0.0340182
\(883\) −8.70618 −0.292986 −0.146493 0.989212i \(-0.546799\pi\)
−0.146493 + 0.989212i \(0.546799\pi\)
\(884\) −1.18721 −0.0399303
\(885\) −27.3420 −0.919092
\(886\) 28.7169 0.964764
\(887\) 24.4541 0.821087 0.410544 0.911841i \(-0.365339\pi\)
0.410544 + 0.911841i \(0.365339\pi\)
\(888\) −1.25887 −0.0422450
\(889\) −2.74358 −0.0920169
\(890\) −11.1048 −0.372233
\(891\) 8.76118 0.293510
\(892\) 1.00000 0.0334825
\(893\) −66.6856 −2.23155
\(894\) 5.62851 0.188245
\(895\) −13.4220 −0.448649
\(896\) −2.35547 −0.0786907
\(897\) −19.5225 −0.651837
\(898\) −19.7104 −0.657744
\(899\) −7.84982 −0.261806
\(900\) 0.390465 0.0130155
\(901\) −0.785830 −0.0261798
\(902\) −6.06762 −0.202030
\(903\) 9.61781 0.320061
\(904\) 10.1967 0.339136
\(905\) 52.6030 1.74858
\(906\) −19.4210 −0.645219
\(907\) 15.5342 0.515806 0.257903 0.966171i \(-0.416969\pi\)
0.257903 + 0.966171i \(0.416969\pi\)
\(908\) −17.7192 −0.588033
\(909\) −7.43141 −0.246484
\(910\) −34.3878 −1.13994
\(911\) −11.4563 −0.379564 −0.189782 0.981826i \(-0.560778\pi\)
−0.189782 + 0.981826i \(0.560778\pi\)
\(912\) −10.3224 −0.341808
\(913\) 9.76280 0.323102
\(914\) −21.5825 −0.713887
\(915\) 15.5131 0.512848
\(916\) 19.7131 0.651340
\(917\) 22.7945 0.752740
\(918\) −0.961194 −0.0317241
\(919\) 14.3652 0.473864 0.236932 0.971526i \(-0.423858\pi\)
0.236932 + 0.971526i \(0.423858\pi\)
\(920\) 3.91052 0.128926
\(921\) 17.0219 0.560892
\(922\) −1.17709 −0.0387654
\(923\) −92.7616 −3.05329
\(924\) −4.87319 −0.160316
\(925\) −0.465334 −0.0153001
\(926\) −11.6295 −0.382170
\(927\) 7.85564 0.258013
\(928\) 1.03585 0.0340035
\(929\) 47.5784 1.56100 0.780498 0.625158i \(-0.214966\pi\)
0.780498 + 0.625158i \(0.214966\pi\)
\(930\) −24.2354 −0.794712
\(931\) 9.87247 0.323557
\(932\) −14.8042 −0.484928
\(933\) 15.8192 0.517898
\(934\) 18.0809 0.591624
\(935\) 0.491999 0.0160901
\(936\) 4.82211 0.157616
\(937\) 27.2472 0.890128 0.445064 0.895499i \(-0.353181\pi\)
0.445064 + 0.895499i \(0.353181\pi\)
\(938\) −23.9407 −0.781692
\(939\) 15.8761 0.518096
\(940\) 20.6605 0.673871
\(941\) 1.00531 0.0327723 0.0163862 0.999866i \(-0.494784\pi\)
0.0163862 + 0.999866i \(0.494784\pi\)
\(942\) −10.3363 −0.336774
\(943\) 8.26283 0.269075
\(944\) −8.54953 −0.278263
\(945\) −27.8411 −0.905671
\(946\) 3.66636 0.119203
\(947\) 1.79575 0.0583539 0.0291770 0.999574i \(-0.490711\pi\)
0.0291770 + 0.999574i \(0.490711\pi\)
\(948\) −19.3454 −0.628308
\(949\) −7.19292 −0.233492
\(950\) −3.81560 −0.123794
\(951\) −35.4746 −1.15034
\(952\) 0.403569 0.0130797
\(953\) 48.8428 1.58217 0.791086 0.611705i \(-0.209516\pi\)
0.791086 + 0.611705i \(0.209516\pi\)
\(954\) 3.19181 0.103339
\(955\) −13.8451 −0.448017
\(956\) −0.421862 −0.0136440
\(957\) 2.14306 0.0692751
\(958\) 33.4794 1.08167
\(959\) −35.0789 −1.13276
\(960\) 3.19807 0.103217
\(961\) 26.4282 0.852522
\(962\) −5.74672 −0.185282
\(963\) 11.0132 0.354895
\(964\) −2.44571 −0.0787709
\(965\) 52.9410 1.70423
\(966\) 6.63627 0.213519
\(967\) −8.74791 −0.281314 −0.140657 0.990058i \(-0.544921\pi\)
−0.140657 + 0.990058i \(0.544921\pi\)
\(968\) 9.14232 0.293845
\(969\) 1.76856 0.0568143
\(970\) −26.3814 −0.847055
\(971\) −47.0999 −1.51151 −0.755753 0.654857i \(-0.772729\pi\)
−0.755753 + 0.654857i \(0.772729\pi\)
\(972\) 7.07308 0.226869
\(973\) −12.6582 −0.405803
\(974\) 14.4847 0.464120
\(975\) −5.90163 −0.189004
\(976\) 4.85077 0.155270
\(977\) 25.4309 0.813607 0.406803 0.913516i \(-0.366643\pi\)
0.406803 + 0.913516i \(0.366643\pi\)
\(978\) 27.6995 0.885733
\(979\) −7.18385 −0.229597
\(980\) −3.05868 −0.0977061
\(981\) 7.42850 0.237174
\(982\) −35.7970 −1.14233
\(983\) −2.21783 −0.0707378 −0.0353689 0.999374i \(-0.511261\pi\)
−0.0353689 + 0.999374i \(0.511261\pi\)
\(984\) 6.75745 0.215420
\(985\) 4.36121 0.138960
\(986\) −0.177475 −0.00565195
\(987\) 35.0615 1.11602
\(988\) −47.1214 −1.49913
\(989\) −4.99281 −0.158762
\(990\) −1.99836 −0.0635119
\(991\) 33.3991 1.06096 0.530479 0.847698i \(-0.322012\pi\)
0.530479 + 0.847698i \(0.322012\pi\)
\(992\) −7.57814 −0.240606
\(993\) 9.07306 0.287925
\(994\) 31.5324 1.00015
\(995\) 22.5483 0.714830
\(996\) −10.8727 −0.344516
\(997\) −60.1287 −1.90430 −0.952148 0.305639i \(-0.901130\pi\)
−0.952148 + 0.305639i \(0.901130\pi\)
\(998\) −25.0571 −0.793167
\(999\) −4.65267 −0.147204
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 446.2.a.f.1.5 8
3.2 odd 2 4014.2.a.z.1.4 8
4.3 odd 2 3568.2.a.n.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
446.2.a.f.1.5 8 1.1 even 1 trivial
3568.2.a.n.1.4 8 4.3 odd 2
4014.2.a.z.1.4 8 3.2 odd 2