Properties

Label 444.2.r.c.397.1
Level $444$
Weight $2$
Character 444.397
Analytic conductor $3.545$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [444,2,Mod(85,444)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(444, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("444.85"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.54535784974\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 397.1
Root \(-0.895644 - 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 444.397
Dual form 444.2.r.c.85.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(1.10436 - 0.637600i) q^{5} +(-2.29129 - 3.96863i) q^{7} +(-0.500000 + 0.866025i) q^{9} -0.791288 q^{11} +(-2.60436 + 1.50363i) q^{13} +(-1.10436 - 0.637600i) q^{15} +(-1.50000 - 0.866025i) q^{17} +(-0.395644 + 0.228425i) q^{19} +(-2.29129 + 3.96863i) q^{21} -7.48040i q^{23} +(-1.68693 + 2.92185i) q^{25} +1.00000 q^{27} -1.73205i q^{29} -2.55040i q^{31} +(0.395644 + 0.685275i) q^{33} +(-5.06080 - 2.92185i) q^{35} +(6.08258 + 0.0476751i) q^{37} +(2.60436 + 1.50363i) q^{39} +(-4.39564 - 7.61348i) q^{41} -0.456850i q^{43} +1.27520i q^{45} +0.582576 q^{47} +(-7.00000 + 12.1244i) q^{49} +1.73205i q^{51} +(6.29129 - 10.8968i) q^{53} +(-0.873864 + 0.504525i) q^{55} +(0.395644 + 0.228425i) q^{57} +(1.81307 + 1.04678i) q^{59} +(-7.58258 + 4.37780i) q^{61} +4.58258 q^{63} +(-1.91742 + 3.32108i) q^{65} +(0.895644 + 1.55130i) q^{67} +(-6.47822 + 3.74020i) q^{69} +(3.58258 + 6.20520i) q^{71} +12.7477 q^{73} +3.37386 q^{75} +(1.81307 + 3.14033i) q^{77} +(3.47822 - 2.00815i) q^{79} +(-0.500000 - 0.866025i) q^{81} +(5.79129 - 10.0308i) q^{83} -2.20871 q^{85} +(-1.50000 + 0.866025i) q^{87} +(14.3739 + 8.29875i) q^{89} +(11.9347 + 6.89048i) q^{91} +(-2.20871 + 1.27520i) q^{93} +(-0.291288 + 0.504525i) q^{95} +0.552200i q^{97} +(0.395644 - 0.685275i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 9 q^{5} - 2 q^{9} + 6 q^{11} - 15 q^{13} - 9 q^{15} - 6 q^{17} + 3 q^{19} + 7 q^{25} + 4 q^{27} - 3 q^{33} + 21 q^{35} + 6 q^{37} + 15 q^{39} - 13 q^{41} - 16 q^{47} - 28 q^{49} + 16 q^{53}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/444\mathbb{Z}\right)^\times\).

\(n\) \(149\) \(223\) \(409\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0 0
\(5\) 1.10436 0.637600i 0.493883 0.285144i −0.232301 0.972644i \(-0.574625\pi\)
0.726184 + 0.687500i \(0.241292\pi\)
\(6\) 0 0
\(7\) −2.29129 3.96863i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −0.791288 −0.238582 −0.119291 0.992859i \(-0.538062\pi\)
−0.119291 + 0.992859i \(0.538062\pi\)
\(12\) 0 0
\(13\) −2.60436 + 1.50363i −0.722318 + 0.417031i −0.815605 0.578609i \(-0.803596\pi\)
0.0932870 + 0.995639i \(0.470263\pi\)
\(14\) 0 0
\(15\) −1.10436 0.637600i −0.285144 0.164628i
\(16\) 0 0
\(17\) −1.50000 0.866025i −0.363803 0.210042i 0.306944 0.951727i \(-0.400693\pi\)
−0.670748 + 0.741685i \(0.734027\pi\)
\(18\) 0 0
\(19\) −0.395644 + 0.228425i −0.0907669 + 0.0524043i −0.544696 0.838633i \(-0.683355\pi\)
0.453930 + 0.891038i \(0.350022\pi\)
\(20\) 0 0
\(21\) −2.29129 + 3.96863i −0.500000 + 0.866025i
\(22\) 0 0
\(23\) 7.48040i 1.55977i −0.625922 0.779886i \(-0.715277\pi\)
0.625922 0.779886i \(-0.284723\pi\)
\(24\) 0 0
\(25\) −1.68693 + 2.92185i −0.337386 + 0.584370i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 1.73205i 0.321634i −0.986984 0.160817i \(-0.948587\pi\)
0.986984 0.160817i \(-0.0514129\pi\)
\(30\) 0 0
\(31\) 2.55040i 0.458066i −0.973419 0.229033i \(-0.926444\pi\)
0.973419 0.229033i \(-0.0735563\pi\)
\(32\) 0 0
\(33\) 0.395644 + 0.685275i 0.0688728 + 0.119291i
\(34\) 0 0
\(35\) −5.06080 2.92185i −0.855431 0.493883i
\(36\) 0 0
\(37\) 6.08258 + 0.0476751i 0.999969 + 0.00783774i
\(38\) 0 0
\(39\) 2.60436 + 1.50363i 0.417031 + 0.240773i
\(40\) 0 0
\(41\) −4.39564 7.61348i −0.686484 1.18903i −0.972968 0.230940i \(-0.925820\pi\)
0.286484 0.958085i \(-0.407514\pi\)
\(42\) 0 0
\(43\) 0.456850i 0.0696690i −0.999393 0.0348345i \(-0.988910\pi\)
0.999393 0.0348345i \(-0.0110904\pi\)
\(44\) 0 0
\(45\) 1.27520i 0.190096i
\(46\) 0 0
\(47\) 0.582576 0.0849774 0.0424887 0.999097i \(-0.486471\pi\)
0.0424887 + 0.999097i \(0.486471\pi\)
\(48\) 0 0
\(49\) −7.00000 + 12.1244i −1.00000 + 1.73205i
\(50\) 0 0
\(51\) 1.73205i 0.242536i
\(52\) 0 0
\(53\) 6.29129 10.8968i 0.864175 1.49679i −0.00368933 0.999993i \(-0.501174\pi\)
0.867864 0.496802i \(-0.165492\pi\)
\(54\) 0 0
\(55\) −0.873864 + 0.504525i −0.117832 + 0.0680302i
\(56\) 0 0
\(57\) 0.395644 + 0.228425i 0.0524043 + 0.0302556i
\(58\) 0 0
\(59\) 1.81307 + 1.04678i 0.236041 + 0.136279i 0.613356 0.789807i \(-0.289819\pi\)
−0.377315 + 0.926085i \(0.623152\pi\)
\(60\) 0 0
\(61\) −7.58258 + 4.37780i −0.970849 + 0.560520i −0.899495 0.436931i \(-0.856065\pi\)
−0.0713543 + 0.997451i \(0.522732\pi\)
\(62\) 0 0
\(63\) 4.58258 0.577350
\(64\) 0 0
\(65\) −1.91742 + 3.32108i −0.237827 + 0.411929i
\(66\) 0 0
\(67\) 0.895644 + 1.55130i 0.109420 + 0.189522i 0.915536 0.402237i \(-0.131767\pi\)
−0.806115 + 0.591759i \(0.798434\pi\)
\(68\) 0 0
\(69\) −6.47822 + 3.74020i −0.779886 + 0.450267i
\(70\) 0 0
\(71\) 3.58258 + 6.20520i 0.425174 + 0.736422i 0.996437 0.0843449i \(-0.0268797\pi\)
−0.571263 + 0.820767i \(0.693546\pi\)
\(72\) 0 0
\(73\) 12.7477 1.49201 0.746004 0.665941i \(-0.231970\pi\)
0.746004 + 0.665941i \(0.231970\pi\)
\(74\) 0 0
\(75\) 3.37386 0.389580
\(76\) 0 0
\(77\) 1.81307 + 3.14033i 0.206618 + 0.357873i
\(78\) 0 0
\(79\) 3.47822 2.00815i 0.391330 0.225935i −0.291406 0.956599i \(-0.594123\pi\)
0.682736 + 0.730665i \(0.260790\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 5.79129 10.0308i 0.635676 1.10102i −0.350695 0.936490i \(-0.614055\pi\)
0.986371 0.164534i \(-0.0526121\pi\)
\(84\) 0 0
\(85\) −2.20871 −0.239568
\(86\) 0 0
\(87\) −1.50000 + 0.866025i −0.160817 + 0.0928477i
\(88\) 0 0
\(89\) 14.3739 + 8.29875i 1.52363 + 0.879666i 0.999609 + 0.0279586i \(0.00890066\pi\)
0.524017 + 0.851708i \(0.324433\pi\)
\(90\) 0 0
\(91\) 11.9347 + 6.89048i 1.25109 + 0.722318i
\(92\) 0 0
\(93\) −2.20871 + 1.27520i −0.229033 + 0.132232i
\(94\) 0 0
\(95\) −0.291288 + 0.504525i −0.0298855 + 0.0517632i
\(96\) 0 0
\(97\) 0.552200i 0.0560675i 0.999607 + 0.0280337i \(0.00892458\pi\)
−0.999607 + 0.0280337i \(0.991075\pi\)
\(98\) 0 0
\(99\) 0.395644 0.685275i 0.0397637 0.0688728i
\(100\) 0 0
\(101\) 17.5390 1.74520 0.872599 0.488438i \(-0.162433\pi\)
0.872599 + 0.488438i \(0.162433\pi\)
\(102\) 0 0
\(103\) 9.11710i 0.898335i 0.893448 + 0.449167i \(0.148279\pi\)
−0.893448 + 0.449167i \(0.851721\pi\)
\(104\) 0 0
\(105\) 5.84370i 0.570287i
\(106\) 0 0
\(107\) −3.58258 6.20520i −0.346341 0.599880i 0.639256 0.768994i \(-0.279243\pi\)
−0.985596 + 0.169115i \(0.945909\pi\)
\(108\) 0 0
\(109\) 1.10436 + 0.637600i 0.105778 + 0.0610710i 0.551956 0.833873i \(-0.313882\pi\)
−0.446178 + 0.894944i \(0.647215\pi\)
\(110\) 0 0
\(111\) −3.00000 5.29150i −0.284747 0.502247i
\(112\) 0 0
\(113\) 4.41742 + 2.55040i 0.415556 + 0.239922i 0.693174 0.720770i \(-0.256212\pi\)
−0.277618 + 0.960692i \(0.589545\pi\)
\(114\) 0 0
\(115\) −4.76951 8.26103i −0.444759 0.770345i
\(116\) 0 0
\(117\) 3.00725i 0.278020i
\(118\) 0 0
\(119\) 7.93725i 0.727607i
\(120\) 0 0
\(121\) −10.3739 −0.943079
\(122\) 0 0
\(123\) −4.39564 + 7.61348i −0.396342 + 0.686484i
\(124\) 0 0
\(125\) 10.6784i 0.955101i
\(126\) 0 0
\(127\) 2.79129 4.83465i 0.247687 0.429006i −0.715197 0.698923i \(-0.753663\pi\)
0.962884 + 0.269917i \(0.0869963\pi\)
\(128\) 0 0
\(129\) −0.395644 + 0.228425i −0.0348345 + 0.0201117i
\(130\) 0 0
\(131\) −12.1652 7.02355i −1.06287 0.613651i −0.136648 0.990620i \(-0.543633\pi\)
−0.926226 + 0.376969i \(0.876966\pi\)
\(132\) 0 0
\(133\) 1.81307 + 1.04678i 0.157213 + 0.0907669i
\(134\) 0 0
\(135\) 1.10436 0.637600i 0.0950478 0.0548759i
\(136\) 0 0
\(137\) −17.5390 −1.49846 −0.749230 0.662310i \(-0.769576\pi\)
−0.749230 + 0.662310i \(0.769576\pi\)
\(138\) 0 0
\(139\) −1.41742 + 2.45505i −0.120224 + 0.208235i −0.919856 0.392256i \(-0.871695\pi\)
0.799632 + 0.600491i \(0.205028\pi\)
\(140\) 0 0
\(141\) −0.291288 0.504525i −0.0245309 0.0424887i
\(142\) 0 0
\(143\) 2.06080 1.18980i 0.172332 0.0994961i
\(144\) 0 0
\(145\) −1.10436 1.91280i −0.0917118 0.158849i
\(146\) 0 0
\(147\) 14.0000 1.15470
\(148\) 0 0
\(149\) 8.79129 0.720210 0.360105 0.932912i \(-0.382741\pi\)
0.360105 + 0.932912i \(0.382741\pi\)
\(150\) 0 0
\(151\) −7.08258 12.2674i −0.576372 0.998305i −0.995891 0.0905589i \(-0.971135\pi\)
0.419519 0.907746i \(-0.362199\pi\)
\(152\) 0 0
\(153\) 1.50000 0.866025i 0.121268 0.0700140i
\(154\) 0 0
\(155\) −1.62614 2.81655i −0.130614 0.226231i
\(156\) 0 0
\(157\) −0.604356 + 1.04678i −0.0482329 + 0.0835418i −0.889134 0.457647i \(-0.848692\pi\)
0.840901 + 0.541189i \(0.182026\pi\)
\(158\) 0 0
\(159\) −12.5826 −0.997863
\(160\) 0 0
\(161\) −29.6869 + 17.1398i −2.33966 + 1.35080i
\(162\) 0 0
\(163\) 12.8739 + 7.43273i 1.00836 + 0.582176i 0.910711 0.413045i \(-0.135535\pi\)
0.0976481 + 0.995221i \(0.468868\pi\)
\(164\) 0 0
\(165\) 0.873864 + 0.504525i 0.0680302 + 0.0392772i
\(166\) 0 0
\(167\) −8.29129 + 4.78698i −0.641599 + 0.370427i −0.785230 0.619204i \(-0.787455\pi\)
0.143631 + 0.989631i \(0.454122\pi\)
\(168\) 0 0
\(169\) −1.97822 + 3.42638i −0.152171 + 0.263567i
\(170\) 0 0
\(171\) 0.456850i 0.0349362i
\(172\) 0 0
\(173\) 4.10436 7.10895i 0.312048 0.540484i −0.666757 0.745275i \(-0.732318\pi\)
0.978806 + 0.204791i \(0.0656516\pi\)
\(174\) 0 0
\(175\) 15.4610 1.16874
\(176\) 0 0
\(177\) 2.09355i 0.157361i
\(178\) 0 0
\(179\) 24.8963i 1.86083i −0.366503 0.930417i \(-0.619445\pi\)
0.366503 0.930417i \(-0.380555\pi\)
\(180\) 0 0
\(181\) 5.00000 + 8.66025i 0.371647 + 0.643712i 0.989819 0.142331i \(-0.0454598\pi\)
−0.618172 + 0.786043i \(0.712126\pi\)
\(182\) 0 0
\(183\) 7.58258 + 4.37780i 0.560520 + 0.323616i
\(184\) 0 0
\(185\) 6.74773 3.82560i 0.496103 0.281264i
\(186\) 0 0
\(187\) 1.18693 + 0.685275i 0.0867970 + 0.0501123i
\(188\) 0 0
\(189\) −2.29129 3.96863i −0.166667 0.288675i
\(190\) 0 0
\(191\) 14.1425i 1.02331i 0.859190 + 0.511656i \(0.170968\pi\)
−0.859190 + 0.511656i \(0.829032\pi\)
\(192\) 0 0
\(193\) 23.0689i 1.66053i −0.557367 0.830266i \(-0.688188\pi\)
0.557367 0.830266i \(-0.311812\pi\)
\(194\) 0 0
\(195\) 3.83485 0.274619
\(196\) 0 0
\(197\) 8.66515 15.0085i 0.617366 1.06931i −0.372598 0.927993i \(-0.621533\pi\)
0.989964 0.141317i \(-0.0451337\pi\)
\(198\) 0 0
\(199\) 4.93000i 0.349479i −0.984615 0.174739i \(-0.944092\pi\)
0.984615 0.174739i \(-0.0559083\pi\)
\(200\) 0 0
\(201\) 0.895644 1.55130i 0.0631739 0.109420i
\(202\) 0 0
\(203\) −6.87386 + 3.96863i −0.482451 + 0.278543i
\(204\) 0 0
\(205\) −9.70871 5.60533i −0.678086 0.391493i
\(206\) 0 0
\(207\) 6.47822 + 3.74020i 0.450267 + 0.259962i
\(208\) 0 0
\(209\) 0.313068 0.180750i 0.0216554 0.0125027i
\(210\) 0 0
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) 0 0
\(213\) 3.58258 6.20520i 0.245474 0.425174i
\(214\) 0 0
\(215\) −0.291288 0.504525i −0.0198657 0.0344083i
\(216\) 0 0
\(217\) −10.1216 + 5.84370i −0.687098 + 0.396696i
\(218\) 0 0
\(219\) −6.37386 11.0399i −0.430706 0.746004i
\(220\) 0 0
\(221\) 5.20871 0.350376
\(222\) 0 0
\(223\) −16.2087 −1.08542 −0.542708 0.839922i \(-0.682601\pi\)
−0.542708 + 0.839922i \(0.682601\pi\)
\(224\) 0 0
\(225\) −1.68693 2.92185i −0.112462 0.194790i
\(226\) 0 0
\(227\) −18.0826 + 10.4400i −1.20018 + 0.692926i −0.960596 0.277949i \(-0.910345\pi\)
−0.239587 + 0.970875i \(0.577012\pi\)
\(228\) 0 0
\(229\) −8.39564 14.5417i −0.554800 0.960941i −0.997919 0.0644787i \(-0.979462\pi\)
0.443119 0.896463i \(-0.353872\pi\)
\(230\) 0 0
\(231\) 1.81307 3.14033i 0.119291 0.206618i
\(232\) 0 0
\(233\) 5.83485 0.382254 0.191127 0.981565i \(-0.438786\pi\)
0.191127 + 0.981565i \(0.438786\pi\)
\(234\) 0 0
\(235\) 0.643371 0.371450i 0.0419689 0.0242308i
\(236\) 0 0
\(237\) −3.47822 2.00815i −0.225935 0.130443i
\(238\) 0 0
\(239\) 2.52178 + 1.45595i 0.163120 + 0.0941776i 0.579338 0.815087i \(-0.303311\pi\)
−0.416217 + 0.909265i \(0.636645\pi\)
\(240\) 0 0
\(241\) −12.2477 + 7.07123i −0.788945 + 0.455498i −0.839591 0.543219i \(-0.817205\pi\)
0.0506457 + 0.998717i \(0.483872\pi\)
\(242\) 0 0
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 17.8528i 1.14057i
\(246\) 0 0
\(247\) 0.686932 1.18980i 0.0437084 0.0757052i
\(248\) 0 0
\(249\) −11.5826 −0.734016
\(250\) 0 0
\(251\) 8.58480i 0.541868i 0.962598 + 0.270934i \(0.0873325\pi\)
−0.962598 + 0.270934i \(0.912667\pi\)
\(252\) 0 0
\(253\) 5.91915i 0.372134i
\(254\) 0 0
\(255\) 1.10436 + 1.91280i 0.0691575 + 0.119784i
\(256\) 0 0
\(257\) −20.6869 11.9436i −1.29042 0.745022i −0.311688 0.950185i \(-0.600894\pi\)
−0.978728 + 0.205163i \(0.934228\pi\)
\(258\) 0 0
\(259\) −13.7477 24.2487i −0.854242 1.50674i
\(260\) 0 0
\(261\) 1.50000 + 0.866025i 0.0928477 + 0.0536056i
\(262\) 0 0
\(263\) −4.18693 7.25198i −0.258177 0.447176i 0.707576 0.706637i \(-0.249789\pi\)
−0.965754 + 0.259461i \(0.916455\pi\)
\(264\) 0 0
\(265\) 16.0453i 0.985655i
\(266\) 0 0
\(267\) 16.5975i 1.01575i
\(268\) 0 0
\(269\) 15.5390 0.947430 0.473715 0.880678i \(-0.342913\pi\)
0.473715 + 0.880678i \(0.342913\pi\)
\(270\) 0 0
\(271\) −14.9782 + 25.9430i −0.909862 + 1.57593i −0.0956076 + 0.995419i \(0.530479\pi\)
−0.814254 + 0.580508i \(0.802854\pi\)
\(272\) 0 0
\(273\) 13.7810i 0.834061i
\(274\) 0 0
\(275\) 1.33485 2.31203i 0.0804944 0.139420i
\(276\) 0 0
\(277\) 24.4782 14.1325i 1.47075 0.849140i 0.471293 0.881977i \(-0.343787\pi\)
0.999461 + 0.0328367i \(0.0104541\pi\)
\(278\) 0 0
\(279\) 2.20871 + 1.27520i 0.132232 + 0.0763443i
\(280\) 0 0
\(281\) −6.24773 3.60713i −0.372708 0.215183i 0.301933 0.953329i \(-0.402368\pi\)
−0.674641 + 0.738146i \(0.735702\pi\)
\(282\) 0 0
\(283\) 19.8956 11.4868i 1.18267 0.682817i 0.226042 0.974118i \(-0.427421\pi\)
0.956631 + 0.291301i \(0.0940881\pi\)
\(284\) 0 0
\(285\) 0.582576 0.0345088
\(286\) 0 0
\(287\) −20.1434 + 34.8893i −1.18903 + 2.05945i
\(288\) 0 0
\(289\) −7.00000 12.1244i −0.411765 0.713197i
\(290\) 0 0
\(291\) 0.478220 0.276100i 0.0280337 0.0161853i
\(292\) 0 0
\(293\) 7.58258 + 13.1334i 0.442979 + 0.767262i 0.997909 0.0646351i \(-0.0205884\pi\)
−0.554930 + 0.831897i \(0.687255\pi\)
\(294\) 0 0
\(295\) 2.66970 0.155436
\(296\) 0 0
\(297\) −0.791288 −0.0459152
\(298\) 0 0
\(299\) 11.2477 + 19.4816i 0.650473 + 1.12665i
\(300\) 0 0
\(301\) −1.81307 + 1.04678i −0.104504 + 0.0603351i
\(302\) 0 0
\(303\) −8.76951 15.1892i −0.503795 0.872599i
\(304\) 0 0
\(305\) −5.58258 + 9.66930i −0.319657 + 0.553663i
\(306\) 0 0
\(307\) −15.0000 −0.856095 −0.428048 0.903756i \(-0.640798\pi\)
−0.428048 + 0.903756i \(0.640798\pi\)
\(308\) 0 0
\(309\) 7.89564 4.55855i 0.449167 0.259327i
\(310\) 0 0
\(311\) 16.5826 + 9.57395i 0.940312 + 0.542889i 0.890058 0.455847i \(-0.150664\pi\)
0.0502536 + 0.998736i \(0.483997\pi\)
\(312\) 0 0
\(313\) −6.24773 3.60713i −0.353142 0.203887i 0.312926 0.949778i \(-0.398691\pi\)
−0.666068 + 0.745891i \(0.732024\pi\)
\(314\) 0 0
\(315\) 5.06080 2.92185i 0.285144 0.164628i
\(316\) 0 0
\(317\) 11.2695 19.5194i 0.632959 1.09632i −0.353985 0.935251i \(-0.615174\pi\)
0.986944 0.161065i \(-0.0514930\pi\)
\(318\) 0 0
\(319\) 1.37055i 0.0767361i
\(320\) 0 0
\(321\) −3.58258 + 6.20520i −0.199960 + 0.346341i
\(322\) 0 0
\(323\) 0.791288 0.0440284
\(324\) 0 0
\(325\) 10.1461i 0.562802i
\(326\) 0 0
\(327\) 1.27520i 0.0705188i
\(328\) 0 0
\(329\) −1.33485 2.31203i −0.0735926 0.127466i
\(330\) 0 0
\(331\) 1.26951 + 0.732950i 0.0697784 + 0.0402866i 0.534483 0.845179i \(-0.320506\pi\)
−0.464705 + 0.885466i \(0.653840\pi\)
\(332\) 0 0
\(333\) −3.08258 + 5.24383i −0.168924 + 0.287360i
\(334\) 0 0
\(335\) 1.97822 + 1.14213i 0.108082 + 0.0624010i
\(336\) 0 0
\(337\) 4.66515 + 8.08028i 0.254127 + 0.440161i 0.964658 0.263505i \(-0.0848785\pi\)
−0.710531 + 0.703666i \(0.751545\pi\)
\(338\) 0 0
\(339\) 5.10080i 0.277038i
\(340\) 0 0
\(341\) 2.01810i 0.109286i
\(342\) 0 0
\(343\) 32.0780 1.73205
\(344\) 0 0
\(345\) −4.76951 + 8.26103i −0.256782 + 0.444759i
\(346\) 0 0
\(347\) 29.7309i 1.59604i 0.602632 + 0.798020i \(0.294119\pi\)
−0.602632 + 0.798020i \(0.705881\pi\)
\(348\) 0 0
\(349\) 2.29129 3.96863i 0.122650 0.212436i −0.798162 0.602443i \(-0.794194\pi\)
0.920812 + 0.390007i \(0.127527\pi\)
\(350\) 0 0
\(351\) −2.60436 + 1.50363i −0.139010 + 0.0802576i
\(352\) 0 0
\(353\) 27.3303 + 15.7792i 1.45465 + 0.839840i 0.998740 0.0501884i \(-0.0159822\pi\)
0.455905 + 0.890028i \(0.349316\pi\)
\(354\) 0 0
\(355\) 7.91288 + 4.56850i 0.419972 + 0.242471i
\(356\) 0 0
\(357\) 6.87386 3.96863i 0.363803 0.210042i
\(358\) 0 0
\(359\) −20.6261 −1.08861 −0.544303 0.838889i \(-0.683206\pi\)
−0.544303 + 0.838889i \(0.683206\pi\)
\(360\) 0 0
\(361\) −9.39564 + 16.2737i −0.494508 + 0.856512i
\(362\) 0 0
\(363\) 5.18693 + 8.98403i 0.272243 + 0.471539i
\(364\) 0 0
\(365\) 14.0780 8.12795i 0.736878 0.425437i
\(366\) 0 0
\(367\) −14.5608 25.2200i −0.760067 1.31648i −0.942815 0.333315i \(-0.891833\pi\)
0.182748 0.983160i \(-0.441501\pi\)
\(368\) 0 0
\(369\) 8.79129 0.457656
\(370\) 0 0
\(371\) −57.6606 −2.99359
\(372\) 0 0
\(373\) 13.7913 + 23.8872i 0.714086 + 1.23683i 0.963311 + 0.268387i \(0.0864907\pi\)
−0.249225 + 0.968446i \(0.580176\pi\)
\(374\) 0 0
\(375\) 9.24773 5.33918i 0.477551 0.275714i
\(376\) 0 0
\(377\) 2.60436 + 4.51088i 0.134131 + 0.232322i
\(378\) 0 0
\(379\) −15.0000 + 25.9808i −0.770498 + 1.33454i 0.166792 + 0.985992i \(0.446659\pi\)
−0.937290 + 0.348550i \(0.886674\pi\)
\(380\) 0 0
\(381\) −5.58258 −0.286004
\(382\) 0 0
\(383\) −22.2695 + 12.8573i −1.13792 + 0.656978i −0.945914 0.324416i \(-0.894832\pi\)
−0.192004 + 0.981394i \(0.561499\pi\)
\(384\) 0 0
\(385\) 4.00455 + 2.31203i 0.204091 + 0.117832i
\(386\) 0 0
\(387\) 0.395644 + 0.228425i 0.0201117 + 0.0116115i
\(388\) 0 0
\(389\) 22.8303 13.1811i 1.15754 0.668307i 0.206829 0.978377i \(-0.433686\pi\)
0.950714 + 0.310070i \(0.100352\pi\)
\(390\) 0 0
\(391\) −6.47822 + 11.2206i −0.327618 + 0.567450i
\(392\) 0 0
\(393\) 14.0471i 0.708583i
\(394\) 0 0
\(395\) 2.56080 4.43543i 0.128848 0.223171i
\(396\) 0 0
\(397\) 12.2087 0.612738 0.306369 0.951913i \(-0.400886\pi\)
0.306369 + 0.951913i \(0.400886\pi\)
\(398\) 0 0
\(399\) 2.09355i 0.104809i
\(400\) 0 0
\(401\) 0.361500i 0.0180525i −0.999959 0.00902623i \(-0.997127\pi\)
0.999959 0.00902623i \(-0.00287318\pi\)
\(402\) 0 0
\(403\) 3.83485 + 6.64215i 0.191027 + 0.330869i
\(404\) 0 0
\(405\) −1.10436 0.637600i −0.0548759 0.0316826i
\(406\) 0 0
\(407\) −4.81307 0.0377247i −0.238575 0.00186995i
\(408\) 0 0
\(409\) 6.87386 + 3.96863i 0.339891 + 0.196236i 0.660224 0.751069i \(-0.270461\pi\)
−0.320333 + 0.947305i \(0.603795\pi\)
\(410\) 0 0
\(411\) 8.76951 + 15.1892i 0.432568 + 0.749230i
\(412\) 0 0
\(413\) 9.59386i 0.472083i
\(414\) 0 0
\(415\) 14.7701i 0.725036i
\(416\) 0 0
\(417\) 2.83485 0.138823
\(418\) 0 0
\(419\) 0.291288 0.504525i 0.0142303 0.0246477i −0.858823 0.512273i \(-0.828804\pi\)
0.873053 + 0.487626i \(0.162137\pi\)
\(420\) 0 0
\(421\) 35.1932i 1.71521i −0.514307 0.857606i \(-0.671951\pi\)
0.514307 0.857606i \(-0.328049\pi\)
\(422\) 0 0
\(423\) −0.291288 + 0.504525i −0.0141629 + 0.0245309i
\(424\) 0 0
\(425\) 5.06080 2.92185i 0.245485 0.141731i
\(426\) 0 0
\(427\) 34.7477 + 20.0616i 1.68156 + 0.970849i
\(428\) 0 0
\(429\) −2.06080 1.18980i −0.0994961 0.0574441i
\(430\) 0 0
\(431\) 28.8131 16.6352i 1.38788 0.801291i 0.394801 0.918767i \(-0.370814\pi\)
0.993076 + 0.117476i \(0.0374802\pi\)
\(432\) 0 0
\(433\) 16.7042 0.802751 0.401376 0.915914i \(-0.368532\pi\)
0.401376 + 0.915914i \(0.368532\pi\)
\(434\) 0 0
\(435\) −1.10436 + 1.91280i −0.0529498 + 0.0917118i
\(436\) 0 0
\(437\) 1.70871 + 2.95958i 0.0817388 + 0.141576i
\(438\) 0 0
\(439\) 11.2087 6.47135i 0.534963 0.308861i −0.208072 0.978113i \(-0.566719\pi\)
0.743035 + 0.669253i \(0.233386\pi\)
\(440\) 0 0
\(441\) −7.00000 12.1244i −0.333333 0.577350i
\(442\) 0 0
\(443\) −9.12159 −0.433380 −0.216690 0.976240i \(-0.569526\pi\)
−0.216690 + 0.976240i \(0.569526\pi\)
\(444\) 0 0
\(445\) 21.1652 1.00332
\(446\) 0 0
\(447\) −4.39564 7.61348i −0.207907 0.360105i
\(448\) 0 0
\(449\) 7.64792 4.41553i 0.360928 0.208382i −0.308560 0.951205i \(-0.599847\pi\)
0.669488 + 0.742823i \(0.266514\pi\)
\(450\) 0 0
\(451\) 3.47822 + 6.02445i 0.163783 + 0.283680i
\(452\) 0 0
\(453\) −7.08258 + 12.2674i −0.332768 + 0.576372i
\(454\) 0 0
\(455\) 17.5735 0.823858
\(456\) 0 0
\(457\) −26.2913 + 15.1793i −1.22985 + 0.710057i −0.966999 0.254778i \(-0.917997\pi\)
−0.262855 + 0.964835i \(0.584664\pi\)
\(458\) 0 0
\(459\) −1.50000 0.866025i −0.0700140 0.0404226i
\(460\) 0 0
\(461\) −30.0998 17.3781i −1.40189 0.809380i −0.407302 0.913294i \(-0.633530\pi\)
−0.994586 + 0.103913i \(0.966864\pi\)
\(462\) 0 0
\(463\) 27.0998 15.6461i 1.25943 0.727135i 0.286470 0.958089i \(-0.407518\pi\)
0.972965 + 0.230954i \(0.0741847\pi\)
\(464\) 0 0
\(465\) −1.62614 + 2.81655i −0.0754103 + 0.130614i
\(466\) 0 0
\(467\) 31.0061i 1.43479i 0.696666 + 0.717396i \(0.254666\pi\)
−0.696666 + 0.717396i \(0.745334\pi\)
\(468\) 0 0
\(469\) 4.10436 7.10895i 0.189522 0.328261i
\(470\) 0 0
\(471\) 1.20871 0.0556945
\(472\) 0 0
\(473\) 0.361500i 0.0166218i
\(474\) 0 0
\(475\) 1.54135i 0.0707220i
\(476\) 0 0
\(477\) 6.29129 + 10.8968i 0.288058 + 0.498932i
\(478\) 0 0
\(479\) 33.2477 + 19.1956i 1.51913 + 0.877069i 0.999746 + 0.0225259i \(0.00717084\pi\)
0.519381 + 0.854543i \(0.326162\pi\)
\(480\) 0 0
\(481\) −15.9129 + 9.02175i −0.725565 + 0.411357i
\(482\) 0 0
\(483\) 29.6869 + 17.1398i 1.35080 + 0.779886i
\(484\) 0 0
\(485\) 0.352083 + 0.609826i 0.0159873 + 0.0276908i
\(486\) 0 0
\(487\) 36.5638i 1.65686i 0.560091 + 0.828431i \(0.310766\pi\)
−0.560091 + 0.828431i \(0.689234\pi\)
\(488\) 0 0
\(489\) 14.8655i 0.672239i
\(490\) 0 0
\(491\) 9.00000 0.406164 0.203082 0.979162i \(-0.434904\pi\)
0.203082 + 0.979162i \(0.434904\pi\)
\(492\) 0 0
\(493\) −1.50000 + 2.59808i −0.0675566 + 0.117011i
\(494\) 0 0
\(495\) 1.00905i 0.0453535i
\(496\) 0 0
\(497\) 16.4174 28.4358i 0.736422 1.27552i
\(498\) 0 0
\(499\) −1.18693 + 0.685275i −0.0531344 + 0.0306771i −0.526332 0.850279i \(-0.676433\pi\)
0.473197 + 0.880956i \(0.343100\pi\)
\(500\) 0 0
\(501\) 8.29129 + 4.78698i 0.370427 + 0.213866i
\(502\) 0 0
\(503\) −8.68693 5.01540i −0.387331 0.223626i 0.293672 0.955906i \(-0.405123\pi\)
−0.681003 + 0.732281i \(0.738456\pi\)
\(504\) 0 0
\(505\) 19.3693 11.1829i 0.861923 0.497632i
\(506\) 0 0
\(507\) 3.95644 0.175712
\(508\) 0 0
\(509\) −12.6652 + 21.9367i −0.561373 + 0.972326i 0.436004 + 0.899945i \(0.356393\pi\)
−0.997377 + 0.0723818i \(0.976940\pi\)
\(510\) 0 0
\(511\) −29.2087 50.5910i −1.29212 2.23801i
\(512\) 0 0
\(513\) −0.395644 + 0.228425i −0.0174681 + 0.0100852i
\(514\) 0 0
\(515\) 5.81307 + 10.0685i 0.256154 + 0.443672i
\(516\) 0 0
\(517\) −0.460985 −0.0202741
\(518\) 0 0
\(519\) −8.20871 −0.360322
\(520\) 0 0
\(521\) −12.0826 20.9276i −0.529347 0.916856i −0.999414 0.0342255i \(-0.989104\pi\)
0.470067 0.882631i \(-0.344230\pi\)
\(522\) 0 0
\(523\) −16.8303 + 9.71698i −0.735938 + 0.424894i −0.820590 0.571517i \(-0.806355\pi\)
0.0846527 + 0.996411i \(0.473022\pi\)
\(524\) 0 0
\(525\) −7.73049 13.3896i −0.337386 0.584370i
\(526\) 0 0
\(527\) −2.20871 + 3.82560i −0.0962130 + 0.166646i
\(528\) 0 0
\(529\) −32.9564 −1.43289
\(530\) 0 0
\(531\) −1.81307 + 1.04678i −0.0786805 + 0.0454262i
\(532\) 0 0
\(533\) 22.8956 + 13.2188i 0.991720 + 0.572570i
\(534\) 0 0
\(535\) −7.91288 4.56850i −0.342104 0.197514i
\(536\) 0 0
\(537\) −21.5608 + 12.4481i −0.930417 + 0.537177i
\(538\) 0 0
\(539\) 5.53901 9.59386i 0.238582 0.413237i
\(540\) 0 0
\(541\) 41.7798i 1.79625i 0.439735 + 0.898127i \(0.355072\pi\)
−0.439735 + 0.898127i \(0.644928\pi\)
\(542\) 0 0
\(543\) 5.00000 8.66025i 0.214571 0.371647i
\(544\) 0 0
\(545\) 1.62614 0.0696560
\(546\) 0 0
\(547\) 18.7864i 0.803249i 0.915804 + 0.401624i \(0.131554\pi\)
−0.915804 + 0.401624i \(0.868446\pi\)
\(548\) 0 0
\(549\) 8.75560i 0.373680i
\(550\) 0 0
\(551\) 0.395644 + 0.685275i 0.0168550 + 0.0291937i
\(552\) 0 0
\(553\) −15.9392 9.20250i −0.677804 0.391330i
\(554\) 0 0
\(555\) −6.68693 3.93090i −0.283844 0.166858i
\(556\) 0 0
\(557\) −25.5998 14.7801i −1.08470 0.626251i −0.152539 0.988298i \(-0.548745\pi\)
−0.932160 + 0.362046i \(0.882078\pi\)
\(558\) 0 0
\(559\) 0.686932 + 1.18980i 0.0290541 + 0.0503232i
\(560\) 0 0
\(561\) 1.37055i 0.0578647i
\(562\) 0 0
\(563\) 16.7882i 0.707539i −0.935333 0.353769i \(-0.884900\pi\)
0.935333 0.353769i \(-0.115100\pi\)
\(564\) 0 0
\(565\) 6.50455 0.273648
\(566\) 0 0
\(567\) −2.29129 + 3.96863i −0.0962250 + 0.166667i
\(568\) 0 0
\(569\) 1.73205i 0.0726113i 0.999341 + 0.0363057i \(0.0115590\pi\)
−0.999341 + 0.0363057i \(0.988441\pi\)
\(570\) 0 0
\(571\) −6.79129 + 11.7629i −0.284207 + 0.492260i −0.972416 0.233251i \(-0.925063\pi\)
0.688210 + 0.725512i \(0.258397\pi\)
\(572\) 0 0
\(573\) 12.2477 7.07123i 0.511656 0.295405i
\(574\) 0 0
\(575\) 21.8566 + 12.6189i 0.911484 + 0.526246i
\(576\) 0 0
\(577\) −14.2913 8.25108i −0.594954 0.343497i 0.172100 0.985080i \(-0.444945\pi\)
−0.767054 + 0.641583i \(0.778278\pi\)
\(578\) 0 0
\(579\) −19.9782 + 11.5344i −0.830266 + 0.479355i
\(580\) 0 0
\(581\) −53.0780 −2.20205
\(582\) 0 0
\(583\) −4.97822 + 8.62253i −0.206177 + 0.357109i
\(584\) 0 0
\(585\) −1.91742 3.32108i −0.0792757 0.137310i
\(586\) 0 0
\(587\) 4.96099 2.86423i 0.204762 0.118219i −0.394113 0.919062i \(-0.628948\pi\)
0.598875 + 0.800843i \(0.295615\pi\)
\(588\) 0 0
\(589\) 0.582576 + 1.00905i 0.0240046 + 0.0415772i
\(590\) 0 0
\(591\) −17.3303 −0.712873
\(592\) 0 0
\(593\) 5.53901 0.227460 0.113730 0.993512i \(-0.463720\pi\)
0.113730 + 0.993512i \(0.463720\pi\)
\(594\) 0 0
\(595\) 5.06080 + 8.76555i 0.207472 + 0.359353i
\(596\) 0 0
\(597\) −4.26951 + 2.46500i −0.174739 + 0.100886i
\(598\) 0 0
\(599\) 8.58258 + 14.8655i 0.350675 + 0.607386i 0.986368 0.164556i \(-0.0526190\pi\)
−0.635693 + 0.771942i \(0.719286\pi\)
\(600\) 0 0
\(601\) −10.2913 + 17.8250i −0.419790 + 0.727098i −0.995918 0.0902614i \(-0.971230\pi\)
0.576128 + 0.817360i \(0.304563\pi\)
\(602\) 0 0
\(603\) −1.79129 −0.0729469
\(604\) 0 0
\(605\) −11.4564 + 6.61438i −0.465770 + 0.268913i
\(606\) 0 0
\(607\) −27.8739 16.0930i −1.13137 0.653194i −0.187087 0.982343i \(-0.559905\pi\)
−0.944278 + 0.329149i \(0.893238\pi\)
\(608\) 0 0
\(609\) 6.87386 + 3.96863i 0.278543 + 0.160817i
\(610\) 0 0
\(611\) −1.51723 + 0.875976i −0.0613807 + 0.0354382i
\(612\) 0 0
\(613\) 9.03901 15.6560i 0.365082 0.632341i −0.623707 0.781658i \(-0.714374\pi\)
0.988789 + 0.149317i \(0.0477075\pi\)
\(614\) 0 0
\(615\) 11.2107i 0.452057i
\(616\) 0 0
\(617\) 11.7695 20.3854i 0.473823 0.820685i −0.525728 0.850653i \(-0.676207\pi\)
0.999551 + 0.0299678i \(0.00954049\pi\)
\(618\) 0 0
\(619\) −18.9129 −0.760173 −0.380086 0.924951i \(-0.624106\pi\)
−0.380086 + 0.924951i \(0.624106\pi\)
\(620\) 0 0
\(621\) 7.48040i 0.300178i
\(622\) 0 0
\(623\) 76.0593i 3.04725i
\(624\) 0 0
\(625\) −1.62614 2.81655i −0.0650455 0.112662i
\(626\) 0 0
\(627\) −0.313068 0.180750i −0.0125027 0.00721846i
\(628\) 0 0
\(629\) −9.08258 5.33918i −0.362146 0.212887i
\(630\) 0 0
\(631\) 26.0608 + 15.0462i 1.03746 + 0.598980i 0.919114 0.393992i \(-0.128906\pi\)
0.118350 + 0.992972i \(0.462240\pi\)
\(632\) 0 0
\(633\) −3.50000 6.06218i −0.139113 0.240950i
\(634\) 0 0
\(635\) 7.11890i 0.282505i
\(636\) 0 0
\(637\) 42.1015i 1.66812i
\(638\) 0 0
\(639\) −7.16515 −0.283449
\(640\) 0 0
\(641\) 13.9564 24.1733i 0.551246 0.954786i −0.446939 0.894565i \(-0.647486\pi\)
0.998185 0.0602219i \(-0.0191808\pi\)
\(642\) 0 0
\(643\) 14.8655i 0.586236i 0.956076 + 0.293118i \(0.0946929\pi\)
−0.956076 + 0.293118i \(0.905307\pi\)
\(644\) 0 0
\(645\) −0.291288 + 0.504525i −0.0114694 + 0.0198657i
\(646\) 0 0
\(647\) 32.6869 18.8718i 1.28506 0.741927i 0.307288 0.951617i \(-0.400579\pi\)
0.977768 + 0.209689i \(0.0672452\pi\)
\(648\) 0 0
\(649\) −1.43466 0.828301i −0.0563153 0.0325136i
\(650\) 0 0
\(651\) 10.1216 + 5.84370i 0.396696 + 0.229033i
\(652\) 0 0
\(653\) 33.2477 19.1956i 1.30108 0.751181i 0.320494 0.947251i \(-0.396151\pi\)
0.980590 + 0.196069i \(0.0628177\pi\)
\(654\) 0 0
\(655\) −17.9129 −0.699914
\(656\) 0 0
\(657\) −6.37386 + 11.0399i −0.248668 + 0.430706i
\(658\) 0 0
\(659\) −22.6652 39.2572i −0.882909 1.52924i −0.848092 0.529849i \(-0.822248\pi\)
−0.0348172 0.999394i \(-0.511085\pi\)
\(660\) 0 0
\(661\) 9.16515 5.29150i 0.356483 0.205816i −0.311054 0.950392i \(-0.600682\pi\)
0.667537 + 0.744577i \(0.267349\pi\)
\(662\) 0 0
\(663\) −2.60436 4.51088i −0.101145 0.175188i
\(664\) 0 0
\(665\) 2.66970 0.103526
\(666\) 0 0
\(667\) −12.9564 −0.501675
\(668\) 0 0
\(669\) 8.10436 + 14.0372i 0.313333 + 0.542708i
\(670\) 0 0
\(671\) 6.00000 3.46410i 0.231627 0.133730i
\(672\) 0 0
\(673\) 3.73049 + 6.46140i 0.143800 + 0.249069i 0.928925 0.370269i \(-0.120734\pi\)
−0.785125 + 0.619338i \(0.787401\pi\)
\(674\) 0 0
\(675\) −1.68693 + 2.92185i −0.0649300 + 0.112462i
\(676\) 0 0
\(677\) −31.6606 −1.21682 −0.608408 0.793624i \(-0.708192\pi\)
−0.608408 + 0.793624i \(0.708192\pi\)
\(678\) 0 0
\(679\) 2.19148 1.26525i 0.0841012 0.0485558i
\(680\) 0 0
\(681\) 18.0826 + 10.4400i 0.692926 + 0.400061i
\(682\) 0 0
\(683\) 9.47822 + 5.47225i 0.362674 + 0.209390i 0.670253 0.742133i \(-0.266186\pi\)
−0.307579 + 0.951523i \(0.599519\pi\)
\(684\) 0 0
\(685\) −19.3693 + 11.1829i −0.740064 + 0.427276i
\(686\) 0 0
\(687\) −8.39564 + 14.5417i −0.320314 + 0.554800i
\(688\) 0 0
\(689\) 37.8390i 1.44155i
\(690\) 0 0
\(691\) 8.39564 14.5417i 0.319385 0.553192i −0.660975 0.750408i \(-0.729857\pi\)
0.980360 + 0.197217i \(0.0631902\pi\)
\(692\) 0 0
\(693\) −3.62614 −0.137746
\(694\) 0 0
\(695\) 3.61500i 0.137125i
\(696\) 0 0
\(697\) 15.2270i 0.576762i
\(698\) 0 0
\(699\) −2.91742 5.05313i −0.110347 0.191127i
\(700\) 0 0
\(701\) −8.37386 4.83465i −0.316276 0.182602i 0.333455 0.942766i \(-0.391785\pi\)
−0.649732 + 0.760164i \(0.725119\pi\)
\(702\) 0 0
\(703\) −2.41742 + 1.37055i −0.0911749 + 0.0516913i
\(704\) 0 0
\(705\) −0.643371 0.371450i −0.0242308 0.0139896i
\(706\) 0 0
\(707\) −40.1869 69.6058i −1.51139 2.61780i
\(708\) 0 0
\(709\) 8.12795i 0.305252i −0.988284 0.152626i \(-0.951227\pi\)
0.988284 0.152626i \(-0.0487729\pi\)
\(710\) 0 0
\(711\) 4.01630i 0.150623i
\(712\) 0 0
\(713\) −19.0780 −0.714478
\(714\) 0 0
\(715\) 1.51723 2.62793i 0.0567414 0.0982789i
\(716\) 0 0
\(717\) 2.91190i 0.108747i
\(718\) 0 0
\(719\) 5.08258 8.80328i 0.189548 0.328307i −0.755552 0.655089i \(-0.772631\pi\)
0.945100 + 0.326782i \(0.105964\pi\)
\(720\) 0 0
\(721\) 36.1824 20.8899i 1.34750 0.777981i
\(722\) 0 0
\(723\) 12.2477 + 7.07123i 0.455498 + 0.262982i
\(724\) 0 0
\(725\) 5.06080 + 2.92185i 0.187953 + 0.108515i
\(726\) 0 0
\(727\) −19.8131 + 11.4391i −0.734826 + 0.424252i −0.820185 0.572098i \(-0.806130\pi\)
0.0853591 + 0.996350i \(0.472796\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.395644 + 0.685275i −0.0146334 + 0.0253458i
\(732\) 0 0
\(733\) −5.31307 9.20250i −0.196243 0.339902i 0.751065 0.660229i \(-0.229541\pi\)
−0.947307 + 0.320327i \(0.896207\pi\)
\(734\) 0 0
\(735\) 15.4610 8.92640i 0.570287 0.329255i
\(736\) 0 0
\(737\) −0.708712 1.22753i −0.0261057 0.0452165i
\(738\) 0 0
\(739\) 28.1652 1.03607 0.518036 0.855359i \(-0.326663\pi\)
0.518036 + 0.855359i \(0.326663\pi\)
\(740\) 0 0
\(741\) −1.37386 −0.0504701
\(742\) 0 0
\(743\) −8.31307 14.3987i −0.304977 0.528235i 0.672279 0.740298i \(-0.265315\pi\)
−0.977256 + 0.212062i \(0.931982\pi\)
\(744\) 0 0
\(745\) 9.70871 5.60533i 0.355700 0.205363i
\(746\) 0 0
\(747\) 5.79129 + 10.0308i 0.211892 + 0.367008i
\(748\) 0 0
\(749\) −16.4174 + 28.4358i −0.599880 + 1.03902i
\(750\) 0 0
\(751\) −26.7042 −0.974449 −0.487224 0.873277i \(-0.661991\pi\)
−0.487224 + 0.873277i \(0.661991\pi\)
\(752\) 0 0
\(753\) 7.43466 4.29240i 0.270934 0.156424i
\(754\) 0 0
\(755\) −15.6434 9.03170i −0.569321 0.328697i
\(756\) 0 0
\(757\) 18.1652 + 10.4877i 0.660224 + 0.381180i 0.792362 0.610051i \(-0.208851\pi\)
−0.132139 + 0.991231i \(0.542184\pi\)
\(758\) 0 0
\(759\) 5.12614 2.95958i 0.186067 0.107426i
\(760\) 0 0
\(761\) −4.58258 + 7.93725i −0.166118 + 0.287725i −0.937052 0.349190i \(-0.886457\pi\)
0.770934 + 0.636916i \(0.219790\pi\)
\(762\) 0 0
\(763\) 5.84370i 0.211556i
\(764\) 0 0
\(765\) 1.10436 1.91280i 0.0399281 0.0691575i
\(766\) 0 0
\(767\) −6.29583 −0.227329
\(768\) 0 0
\(769\) 38.7726i 1.39817i 0.715036 + 0.699087i \(0.246410\pi\)
−0.715036 + 0.699087i \(0.753590\pi\)
\(770\) 0 0
\(771\) 23.8872i 0.860277i
\(772\) 0 0
\(773\) −10.5000 18.1865i −0.377659 0.654124i 0.613062 0.790034i \(-0.289937\pi\)
−0.990721 + 0.135910i \(0.956604\pi\)
\(774\) 0 0
\(775\) 7.45189 + 4.30235i 0.267680 + 0.154545i
\(776\) 0 0
\(777\) −14.1261 + 24.0302i −0.506772 + 0.862080i
\(778\) 0 0
\(779\) 3.47822 + 2.00815i 0.124620 + 0.0719495i
\(780\) 0 0
\(781\) −2.83485 4.91010i −0.101439 0.175697i
\(782\) 0 0
\(783\) 1.73205i 0.0618984i
\(784\) 0 0
\(785\) 1.54135i 0.0550132i
\(786\) 0 0
\(787\) −16.4955 −0.587999 −0.294000 0.955806i \(-0.594986\pi\)
−0.294000 + 0.955806i \(0.594986\pi\)
\(788\) 0 0
\(789\) −4.18693 + 7.25198i −0.149059 + 0.258177i
\(790\) 0 0
\(791\) 23.3748i 0.831113i
\(792\) 0 0
\(793\) 13.1652 22.8027i 0.467508 0.809748i
\(794\) 0 0
\(795\) −13.8956 + 8.02265i −0.492828 + 0.284534i
\(796\) 0 0
\(797\) 13.6479 + 7.87963i 0.483434 + 0.279111i 0.721846 0.692053i \(-0.243294\pi\)
−0.238412 + 0.971164i \(0.576627\pi\)
\(798\) 0 0
\(799\) −0.873864 0.504525i −0.0309151 0.0178488i
\(800\) 0 0
\(801\) −14.3739 + 8.29875i −0.507875 + 0.293222i
\(802\) 0 0
\(803\) −10.0871 −0.355967
\(804\) 0 0
\(805\) −21.8566 + 37.8568i −0.770345 + 1.33428i
\(806\) 0 0
\(807\) −7.76951 13.4572i −0.273500 0.473715i
\(808\) 0 0
\(809\) −21.7087 + 12.5335i −0.763238 + 0.440655i −0.830457 0.557083i \(-0.811921\pi\)
0.0672193 + 0.997738i \(0.478587\pi\)
\(810\) 0 0
\(811\) −8.95644 15.5130i −0.314503 0.544735i 0.664829 0.746996i \(-0.268505\pi\)
−0.979332 + 0.202261i \(0.935171\pi\)
\(812\) 0 0
\(813\) 29.9564 1.05062
\(814\) 0 0
\(815\) 18.9564 0.664015
\(816\) 0 0
\(817\) 0.104356 + 0.180750i 0.00365096 + 0.00632364i
\(818\) 0 0
\(819\) −11.9347 + 6.89048i −0.417031 + 0.240773i
\(820\) 0 0
\(821\) 5.37386 + 9.30780i 0.187549 + 0.324845i 0.944433 0.328705i \(-0.106612\pi\)
−0.756883 + 0.653550i \(0.773279\pi\)
\(822\) 0 0
\(823\) 4.37386 7.57575i 0.152463 0.264074i −0.779669 0.626192i \(-0.784613\pi\)
0.932132 + 0.362117i \(0.117946\pi\)
\(824\) 0 0
\(825\) −2.66970 −0.0929469
\(826\) 0 0
\(827\) 18.3303 10.5830i 0.637407 0.368007i −0.146208 0.989254i \(-0.546707\pi\)
0.783615 + 0.621247i \(0.213374\pi\)
\(828\) 0 0
\(829\) 49.3521 + 28.4934i 1.71407 + 0.989618i 0.928896 + 0.370342i \(0.120759\pi\)
0.785173 + 0.619276i \(0.212574\pi\)
\(830\) 0 0
\(831\) −24.4782 14.1325i −0.849140 0.490251i
\(832\) 0 0
\(833\) 21.0000 12.1244i 0.727607 0.420084i
\(834\) 0 0
\(835\) −6.10436 + 10.5731i −0.211250 + 0.365896i
\(836\) 0 0
\(837\) 2.55040i 0.0881548i
\(838\) 0 0
\(839\) −10.4564 + 18.1111i −0.360996 + 0.625264i −0.988125 0.153652i \(-0.950897\pi\)
0.627129 + 0.778916i \(0.284230\pi\)
\(840\) 0 0
\(841\) 26.0000 0.896552
\(842\) 0 0
\(843\) 7.21425i 0.248472i
\(844\) 0 0
\(845\) 5.04525i 0.173562i
\(846\) 0 0
\(847\) 23.7695 + 41.1700i 0.816730 + 1.41462i
\(848\) 0 0
\(849\) −19.8956 11.4868i −0.682817 0.394224i
\(850\) 0 0
\(851\) 0.356629 45.5001i 0.0122251 1.55972i
\(852\) 0 0
\(853\) 16.2695 + 9.39320i 0.557057 + 0.321617i 0.751964 0.659205i \(-0.229107\pi\)
−0.194906 + 0.980822i \(0.562440\pi\)
\(854\) 0 0
\(855\) −0.291288 0.504525i −0.00996183 0.0172544i
\(856\) 0 0
\(857\) 17.3404i 0.592337i 0.955136 + 0.296169i \(0.0957090\pi\)
−0.955136 + 0.296169i \(0.904291\pi\)
\(858\) 0 0
\(859\) 26.0761i 0.889705i −0.895604 0.444853i \(-0.853256\pi\)
0.895604 0.444853i \(-0.146744\pi\)
\(860\) 0 0
\(861\) 40.2867 1.37297
\(862\) 0 0
\(863\) −5.14337 + 8.90858i −0.175082 + 0.303252i −0.940190 0.340651i \(-0.889353\pi\)
0.765107 + 0.643903i \(0.222686\pi\)
\(864\) 0 0
\(865\) 10.4678i 0.355914i
\(866\) 0 0
\(867\) −7.00000 + 12.1244i −0.237732 + 0.411765i
\(868\) 0 0
\(869\) −2.75227 + 1.58903i −0.0933645 + 0.0539040i
\(870\) 0 0
\(871\) −4.66515 2.69343i −0.158073 0.0912633i
\(872\) 0 0
\(873\) −0.478220 0.276100i −0.0161853 0.00934458i
\(874\) 0 0
\(875\) 42.3784 24.4672i 1.43265 0.827142i
\(876\) 0 0
\(877\) −42.1216 −1.42235 −0.711173 0.703018i \(-0.751836\pi\)
−0.711173 + 0.703018i \(0.751836\pi\)
\(878\) 0 0
\(879\) 7.58258 13.1334i 0.255754 0.442979i
\(880\) 0 0
\(881\) 10.7477 + 18.6156i 0.362100 + 0.627176i 0.988306 0.152482i \(-0.0487265\pi\)
−0.626206 + 0.779658i \(0.715393\pi\)
\(882\) 0 0
\(883\) 34.6652 20.0139i 1.16658 0.673523i 0.213704 0.976898i \(-0.431447\pi\)
0.952871 + 0.303376i \(0.0981138\pi\)
\(884\) 0 0
\(885\) −1.33485 2.31203i −0.0448704 0.0777179i
\(886\) 0 0
\(887\) 51.7042 1.73606 0.868028 0.496515i \(-0.165387\pi\)
0.868028 + 0.496515i \(0.165387\pi\)
\(888\) 0 0
\(889\) −25.5826 −0.858012
\(890\) 0 0
\(891\) 0.395644 + 0.685275i 0.0132546 + 0.0229576i
\(892\) 0 0
\(893\) −0.230493 + 0.133075i −0.00771314 + 0.00445318i
\(894\) 0 0
\(895\) −15.8739 27.4943i −0.530605 0.919034i
\(896\) 0 0
\(897\) 11.2477 19.4816i 0.375551 0.650473i
\(898\) 0 0
\(899\) −4.41742 −0.147329
\(900\) 0 0
\(901\) −18.8739 + 10.8968i −0.628780 + 0.363026i
\(902\) 0 0
\(903\) 1.81307 + 1.04678i 0.0603351 + 0.0348345i
\(904\) 0 0
\(905\) 11.0436 + 6.37600i 0.367100 + 0.211946i
\(906\) 0 0
\(907\) 34.2867 19.7955i 1.13847 0.657297i 0.192421 0.981313i \(-0.438366\pi\)
0.946052 + 0.324015i \(0.105033\pi\)
\(908\) 0 0
\(909\) −8.76951 + 15.1892i −0.290866 + 0.503795i
\(910\) 0 0
\(911\) 23.2397i 0.769964i 0.922924 + 0.384982i \(0.125792\pi\)
−0.922924 + 0.384982i \(0.874208\pi\)
\(912\) 0 0
\(913\) −4.58258 + 7.93725i −0.151661 + 0.262685i
\(914\) 0 0
\(915\) 11.1652 0.369109
\(916\) 0 0
\(917\) 64.3719i 2.12575i
\(918\) 0 0
\(919\) 10.0308i 0.330886i 0.986219 + 0.165443i \(0.0529053\pi\)
−0.986219 + 0.165443i \(0.947095\pi\)
\(920\) 0 0
\(921\) 7.50000 + 12.9904i 0.247133 + 0.428048i
\(922\) 0 0
\(923\) −18.6606 10.7737i −0.614221 0.354621i
\(924\) 0 0
\(925\) −10.4002 + 17.6920i −0.341956 + 0.581708i
\(926\) 0 0
\(927\) −7.89564 4.55855i −0.259327 0.149722i
\(928\) 0 0
\(929\) 15.4782 + 26.8091i 0.507824 + 0.879577i 0.999959 + 0.00905796i \(0.00288328\pi\)
−0.492135 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 6.39590i 0.209617i
\(932\) 0 0
\(933\) 19.1479i 0.626874i
\(934\) 0 0
\(935\) 1.74773 0.0571568
\(936\) 0 0
\(937\) −7.43466 + 12.8772i −0.242880 + 0.420680i −0.961533 0.274688i \(-0.911425\pi\)
0.718654 + 0.695368i \(0.244759\pi\)
\(938\) 0 0
\(939\) 7.21425i 0.235428i
\(940\) 0 0
\(941\) 4.16515 7.21425i 0.135780 0.235178i −0.790115 0.612958i \(-0.789979\pi\)
0.925895 + 0.377781i \(0.123313\pi\)
\(942\) 0 0
\(943\) −56.9519 + 32.8812i −1.85461 + 1.07076i
\(944\) 0 0
\(945\) −5.06080 2.92185i −0.164628 0.0950478i
\(946\) 0 0
\(947\) 25.5000 + 14.7224i 0.828639 + 0.478415i 0.853386 0.521279i \(-0.174545\pi\)
−0.0247477 + 0.999694i \(0.507878\pi\)
\(948\) 0 0
\(949\) −33.1996 + 19.1678i −1.07771 + 0.622213i
\(950\) 0 0
\(951\) −22.5390 −0.730878
\(952\) 0 0
\(953\) 16.5390 28.6464i 0.535751 0.927948i −0.463375 0.886162i \(-0.653362\pi\)
0.999127 0.0417863i \(-0.0133049\pi\)
\(954\) 0 0
\(955\) 9.01723 + 15.6183i 0.291791 + 0.505397i
\(956\) 0 0
\(957\) 1.18693 0.685275i 0.0383681 0.0221518i
\(958\) 0 0
\(959\) 40.1869 + 69.6058i 1.29770 + 2.24769i
\(960\) 0 0
\(961\) 24.4955 0.790176
\(962\) 0 0
\(963\) 7.16515 0.230894
\(964\) 0 0
\(965\) −14.7087 25.4762i −0.473490 0.820109i
\(966\) 0 0
\(967\) 39.6606 22.8981i 1.27540 0.736352i 0.299400 0.954128i \(-0.403213\pi\)
0.975999 + 0.217776i \(0.0698801\pi\)
\(968\) 0 0
\(969\) −0.395644 0.685275i −0.0127099 0.0220142i
\(970\) 0 0
\(971\) 3.87386 6.70973i 0.124318 0.215325i −0.797148 0.603784i \(-0.793659\pi\)
0.921466 + 0.388458i \(0.126992\pi\)
\(972\) 0 0
\(973\) 12.9909 0.416469
\(974\) 0 0
\(975\) −8.78674 + 5.07303i −0.281401 + 0.162467i
\(976\) 0 0
\(977\) −13.7305 7.92730i −0.439277 0.253617i 0.264014 0.964519i \(-0.414954\pi\)
−0.703291 + 0.710902i \(0.748287\pi\)
\(978\) 0 0
\(979\) −11.3739 6.56670i −0.363510 0.209873i
\(980\) 0 0
\(981\) −1.10436 + 0.637600i −0.0352594 + 0.0203570i
\(982\) 0 0
\(983\) −23.6652 + 40.9892i −0.754801 + 1.30735i 0.190672 + 0.981654i \(0.438933\pi\)
−0.945473 + 0.325700i \(0.894400\pi\)
\(984\) 0 0
\(985\) 22.0996i 0.704152i
\(986\) 0 0
\(987\) −1.33485 + 2.31203i −0.0424887 + 0.0735926i
\(988\) 0 0
\(989\) −3.41742 −0.108668
\(990\) 0 0
\(991\) 28.3803i 0.901529i −0.892643 0.450764i \(-0.851151\pi\)
0.892643 0.450764i \(-0.148849\pi\)
\(992\) 0 0
\(993\) 1.46590i 0.0465190i
\(994\) 0 0
\(995\) −3.14337 5.44448i −0.0996516 0.172602i
\(996\) 0 0
\(997\) −38.9519 22.4889i −1.23362 0.712230i −0.265836 0.964018i \(-0.585648\pi\)
−0.967782 + 0.251788i \(0.918981\pi\)
\(998\) 0 0
\(999\) 6.08258 + 0.0476751i 0.192444 + 0.00150837i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 444.2.r.c.397.1 yes 4
3.2 odd 2 1332.2.bi.g.397.2 4
4.3 odd 2 1776.2.bz.f.1729.1 4
37.11 even 6 inner 444.2.r.c.85.1 4
111.11 odd 6 1332.2.bi.g.973.2 4
148.11 odd 6 1776.2.bz.f.529.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
444.2.r.c.85.1 4 37.11 even 6 inner
444.2.r.c.397.1 yes 4 1.1 even 1 trivial
1332.2.bi.g.397.2 4 3.2 odd 2
1332.2.bi.g.973.2 4 111.11 odd 6
1776.2.bz.f.529.1 4 148.11 odd 6
1776.2.bz.f.1729.1 4 4.3 odd 2