Properties

Label 444.2.r
Level $444$
Weight $2$
Character orbit 444.r
Rep. character $\chi_{444}(85,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $4$
Sturm bound $152$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 444 = 2^{2} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 444.r (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(152\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(444, [\chi])\).

Total New Old
Modular forms 164 16 148
Cusp forms 140 16 124
Eisenstein series 24 0 24

Trace form

\( 16 q - 8 q^{9} + 8 q^{11} - 18 q^{19} + 2 q^{21} + 20 q^{25} - 2 q^{33} + 54 q^{35} + 10 q^{37} + 24 q^{39} - 18 q^{41} + 4 q^{47} - 30 q^{49} + 26 q^{53} - 24 q^{57} - 48 q^{59} + 6 q^{61} - 22 q^{65}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(444, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
444.2.r.a 444.r 37.e $2$ $3.545$ \(\Q(\sqrt{-3}) \) None 444.2.r.a \(0\) \(-1\) \(-6\) \(-1\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{6}q^{3}+(-4+2\zeta_{6})q^{5}-\zeta_{6}q^{7}+\cdots\)
444.2.r.b 444.r 37.e $2$ $3.545$ \(\Q(\sqrt{-3}) \) None 444.2.r.b \(0\) \(-1\) \(-3\) \(2\) $\mathrm{SU}(2)[C_{6}]$ \(q-\zeta_{6}q^{3}+(-2+\zeta_{6})q^{5}+2\zeta_{6}q^{7}+\cdots\)
444.2.r.c 444.r 37.e $4$ $3.545$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 444.2.r.c \(0\) \(-2\) \(9\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{2}q^{3}+(3-2\beta _{2}+\beta _{3})q^{5}+(-2+\cdots)q^{7}+\cdots\)
444.2.r.d 444.r 37.e $8$ $3.545$ 8.0.\(\cdots\).1 None 444.2.r.d \(0\) \(4\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\beta _{3})q^{3}+\beta _{5}q^{5}+(-\beta _{4}-\beta _{7})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(444, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(444, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)