Defining parameters
Level: | \( N \) | \(=\) | \( 444 = 2^{2} \cdot 3 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 444.r (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(152\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(444, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 164 | 16 | 148 |
Cusp forms | 140 | 16 | 124 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(444, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
444.2.r.a | $2$ | $3.545$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(-6\) | \(-1\) | \(q-\zeta_{6}q^{3}+(-4+2\zeta_{6})q^{5}-\zeta_{6}q^{7}+\cdots\) |
444.2.r.b | $2$ | $3.545$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(-3\) | \(2\) | \(q-\zeta_{6}q^{3}+(-2+\zeta_{6})q^{5}+2\zeta_{6}q^{7}+\cdots\) |
444.2.r.c | $4$ | $3.545$ | \(\Q(\sqrt{-3}, \sqrt{-7})\) | None | \(0\) | \(-2\) | \(9\) | \(0\) | \(q-\beta _{2}q^{3}+(3-2\beta _{2}+\beta _{3})q^{5}+(-2+\cdots)q^{7}+\cdots\) |
444.2.r.d | $8$ | $3.545$ | 8.0.\(\cdots\).1 | None | \(0\) | \(4\) | \(0\) | \(-1\) | \(q+(1+\beta _{3})q^{3}+\beta _{5}q^{5}+(-\beta _{4}-\beta _{7})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(444, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(444, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(148, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)