Properties

Label 441.8.a.m
Level $441$
Weight $8$
Character orbit 441.a
Self dual yes
Analytic conductor $137.762$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,8,Mod(1,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 441.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,9,0,317,-360,0,0,5067,0,9030,4932,0,-7708] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(137.761796238\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1065}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1065})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta + 5) q^{2} + ( - 9 \beta + 163) q^{4} + ( - 20 \beta - 170) q^{5} + ( - 71 \beta + 2569) q^{8} + (90 \beta + 4470) q^{10} + ( - 308 \beta + 2620) q^{11} + (288 \beta - 3998) q^{13} + ( - 1701 \beta + 10867) q^{16}+ \cdots + ( - 122184 \beta - 8072114) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 9 q^{2} + 317 q^{4} - 360 q^{5} + 5067 q^{8} + 9030 q^{10} + 4932 q^{11} - 7708 q^{13} + 20033 q^{16} - 28584 q^{17} + 63728 q^{19} + 38790 q^{20} + 186204 q^{22} - 82260 q^{23} + 121550 q^{25} - 188046 q^{26}+ \cdots - 16266412 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
16.8172
−15.8172
−11.8172 0 11.6455 −506.343 0 0 1374.98 0 5983.55
1.2 20.8172 0 305.355 146.343 0 0 3692.02 0 3046.45
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.8.a.m 2
3.b odd 2 1 147.8.a.c 2
7.b odd 2 1 63.8.a.f 2
21.c even 2 1 21.8.a.b 2
21.g even 6 2 147.8.e.h 4
21.h odd 6 2 147.8.e.g 4
84.h odd 2 1 336.8.a.n 2
105.g even 2 1 525.8.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.8.a.b 2 21.c even 2 1
63.8.a.f 2 7.b odd 2 1
147.8.a.c 2 3.b odd 2 1
147.8.e.g 4 21.h odd 6 2
147.8.e.h 4 21.g even 6 2
336.8.a.n 2 84.h odd 2 1
441.8.a.m 2 1.a even 1 1 trivial
525.8.a.e 2 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(441))\):

\( T_{2}^{2} - 9T_{2} - 246 \) Copy content Toggle raw display
\( T_{5}^{2} + 360T_{5} - 74100 \) Copy content Toggle raw display
\( T_{13}^{2} + 7708T_{13} - 7230524 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 9T - 246 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 360T - 74100 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4932 T - 19176384 \) Copy content Toggle raw display
$13$ \( T^{2} + 7708 T - 7230524 \) Copy content Toggle raw display
$17$ \( T^{2} + 28584 T + 121953804 \) Copy content Toggle raw display
$19$ \( T^{2} - 63728 T + 782053936 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1392518400 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 46362346164 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 27226807040 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 123432685924 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 416101387716 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 23523686224 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 551244428160 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 800144528964 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 455709488016 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 397808236556 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 4656119933104 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 387209643840 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 22405484001836 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 578840156416 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 6817674434256 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 61835691772164 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 62174212264276 \) Copy content Toggle raw display
show more
show less