Properties

Label 147.8.a.c
Level $147$
Weight $8$
Character orbit 147.a
Self dual yes
Analytic conductor $45.921$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [147,8,Mod(1,147)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(147, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("147.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 147 = 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 147.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-9,54] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(45.9205987462\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1065}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 266 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1065})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 4) q^{2} + 27 q^{3} + (9 \beta + 154) q^{4} + ( - 20 \beta + 190) q^{5} + ( - 27 \beta - 108) q^{6} + ( - 71 \beta - 2498) q^{8} + 729 q^{9} + ( - 90 \beta + 4560) q^{10} + ( - 308 \beta - 2312) q^{11}+ \cdots + ( - 224532 \beta - 1685448) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{2} + 54 q^{3} + 317 q^{4} + 360 q^{5} - 243 q^{6} - 5067 q^{8} + 1458 q^{9} + 9030 q^{10} - 4932 q^{11} + 8559 q^{12} - 7708 q^{13} + 9720 q^{15} + 20033 q^{16} + 28584 q^{17} - 6561 q^{18} + 63728 q^{19}+ \cdots - 3595428 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
16.8172
−15.8172
−20.8172 27.0000 305.355 −146.343 −562.064 0 −3692.02 729.000 3046.45
1.2 11.8172 27.0000 11.6455 506.343 319.064 0 −1374.98 729.000 5983.55
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 147.8.a.c 2
3.b odd 2 1 441.8.a.m 2
7.b odd 2 1 21.8.a.b 2
7.c even 3 2 147.8.e.g 4
7.d odd 6 2 147.8.e.h 4
21.c even 2 1 63.8.a.f 2
28.d even 2 1 336.8.a.n 2
35.c odd 2 1 525.8.a.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.8.a.b 2 7.b odd 2 1
63.8.a.f 2 21.c even 2 1
147.8.a.c 2 1.a even 1 1 trivial
147.8.e.g 4 7.c even 3 2
147.8.e.h 4 7.d odd 6 2
336.8.a.n 2 28.d even 2 1
441.8.a.m 2 3.b odd 2 1
525.8.a.e 2 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(147))\):

\( T_{2}^{2} + 9T_{2} - 246 \) Copy content Toggle raw display
\( T_{5}^{2} - 360T_{5} - 74100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 9T - 246 \) Copy content Toggle raw display
$3$ \( (T - 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 360T - 74100 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4932 T - 19176384 \) Copy content Toggle raw display
$13$ \( T^{2} + 7708 T - 7230524 \) Copy content Toggle raw display
$17$ \( T^{2} - 28584 T + 121953804 \) Copy content Toggle raw display
$19$ \( T^{2} - 63728 T + 782053936 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1392518400 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 46362346164 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 27226807040 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 123432685924 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 416101387716 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 23523686224 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 551244428160 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 800144528964 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 455709488016 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 397808236556 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 4656119933104 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 387209643840 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 22405484001836 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 578840156416 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 6817674434256 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 61835691772164 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 62174212264276 \) Copy content Toggle raw display
show more
show less