Properties

Label 441.3.t.a.178.11
Level $441$
Weight $3$
Character 441.178
Analytic conductor $12.016$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,3,Mod(166,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.166"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 178.11
Character \(\chi\) \(=\) 441.178
Dual form 441.3.t.a.166.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24050 q^{2} +(-2.95463 - 0.519775i) q^{3} +1.01982 q^{4} +(1.67528 + 0.967222i) q^{5} +(-6.61983 - 1.16455i) q^{6} -6.67708 q^{8} +(8.45967 + 3.07148i) q^{9} +(3.75345 + 2.16706i) q^{10} +(0.186168 + 0.322453i) q^{11} +(-3.01319 - 0.530076i) q^{12} +(-5.01827 + 2.89730i) q^{13} +(-4.44709 - 3.72855i) q^{15} -19.0392 q^{16} +(-9.96576 - 5.75374i) q^{17} +(18.9538 + 6.88165i) q^{18} +(-18.2323 + 10.5264i) q^{19} +(1.70848 + 0.986391i) q^{20} +(0.417109 + 0.722455i) q^{22} +(-13.6417 + 23.6282i) q^{23} +(19.7283 + 3.47058i) q^{24} +(-10.6290 - 18.4099i) q^{25} +(-11.2434 + 6.49139i) q^{26} +(-23.3987 - 13.4722i) q^{27} +(-20.1404 + 34.8842i) q^{29} +(-9.96367 - 8.35380i) q^{30} +48.8145i q^{31} -15.9490 q^{32} +(-0.382456 - 1.04950i) q^{33} +(-22.3282 - 12.8912i) q^{34} +(8.62732 + 3.13236i) q^{36} +(14.7691 + 25.5809i) q^{37} +(-40.8493 + 23.5844i) q^{38} +(16.3331 - 5.95208i) q^{39} +(-11.1860 - 6.45822i) q^{40} +(-19.6397 + 11.3390i) q^{41} +(10.7407 - 18.6035i) q^{43} +(0.189858 + 0.328844i) q^{44} +(11.2015 + 13.3280i) q^{45} +(-30.5642 + 52.9388i) q^{46} -53.3035i q^{47} +(56.2539 + 9.89612i) q^{48} +(-23.8141 - 41.2473i) q^{50} +(26.4545 + 22.1801i) q^{51} +(-5.11773 + 2.95472i) q^{52} +(43.7300 - 75.7426i) q^{53} +(-52.4247 - 30.1844i) q^{54} +0.720265i q^{55} +(59.3409 - 21.6249i) q^{57} +(-45.1245 + 78.1579i) q^{58} +9.23111i q^{59} +(-4.53522 - 3.80244i) q^{60} -70.5346i q^{61} +109.369i q^{62} +40.4233 q^{64} -11.2093 q^{65} +(-0.856890 - 2.35139i) q^{66} -75.5440 q^{67} +(-10.1633 - 5.86777i) q^{68} +(52.5876 - 62.7219i) q^{69} -97.4729 q^{71} +(-56.4859 - 20.5086i) q^{72} +(75.3269 + 43.4900i) q^{73} +(33.0902 + 57.3139i) q^{74} +(21.8356 + 59.9191i) q^{75} +(-18.5936 + 10.7350i) q^{76} +(36.5942 - 13.3356i) q^{78} -47.1994 q^{79} +(-31.8960 - 18.4152i) q^{80} +(62.1320 + 51.9675i) q^{81} +(-44.0025 + 25.4049i) q^{82} +(81.1770 + 46.8676i) q^{83} +(-11.1303 - 19.2782i) q^{85} +(24.0646 - 41.6810i) q^{86} +(77.6394 - 92.6014i) q^{87} +(-1.24306 - 2.15305i) q^{88} +(25.6803 - 14.8266i) q^{89} +(25.0969 + 29.8612i) q^{90} +(-13.9121 + 24.0965i) q^{92} +(25.3726 - 144.229i) q^{93} -119.426i q^{94} -40.7255 q^{95} +(47.1234 + 8.28989i) q^{96} +(-122.538 - 70.7471i) q^{97} +(0.584513 + 3.29966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{2} + 3 q^{3} + 46 q^{4} + 3 q^{5} + 12 q^{6} - 16 q^{8} - 15 q^{9} + 6 q^{10} + 7 q^{11} + 30 q^{12} + 15 q^{13} - 18 q^{15} + 54 q^{16} + 33 q^{17} - 42 q^{18} + 6 q^{19} + 108 q^{20} - 10 q^{22}+ \cdots - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24050 1.12025 0.560124 0.828409i \(-0.310754\pi\)
0.560124 + 0.828409i \(0.310754\pi\)
\(3\) −2.95463 0.519775i −0.984876 0.173258i
\(4\) 1.01982 0.254955
\(5\) 1.67528 + 0.967222i 0.335055 + 0.193444i 0.658083 0.752945i \(-0.271367\pi\)
−0.323028 + 0.946389i \(0.604701\pi\)
\(6\) −6.61983 1.16455i −1.10331 0.194092i
\(7\) 0 0
\(8\) −6.67708 −0.834635
\(9\) 8.45967 + 3.07148i 0.939963 + 0.341276i
\(10\) 3.75345 + 2.16706i 0.375345 + 0.216706i
\(11\) 0.186168 + 0.322453i 0.0169244 + 0.0293139i 0.874364 0.485271i \(-0.161279\pi\)
−0.857439 + 0.514585i \(0.827946\pi\)
\(12\) −3.01319 0.530076i −0.251099 0.0441730i
\(13\) −5.01827 + 2.89730i −0.386021 + 0.222869i −0.680435 0.732809i \(-0.738209\pi\)
0.294414 + 0.955678i \(0.404876\pi\)
\(14\) 0 0
\(15\) −4.44709 3.72855i −0.296472 0.248570i
\(16\) −19.0392 −1.18995
\(17\) −9.96576 5.75374i −0.586221 0.338455i 0.177381 0.984142i \(-0.443238\pi\)
−0.763602 + 0.645687i \(0.776571\pi\)
\(18\) 18.9538 + 6.88165i 1.05299 + 0.382314i
\(19\) −18.2323 + 10.5264i −0.959593 + 0.554021i −0.896048 0.443958i \(-0.853574\pi\)
−0.0635451 + 0.997979i \(0.520241\pi\)
\(20\) 1.70848 + 0.986391i 0.0854239 + 0.0493195i
\(21\) 0 0
\(22\) 0.417109 + 0.722455i 0.0189595 + 0.0328389i
\(23\) −13.6417 + 23.6282i −0.593119 + 1.02731i 0.400690 + 0.916214i \(0.368770\pi\)
−0.993809 + 0.111099i \(0.964563\pi\)
\(24\) 19.7283 + 3.47058i 0.822013 + 0.144608i
\(25\) −10.6290 18.4099i −0.425159 0.736396i
\(26\) −11.2434 + 6.49139i −0.432439 + 0.249669i
\(27\) −23.3987 13.4722i −0.866619 0.498971i
\(28\) 0 0
\(29\) −20.1404 + 34.8842i −0.694497 + 1.20290i 0.275853 + 0.961200i \(0.411040\pi\)
−0.970350 + 0.241704i \(0.922294\pi\)
\(30\) −9.96367 8.35380i −0.332122 0.278460i
\(31\) 48.8145i 1.57466i 0.616530 + 0.787331i \(0.288538\pi\)
−0.616530 + 0.787331i \(0.711462\pi\)
\(32\) −15.9490 −0.498406
\(33\) −0.382456 1.04950i −0.0115896 0.0318029i
\(34\) −22.3282 12.8912i −0.656713 0.379154i
\(35\) 0 0
\(36\) 8.62732 + 3.13236i 0.239648 + 0.0870099i
\(37\) 14.7691 + 25.5809i 0.399166 + 0.691376i 0.993623 0.112751i \(-0.0359663\pi\)
−0.594457 + 0.804127i \(0.702633\pi\)
\(38\) −40.8493 + 23.5844i −1.07498 + 0.620641i
\(39\) 16.3331 5.95208i 0.418797 0.152617i
\(40\) −11.1860 6.45822i −0.279649 0.161455i
\(41\) −19.6397 + 11.3390i −0.479016 + 0.276560i −0.720006 0.693968i \(-0.755861\pi\)
0.240990 + 0.970528i \(0.422528\pi\)
\(42\) 0 0
\(43\) 10.7407 18.6035i 0.249785 0.432639i −0.713681 0.700470i \(-0.752974\pi\)
0.963466 + 0.267831i \(0.0863069\pi\)
\(44\) 0.189858 + 0.328844i 0.00431495 + 0.00747372i
\(45\) 11.2015 + 13.3280i 0.248922 + 0.296177i
\(46\) −30.5642 + 52.9388i −0.664440 + 1.15084i
\(47\) 53.3035i 1.13412i −0.823677 0.567059i \(-0.808081\pi\)
0.823677 0.567059i \(-0.191919\pi\)
\(48\) 56.2539 + 9.89612i 1.17196 + 0.206169i
\(49\) 0 0
\(50\) −23.8141 41.2473i −0.476283 0.824946i
\(51\) 26.4545 + 22.1801i 0.518716 + 0.434904i
\(52\) −5.11773 + 2.95472i −0.0984178 + 0.0568216i
\(53\) 43.7300 75.7426i 0.825094 1.42911i −0.0767530 0.997050i \(-0.524455\pi\)
0.901847 0.432055i \(-0.142211\pi\)
\(54\) −52.4247 30.1844i −0.970827 0.558971i
\(55\) 0.720265i 0.0130957i
\(56\) 0 0
\(57\) 59.3409 21.6249i 1.04107 0.379385i
\(58\) −45.1245 + 78.1579i −0.778008 + 1.34755i
\(59\) 9.23111i 0.156460i 0.996935 + 0.0782298i \(0.0249268\pi\)
−0.996935 + 0.0782298i \(0.975073\pi\)
\(60\) −4.53522 3.80244i −0.0755870 0.0633740i
\(61\) 70.5346i 1.15631i −0.815929 0.578153i \(-0.803774\pi\)
0.815929 0.578153i \(-0.196226\pi\)
\(62\) 109.369i 1.76401i
\(63\) 0 0
\(64\) 40.4233 0.631614
\(65\) −11.2093 −0.172451
\(66\) −0.856890 2.35139i −0.0129832 0.0356271i
\(67\) −75.5440 −1.12752 −0.563761 0.825938i \(-0.690646\pi\)
−0.563761 + 0.825938i \(0.690646\pi\)
\(68\) −10.1633 5.86777i −0.149460 0.0862907i
\(69\) 52.5876 62.7219i 0.762139 0.909013i
\(70\) 0 0
\(71\) −97.4729 −1.37286 −0.686429 0.727197i \(-0.740823\pi\)
−0.686429 + 0.727197i \(0.740823\pi\)
\(72\) −56.4859 20.5086i −0.784526 0.284841i
\(73\) 75.3269 + 43.4900i 1.03188 + 0.595754i 0.917521 0.397687i \(-0.130187\pi\)
0.114354 + 0.993440i \(0.463520\pi\)
\(74\) 33.0902 + 57.3139i 0.447165 + 0.774512i
\(75\) 21.8356 + 59.9191i 0.291142 + 0.798922i
\(76\) −18.5936 + 10.7350i −0.244653 + 0.141250i
\(77\) 0 0
\(78\) 36.5942 13.3356i 0.469156 0.170969i
\(79\) −47.1994 −0.597461 −0.298730 0.954338i \(-0.596563\pi\)
−0.298730 + 0.954338i \(0.596563\pi\)
\(80\) −31.8960 18.4152i −0.398700 0.230190i
\(81\) 62.1320 + 51.9675i 0.767061 + 0.641574i
\(82\) −44.0025 + 25.4049i −0.536616 + 0.309816i
\(83\) 81.1770 + 46.8676i 0.978036 + 0.564669i 0.901677 0.432411i \(-0.142337\pi\)
0.0763594 + 0.997080i \(0.475670\pi\)
\(84\) 0 0
\(85\) −11.1303 19.2782i −0.130944 0.226802i
\(86\) 24.0646 41.6810i 0.279821 0.484663i
\(87\) 77.6394 92.6014i 0.892407 1.06438i
\(88\) −1.24306 2.15305i −0.0141257 0.0244664i
\(89\) 25.6803 14.8266i 0.288543 0.166590i −0.348742 0.937219i \(-0.613391\pi\)
0.637285 + 0.770628i \(0.280058\pi\)
\(90\) 25.0969 + 29.8612i 0.278854 + 0.331792i
\(91\) 0 0
\(92\) −13.9121 + 24.0965i −0.151218 + 0.261918i
\(93\) 25.3726 144.229i 0.272823 1.55085i
\(94\) 119.426i 1.27049i
\(95\) −40.7255 −0.428689
\(96\) 47.1234 + 8.28989i 0.490869 + 0.0863531i
\(97\) −122.538 70.7471i −1.26327 0.729351i −0.289567 0.957158i \(-0.593511\pi\)
−0.973706 + 0.227806i \(0.926845\pi\)
\(98\) 0 0
\(99\) 0.584513 + 3.29966i 0.00590417 + 0.0333299i
\(100\) −10.8396 18.7748i −0.108396 0.187748i
\(101\) −40.6345 + 23.4603i −0.402321 + 0.232280i −0.687485 0.726198i \(-0.741285\pi\)
0.285164 + 0.958479i \(0.407952\pi\)
\(102\) 59.2712 + 49.6944i 0.581090 + 0.487200i
\(103\) 113.923 + 65.7733i 1.10605 + 0.638576i 0.937802 0.347169i \(-0.112857\pi\)
0.168244 + 0.985745i \(0.446190\pi\)
\(104\) 33.5074 19.3455i 0.322187 0.186015i
\(105\) 0 0
\(106\) 97.9768 169.701i 0.924310 1.60095i
\(107\) 69.9586 + 121.172i 0.653819 + 1.13245i 0.982188 + 0.187899i \(0.0601676\pi\)
−0.328369 + 0.944549i \(0.606499\pi\)
\(108\) −23.8624 13.7392i −0.220948 0.127215i
\(109\) 55.5420 96.2016i 0.509560 0.882583i −0.490379 0.871509i \(-0.663142\pi\)
0.999939 0.0110739i \(-0.00352500\pi\)
\(110\) 1.61375i 0.0146704i
\(111\) −30.3410 83.2587i −0.273343 0.750079i
\(112\) 0 0
\(113\) 50.7636 + 87.9252i 0.449236 + 0.778099i 0.998336 0.0576571i \(-0.0183630\pi\)
−0.549101 + 0.835756i \(0.685030\pi\)
\(114\) 132.953 48.4506i 1.16626 0.425005i
\(115\) −45.7074 + 26.3892i −0.397456 + 0.229471i
\(116\) −20.5396 + 35.5756i −0.177065 + 0.306686i
\(117\) −51.3519 + 9.09666i −0.438906 + 0.0777492i
\(118\) 20.6823i 0.175273i
\(119\) 0 0
\(120\) 29.6936 + 24.8958i 0.247446 + 0.207465i
\(121\) 60.4307 104.669i 0.499427 0.865033i
\(122\) 158.032i 1.29535i
\(123\) 63.9216 23.2942i 0.519688 0.189384i
\(124\) 49.7820i 0.401468i
\(125\) 89.4834i 0.715867i
\(126\) 0 0
\(127\) −49.1014 −0.386625 −0.193312 0.981137i \(-0.561923\pi\)
−0.193312 + 0.981137i \(0.561923\pi\)
\(128\) 154.364 1.20597
\(129\) −41.4045 + 49.3837i −0.320965 + 0.382819i
\(130\) −25.1145 −0.193188
\(131\) 107.596 + 62.1204i 0.821341 + 0.474202i 0.850879 0.525362i \(-0.176070\pi\)
−0.0295376 + 0.999564i \(0.509403\pi\)
\(132\) −0.390035 1.07029i −0.00295481 0.00810829i
\(133\) 0 0
\(134\) −169.256 −1.26310
\(135\) −26.1687 45.2014i −0.193842 0.334826i
\(136\) 66.5422 + 38.4182i 0.489281 + 0.282487i
\(137\) −2.31536 4.01032i −0.0169004 0.0292724i 0.857452 0.514565i \(-0.172046\pi\)
−0.874352 + 0.485292i \(0.838713\pi\)
\(138\) 117.822 140.528i 0.853785 1.01832i
\(139\) −37.7043 + 21.7686i −0.271254 + 0.156608i −0.629457 0.777035i \(-0.716723\pi\)
0.358204 + 0.933644i \(0.383389\pi\)
\(140\) 0 0
\(141\) −27.7058 + 157.492i −0.196495 + 1.11697i
\(142\) −218.387 −1.53794
\(143\) −1.86849 1.07877i −0.0130664 0.00754386i
\(144\) −161.066 58.4787i −1.11851 0.406102i
\(145\) −67.4815 + 38.9605i −0.465390 + 0.268693i
\(146\) 168.770 + 97.4391i 1.15596 + 0.667391i
\(147\) 0 0
\(148\) 15.0618 + 26.0879i 0.101769 + 0.176269i
\(149\) 13.1304 22.7425i 0.0881232 0.152634i −0.818595 0.574372i \(-0.805246\pi\)
0.906718 + 0.421738i \(0.138580\pi\)
\(150\) 48.9226 + 134.248i 0.326151 + 0.894990i
\(151\) −59.9365 103.813i −0.396931 0.687504i 0.596415 0.802676i \(-0.296591\pi\)
−0.993346 + 0.115172i \(0.963258\pi\)
\(152\) 121.738 70.2857i 0.800910 0.462406i
\(153\) −66.6345 79.2844i −0.435520 0.518199i
\(154\) 0 0
\(155\) −47.2145 + 81.7779i −0.304610 + 0.527599i
\(156\) 16.6568 6.07004i 0.106774 0.0389105i
\(157\) 195.955i 1.24812i −0.781377 0.624059i \(-0.785482\pi\)
0.781377 0.624059i \(-0.214518\pi\)
\(158\) −105.750 −0.669304
\(159\) −168.575 + 201.061i −1.06022 + 1.26454i
\(160\) −26.7190 15.4262i −0.166994 0.0964139i
\(161\) 0 0
\(162\) 139.206 + 116.433i 0.859299 + 0.718722i
\(163\) 41.8418 + 72.4721i 0.256698 + 0.444614i 0.965355 0.260939i \(-0.0840321\pi\)
−0.708657 + 0.705553i \(0.750699\pi\)
\(164\) −20.0289 + 11.5637i −0.122127 + 0.0705102i
\(165\) 0.374376 2.12811i 0.00226894 0.0128977i
\(166\) 181.877 + 105.007i 1.09564 + 0.632569i
\(167\) −215.835 + 124.612i −1.29242 + 0.746181i −0.979083 0.203460i \(-0.934781\pi\)
−0.313340 + 0.949641i \(0.601448\pi\)
\(168\) 0 0
\(169\) −67.7113 + 117.279i −0.400659 + 0.693961i
\(170\) −24.9373 43.1927i −0.146690 0.254075i
\(171\) −186.571 + 33.0497i −1.09106 + 0.193273i
\(172\) 10.9536 18.9722i 0.0636837 0.110303i
\(173\) 278.453i 1.60956i 0.593575 + 0.804779i \(0.297716\pi\)
−0.593575 + 0.804779i \(0.702284\pi\)
\(174\) 173.951 207.473i 0.999716 1.19237i
\(175\) 0 0
\(176\) −3.54451 6.13926i −0.0201392 0.0348822i
\(177\) 4.79810 27.2745i 0.0271079 0.154093i
\(178\) 57.5367 33.2188i 0.323240 0.186623i
\(179\) −128.758 + 223.015i −0.719317 + 1.24589i 0.241954 + 0.970288i \(0.422212\pi\)
−0.961271 + 0.275605i \(0.911122\pi\)
\(180\) 11.4235 + 13.5921i 0.0634638 + 0.0755117i
\(181\) 29.2542i 0.161625i −0.996729 0.0808126i \(-0.974248\pi\)
0.996729 0.0808126i \(-0.0257515\pi\)
\(182\) 0 0
\(183\) −36.6621 + 208.404i −0.200340 + 1.13882i
\(184\) 91.0870 157.767i 0.495038 0.857431i
\(185\) 57.1402i 0.308866i
\(186\) 56.8471 323.144i 0.305630 1.73733i
\(187\) 4.28466i 0.0229126i
\(188\) 54.3599i 0.289149i
\(189\) 0 0
\(190\) −91.2452 −0.480238
\(191\) −60.7704 −0.318170 −0.159085 0.987265i \(-0.550854\pi\)
−0.159085 + 0.987265i \(0.550854\pi\)
\(192\) −119.436 21.0110i −0.622062 0.109432i
\(193\) 24.8767 0.128895 0.0644474 0.997921i \(-0.479472\pi\)
0.0644474 + 0.997921i \(0.479472\pi\)
\(194\) −274.545 158.508i −1.41518 0.817054i
\(195\) 33.1194 + 5.82633i 0.169843 + 0.0298786i
\(196\) 0 0
\(197\) 174.320 0.884873 0.442437 0.896800i \(-0.354114\pi\)
0.442437 + 0.896800i \(0.354114\pi\)
\(198\) 1.30960 + 7.39287i 0.00661413 + 0.0373377i
\(199\) −250.227 144.468i −1.25742 0.725972i −0.284848 0.958573i \(-0.591943\pi\)
−0.972572 + 0.232600i \(0.925277\pi\)
\(200\) 70.9705 + 122.924i 0.354852 + 0.614622i
\(201\) 223.204 + 39.2659i 1.11047 + 0.195353i
\(202\) −91.0413 + 52.5627i −0.450699 + 0.260211i
\(203\) 0 0
\(204\) 26.9788 + 22.6197i 0.132249 + 0.110881i
\(205\) −43.8692 −0.213996
\(206\) 255.243 + 147.365i 1.23905 + 0.715363i
\(207\) −187.978 + 157.986i −0.908107 + 0.763218i
\(208\) 95.5441 55.1624i 0.459347 0.265204i
\(209\) −6.78854 3.91937i −0.0324811 0.0187530i
\(210\) 0 0
\(211\) −149.601 259.116i −0.709009 1.22804i −0.965225 0.261419i \(-0.915809\pi\)
0.256217 0.966619i \(-0.417524\pi\)
\(212\) 44.5967 77.2437i 0.210362 0.364357i
\(213\) 287.996 + 50.6640i 1.35209 + 0.237859i
\(214\) 156.742 + 271.485i 0.732439 + 1.26862i
\(215\) 35.9874 20.7773i 0.167383 0.0966388i
\(216\) 156.235 + 89.9551i 0.723310 + 0.416459i
\(217\) 0 0
\(218\) 124.442 215.539i 0.570833 0.988712i
\(219\) −199.958 167.650i −0.913050 0.765525i
\(220\) 0.734539i 0.00333881i
\(221\) 66.6812 0.301725
\(222\) −67.9789 186.541i −0.306211 0.840274i
\(223\) −14.0772 8.12745i −0.0631263 0.0364460i 0.468105 0.883673i \(-0.344937\pi\)
−0.531231 + 0.847227i \(0.678270\pi\)
\(224\) 0 0
\(225\) −33.3718 188.388i −0.148319 0.837282i
\(226\) 113.736 + 196.996i 0.503255 + 0.871664i
\(227\) 26.4526 15.2724i 0.116531 0.0672793i −0.440602 0.897703i \(-0.645235\pi\)
0.557133 + 0.830423i \(0.311901\pi\)
\(228\) 60.5170 22.0535i 0.265425 0.0967259i
\(229\) −158.134 91.2986i −0.690541 0.398684i 0.113274 0.993564i \(-0.463866\pi\)
−0.803815 + 0.594880i \(0.797200\pi\)
\(230\) −102.407 + 59.1248i −0.445249 + 0.257064i
\(231\) 0 0
\(232\) 134.479 232.925i 0.579652 1.00399i
\(233\) 174.898 + 302.932i 0.750635 + 1.30014i 0.947515 + 0.319710i \(0.103586\pi\)
−0.196880 + 0.980428i \(0.563081\pi\)
\(234\) −115.054 + 20.3810i −0.491683 + 0.0870984i
\(235\) 51.5563 89.2982i 0.219389 0.379992i
\(236\) 9.41406i 0.0398901i
\(237\) 139.457 + 24.5331i 0.588425 + 0.103515i
\(238\) 0 0
\(239\) 49.6154 + 85.9365i 0.207596 + 0.359567i 0.950957 0.309324i \(-0.100103\pi\)
−0.743361 + 0.668891i \(0.766769\pi\)
\(240\) 84.6692 + 70.9888i 0.352788 + 0.295786i
\(241\) −243.343 + 140.494i −1.00972 + 0.582964i −0.911110 0.412162i \(-0.864774\pi\)
−0.0986123 + 0.995126i \(0.531440\pi\)
\(242\) 135.395 234.510i 0.559482 0.969051i
\(243\) −156.566 185.839i −0.644303 0.764771i
\(244\) 71.9325i 0.294805i
\(245\) 0 0
\(246\) 143.216 52.1906i 0.582179 0.212157i
\(247\) 60.9963 105.649i 0.246949 0.427728i
\(248\) 325.939i 1.31427i
\(249\) −215.487 180.670i −0.865411 0.725582i
\(250\) 200.487i 0.801948i
\(251\) 16.5983i 0.0661286i 0.999453 + 0.0330643i \(0.0105266\pi\)
−0.999453 + 0.0330643i \(0.989473\pi\)
\(252\) 0 0
\(253\) −10.1586 −0.0401527
\(254\) −110.011 −0.433116
\(255\) 22.8655 + 62.7452i 0.0896687 + 0.246060i
\(256\) 184.159 0.719371
\(257\) −73.7864 42.6006i −0.287106 0.165761i 0.349530 0.936925i \(-0.386341\pi\)
−0.636636 + 0.771164i \(0.719675\pi\)
\(258\) −92.7666 + 110.644i −0.359561 + 0.428852i
\(259\) 0 0
\(260\) −11.4315 −0.0439672
\(261\) −277.527 + 233.248i −1.06332 + 0.893670i
\(262\) 241.068 + 139.180i 0.920105 + 0.531223i
\(263\) 178.327 + 308.872i 0.678050 + 1.17442i 0.975567 + 0.219701i \(0.0705082\pi\)
−0.297517 + 0.954717i \(0.596158\pi\)
\(264\) 2.55369 + 7.00757i 0.00967306 + 0.0265438i
\(265\) 146.520 84.5932i 0.552905 0.319220i
\(266\) 0 0
\(267\) −83.5824 + 30.4590i −0.313043 + 0.114079i
\(268\) −77.0412 −0.287467
\(269\) 333.500 + 192.546i 1.23978 + 0.715785i 0.969048 0.246871i \(-0.0794025\pi\)
0.270727 + 0.962656i \(0.412736\pi\)
\(270\) −58.6308 101.274i −0.217151 0.375087i
\(271\) −53.9536 + 31.1502i −0.199091 + 0.114945i −0.596231 0.802813i \(-0.703336\pi\)
0.397140 + 0.917758i \(0.370003\pi\)
\(272\) 189.741 + 109.547i 0.697576 + 0.402746i
\(273\) 0 0
\(274\) −5.18755 8.98509i −0.0189327 0.0327923i
\(275\) 3.95755 6.85469i 0.0143911 0.0249261i
\(276\) 53.6298 63.9649i 0.194311 0.231757i
\(277\) −42.5057 73.6221i −0.153450 0.265784i 0.779043 0.626970i \(-0.215705\pi\)
−0.932494 + 0.361186i \(0.882372\pi\)
\(278\) −84.4762 + 48.7724i −0.303871 + 0.175440i
\(279\) −149.933 + 412.955i −0.537395 + 1.48012i
\(280\) 0 0
\(281\) 73.8831 127.969i 0.262929 0.455407i −0.704090 0.710111i \(-0.748645\pi\)
0.967019 + 0.254704i \(0.0819781\pi\)
\(282\) −62.0748 + 352.861i −0.220123 + 1.25128i
\(283\) 350.815i 1.23963i −0.784748 0.619815i \(-0.787208\pi\)
0.784748 0.619815i \(-0.212792\pi\)
\(284\) −99.4046 −0.350016
\(285\) 120.329 + 21.1681i 0.422206 + 0.0742740i
\(286\) −4.18634 2.41698i −0.0146375 0.00845099i
\(287\) 0 0
\(288\) −134.923 48.9871i −0.468484 0.170094i
\(289\) −78.2890 135.601i −0.270896 0.469206i
\(290\) −151.192 + 87.2908i −0.521352 + 0.301003i
\(291\) 325.280 + 272.723i 1.11780 + 0.937194i
\(292\) 76.8198 + 44.3519i 0.263081 + 0.151890i
\(293\) 42.7689 24.6927i 0.145969 0.0842753i −0.425237 0.905082i \(-0.639809\pi\)
0.571206 + 0.820807i \(0.306476\pi\)
\(294\) 0 0
\(295\) −8.92853 + 15.4647i −0.0302662 + 0.0524226i
\(296\) −98.6148 170.806i −0.333158 0.577047i
\(297\) −0.0119384 10.0531i −4.01967e−5 0.0338488i
\(298\) 29.4185 50.9544i 0.0987198 0.170988i
\(299\) 158.097i 0.528752i
\(300\) 22.2684 + 61.1066i 0.0742280 + 0.203689i
\(301\) 0 0
\(302\) −134.288 232.593i −0.444661 0.770175i
\(303\) 132.254 48.1958i 0.436481 0.159062i
\(304\) 347.129 200.415i 1.14187 0.659259i
\(305\) 68.2226 118.165i 0.223681 0.387426i
\(306\) −149.294 177.636i −0.487890 0.580511i
\(307\) 432.680i 1.40938i 0.709515 + 0.704691i \(0.248914\pi\)
−0.709515 + 0.704691i \(0.751086\pi\)
\(308\) 0 0
\(309\) −302.412 253.550i −0.978680 0.820550i
\(310\) −105.784 + 183.223i −0.341238 + 0.591042i
\(311\) 167.189i 0.537586i 0.963198 + 0.268793i \(0.0866248\pi\)
−0.963198 + 0.268793i \(0.913375\pi\)
\(312\) −109.057 + 39.7425i −0.349543 + 0.127380i
\(313\) 258.585i 0.826151i −0.910697 0.413075i \(-0.864455\pi\)
0.910697 0.413075i \(-0.135545\pi\)
\(314\) 439.035i 1.39820i
\(315\) 0 0
\(316\) −48.1348 −0.152325
\(317\) −202.513 −0.638844 −0.319422 0.947613i \(-0.603489\pi\)
−0.319422 + 0.947613i \(0.603489\pi\)
\(318\) −377.691 + 450.477i −1.18771 + 1.41660i
\(319\) −14.9980 −0.0470158
\(320\) 67.7203 + 39.0983i 0.211626 + 0.122182i
\(321\) −143.720 394.381i −0.447725 1.22860i
\(322\) 0 0
\(323\) 242.265 0.750045
\(324\) 63.3633 + 52.9974i 0.195566 + 0.163572i
\(325\) 106.678 + 61.5906i 0.328240 + 0.189510i
\(326\) 93.7463 + 162.373i 0.287565 + 0.498078i
\(327\) −214.109 + 255.371i −0.654768 + 0.780950i
\(328\) 131.136 75.7112i 0.399804 0.230827i
\(329\) 0 0
\(330\) 0.838787 4.76803i 0.00254178 0.0144486i
\(331\) 34.1563 0.103191 0.0515956 0.998668i \(-0.483569\pi\)
0.0515956 + 0.998668i \(0.483569\pi\)
\(332\) 82.7858 + 47.7964i 0.249355 + 0.143965i
\(333\) 46.3707 + 261.769i 0.139251 + 0.786094i
\(334\) −483.576 + 279.193i −1.44783 + 0.835907i
\(335\) −126.557 73.0678i −0.377783 0.218113i
\(336\) 0 0
\(337\) 205.854 + 356.550i 0.610844 + 1.05801i 0.991099 + 0.133130i \(0.0425029\pi\)
−0.380255 + 0.924882i \(0.624164\pi\)
\(338\) −151.707 + 262.764i −0.448837 + 0.777408i
\(339\) −104.286 286.172i −0.307629 0.844165i
\(340\) −11.3509 19.6603i −0.0333849 0.0578243i
\(341\) −15.7404 + 9.08773i −0.0461595 + 0.0266502i
\(342\) −418.010 + 74.0478i −1.22225 + 0.216514i
\(343\) 0 0
\(344\) −71.7168 + 124.217i −0.208479 + 0.361096i
\(345\) 148.765 54.2127i 0.431202 0.157138i
\(346\) 623.874i 1.80310i
\(347\) −597.488 −1.72187 −0.860933 0.508718i \(-0.830119\pi\)
−0.860933 + 0.508718i \(0.830119\pi\)
\(348\) 79.1781 94.4366i 0.227523 0.271370i
\(349\) 72.8266 + 42.0465i 0.208672 + 0.120477i 0.600694 0.799479i \(-0.294891\pi\)
−0.392022 + 0.919956i \(0.628224\pi\)
\(350\) 0 0
\(351\) 156.454 0.185795i 0.445738 0.000529331i
\(352\) −2.96920 5.14281i −0.00843523 0.0146102i
\(353\) −397.017 + 229.218i −1.12469 + 0.649343i −0.942595 0.333937i \(-0.891623\pi\)
−0.182099 + 0.983280i \(0.558289\pi\)
\(354\) 10.7501 61.1084i 0.0303676 0.172623i
\(355\) −163.294 94.2779i −0.459983 0.265572i
\(356\) 26.1893 15.1204i 0.0735654 0.0424730i
\(357\) 0 0
\(358\) −288.481 + 499.664i −0.805813 + 1.39571i
\(359\) 6.42758 + 11.1329i 0.0179041 + 0.0310109i 0.874839 0.484414i \(-0.160967\pi\)
−0.856935 + 0.515425i \(0.827634\pi\)
\(360\) −74.7932 88.9919i −0.207759 0.247200i
\(361\) 41.1103 71.2051i 0.113879 0.197244i
\(362\) 65.5438i 0.181060i
\(363\) −232.955 + 277.848i −0.641748 + 0.765421i
\(364\) 0 0
\(365\) 84.1290 + 145.716i 0.230490 + 0.399221i
\(366\) −82.1413 + 466.927i −0.224430 + 1.27576i
\(367\) −535.505 + 309.174i −1.45914 + 0.842436i −0.998969 0.0453934i \(-0.985546\pi\)
−0.460173 + 0.887829i \(0.652213\pi\)
\(368\) 259.728 449.863i 0.705784 1.22245i
\(369\) −200.972 + 35.6009i −0.544641 + 0.0964795i
\(370\) 128.022i 0.346006i
\(371\) 0 0
\(372\) 25.8754 147.087i 0.0695576 0.395396i
\(373\) −0.289633 + 0.501659i −0.000776495 + 0.00134493i −0.866413 0.499327i \(-0.833580\pi\)
0.865637 + 0.500672i \(0.166914\pi\)
\(374\) 9.59975i 0.0256678i
\(375\) −46.5112 + 264.390i −0.124030 + 0.705040i
\(376\) 355.912i 0.946575i
\(377\) 233.411i 0.619128i
\(378\) 0 0
\(379\) 18.5015 0.0488165 0.0244083 0.999702i \(-0.492230\pi\)
0.0244083 + 0.999702i \(0.492230\pi\)
\(380\) −41.5326 −0.109296
\(381\) 145.076 + 25.5217i 0.380778 + 0.0669860i
\(382\) −136.156 −0.356429
\(383\) −49.0332 28.3093i −0.128024 0.0739147i 0.434620 0.900614i \(-0.356883\pi\)
−0.562644 + 0.826699i \(0.690216\pi\)
\(384\) −456.089 80.2347i −1.18773 0.208944i
\(385\) 0 0
\(386\) 55.7361 0.144394
\(387\) 148.003 124.389i 0.382438 0.321420i
\(388\) −124.966 72.1492i −0.322077 0.185951i
\(389\) −206.783 358.158i −0.531575 0.920715i −0.999321 0.0368521i \(-0.988267\pi\)
0.467746 0.883863i \(-0.345066\pi\)
\(390\) 74.2039 + 13.0539i 0.190266 + 0.0334715i
\(391\) 271.901 156.982i 0.695398 0.401488i
\(392\) 0 0
\(393\) −285.617 239.468i −0.726760 0.609334i
\(394\) 390.563 0.991277
\(395\) −79.0721 45.6523i −0.200182 0.115575i
\(396\) 0.596097 + 3.36505i 0.00150530 + 0.00849761i
\(397\) 540.503 312.059i 1.36147 0.786044i 0.371648 0.928374i \(-0.378793\pi\)
0.989819 + 0.142330i \(0.0454594\pi\)
\(398\) −560.632 323.681i −1.40862 0.813269i
\(399\) 0 0
\(400\) 202.367 + 350.511i 0.505919 + 0.876277i
\(401\) −63.4372 + 109.876i −0.158198 + 0.274006i −0.934219 0.356701i \(-0.883902\pi\)
0.776021 + 0.630707i \(0.217235\pi\)
\(402\) 500.089 + 87.9750i 1.24400 + 0.218843i
\(403\) −141.430 244.965i −0.350944 0.607853i
\(404\) −41.4398 + 23.9253i −0.102574 + 0.0592209i
\(405\) 53.8242 + 147.155i 0.132899 + 0.363347i
\(406\) 0 0
\(407\) −5.49910 + 9.52472i −0.0135113 + 0.0234023i
\(408\) −176.639 148.098i −0.432938 0.362986i
\(409\) 432.530i 1.05753i 0.848768 + 0.528765i \(0.177345\pi\)
−0.848768 + 0.528765i \(0.822655\pi\)
\(410\) −98.2886 −0.239728
\(411\) 4.75656 + 13.0525i 0.0115731 + 0.0317578i
\(412\) 116.181 + 67.0769i 0.281992 + 0.162808i
\(413\) 0 0
\(414\) −421.164 + 353.967i −1.01730 + 0.854993i
\(415\) 90.6626 + 157.032i 0.218464 + 0.378391i
\(416\) 80.0365 46.2091i 0.192395 0.111080i
\(417\) 122.717 44.7203i 0.294285 0.107243i
\(418\) −15.2097 8.78132i −0.0363868 0.0210080i
\(419\) 150.801 87.0648i 0.359906 0.207792i −0.309134 0.951019i \(-0.600039\pi\)
0.669040 + 0.743227i \(0.266706\pi\)
\(420\) 0 0
\(421\) −175.470 + 303.923i −0.416793 + 0.721907i −0.995615 0.0935470i \(-0.970179\pi\)
0.578822 + 0.815454i \(0.303513\pi\)
\(422\) −335.180 580.549i −0.794265 1.37571i
\(423\) 163.721 450.930i 0.387047 1.06603i
\(424\) −291.989 + 505.739i −0.688653 + 1.19278i
\(425\) 244.625i 0.575588i
\(426\) 645.254 + 113.512i 1.51468 + 0.266461i
\(427\) 0 0
\(428\) 71.3451 + 123.573i 0.166694 + 0.288723i
\(429\) 4.95997 + 4.15856i 0.0115617 + 0.00969362i
\(430\) 80.6296 46.5515i 0.187511 0.108259i
\(431\) 367.837 637.113i 0.853451 1.47822i −0.0246236 0.999697i \(-0.507839\pi\)
0.878075 0.478524i \(-0.158828\pi\)
\(432\) 445.494 + 256.501i 1.03124 + 0.593752i
\(433\) 134.778i 0.311266i −0.987815 0.155633i \(-0.950258\pi\)
0.987815 0.155633i \(-0.0497417\pi\)
\(434\) 0 0
\(435\) 219.634 80.0386i 0.504905 0.183997i
\(436\) 56.6427 98.1081i 0.129915 0.225019i
\(437\) 574.394i 1.31440i
\(438\) −448.005 375.619i −1.02284 0.857577i
\(439\) 5.84694i 0.0133188i 0.999978 + 0.00665939i \(0.00211977\pi\)
−0.999978 + 0.00665939i \(0.997880\pi\)
\(440\) 4.80927i 0.0109302i
\(441\) 0 0
\(442\) 149.399 0.338007
\(443\) −160.318 −0.361892 −0.180946 0.983493i \(-0.557916\pi\)
−0.180946 + 0.983493i \(0.557916\pi\)
\(444\) −30.9423 84.9088i −0.0696900 0.191236i
\(445\) 57.3623 0.128904
\(446\) −31.5398 18.2095i −0.0707170 0.0408285i
\(447\) −50.6163 + 60.3707i −0.113236 + 0.135057i
\(448\) 0 0
\(449\) 46.7901 0.104209 0.0521047 0.998642i \(-0.483407\pi\)
0.0521047 + 0.998642i \(0.483407\pi\)
\(450\) −74.7693 422.083i −0.166154 0.937963i
\(451\) −7.31257 4.22191i −0.0162141 0.00936122i
\(452\) 51.7697 + 89.6677i 0.114535 + 0.198380i
\(453\) 123.131 + 337.883i 0.271812 + 0.745878i
\(454\) 59.2669 34.2177i 0.130544 0.0753695i
\(455\) 0 0
\(456\) −396.224 + 144.392i −0.868913 + 0.316648i
\(457\) 554.340 1.21300 0.606499 0.795084i \(-0.292573\pi\)
0.606499 + 0.795084i \(0.292573\pi\)
\(458\) −354.298 204.554i −0.773577 0.446625i
\(459\) 155.670 + 268.891i 0.339151 + 0.585819i
\(460\) −46.6132 + 26.9122i −0.101333 + 0.0585047i
\(461\) 117.654 + 67.9273i 0.255214 + 0.147348i 0.622149 0.782899i \(-0.286260\pi\)
−0.366935 + 0.930246i \(0.619593\pi\)
\(462\) 0 0
\(463\) 0.952160 + 1.64919i 0.00205650 + 0.00356196i 0.867052 0.498218i \(-0.166012\pi\)
−0.864995 + 0.501780i \(0.832679\pi\)
\(464\) 383.458 664.169i 0.826418 1.43140i
\(465\) 182.007 217.082i 0.391414 0.466844i
\(466\) 391.858 + 678.718i 0.840897 + 1.45648i
\(467\) 89.3271 51.5730i 0.191278 0.110435i −0.401302 0.915946i \(-0.631442\pi\)
0.592581 + 0.805511i \(0.298109\pi\)
\(468\) −52.3697 + 9.27694i −0.111901 + 0.0198225i
\(469\) 0 0
\(470\) 115.512 200.072i 0.245770 0.425686i
\(471\) −101.852 + 578.973i −0.216247 + 1.22924i
\(472\) 61.6369i 0.130587i
\(473\) 7.99834 0.0169098
\(474\) 312.452 + 54.9662i 0.659182 + 0.115962i
\(475\) 387.580 + 223.769i 0.815958 + 0.471094i
\(476\) 0 0
\(477\) 602.583 506.441i 1.26328 1.06172i
\(478\) 111.163 + 192.540i 0.232559 + 0.402804i
\(479\) −165.785 + 95.7160i −0.346106 + 0.199825i −0.662969 0.748647i \(-0.730704\pi\)
0.316863 + 0.948471i \(0.397371\pi\)
\(480\) 70.9266 + 59.4666i 0.147764 + 0.123889i
\(481\) −148.231 85.5813i −0.308173 0.177924i
\(482\) −545.209 + 314.777i −1.13114 + 0.653064i
\(483\) 0 0
\(484\) 61.6283 106.743i 0.127331 0.220544i
\(485\) −136.856 237.042i −0.282178 0.488746i
\(486\) −350.784 416.372i −0.721778 0.856733i
\(487\) −224.406 + 388.683i −0.460794 + 0.798118i −0.999001 0.0446948i \(-0.985768\pi\)
0.538207 + 0.842813i \(0.319102\pi\)
\(488\) 470.966i 0.965093i
\(489\) −85.9578 235.876i −0.175783 0.482365i
\(490\) 0 0
\(491\) −40.8828 70.8111i −0.0832644 0.144218i 0.821386 0.570373i \(-0.193201\pi\)
−0.904650 + 0.426155i \(0.859868\pi\)
\(492\) 65.1884 23.7559i 0.132497 0.0482843i
\(493\) 401.429 231.765i 0.814258 0.470112i
\(494\) 136.662 236.705i 0.276644 0.479161i
\(495\) −2.21228 + 6.09320i −0.00446926 + 0.0123095i
\(496\) 929.392i 1.87377i
\(497\) 0 0
\(498\) −482.798 404.790i −0.969474 0.812832i
\(499\) 13.7715 23.8529i 0.0275982 0.0478014i −0.851896 0.523710i \(-0.824547\pi\)
0.879495 + 0.475909i \(0.157881\pi\)
\(500\) 91.2568i 0.182514i
\(501\) 702.482 255.997i 1.40216 0.510973i
\(502\) 37.1884i 0.0740805i
\(503\) 49.4903i 0.0983902i 0.998789 + 0.0491951i \(0.0156656\pi\)
−0.998789 + 0.0491951i \(0.984334\pi\)
\(504\) 0 0
\(505\) −90.7653 −0.179733
\(506\) −22.7604 −0.0449810
\(507\) 261.021 311.322i 0.514834 0.614048i
\(508\) −50.0745 −0.0985718
\(509\) 108.850 + 62.8447i 0.213851 + 0.123467i 0.603100 0.797666i \(-0.293932\pi\)
−0.389249 + 0.921133i \(0.627265\pi\)
\(510\) 51.2301 + 140.580i 0.100451 + 0.275648i
\(511\) 0 0
\(512\) −204.849 −0.400097
\(513\) 568.425 0.675026i 1.10804 0.00131584i
\(514\) −165.318 95.4464i −0.321630 0.185693i
\(515\) 127.235 + 220.377i 0.247058 + 0.427917i
\(516\) −42.2251 + 50.3624i −0.0818316 + 0.0976015i
\(517\) 17.1879 9.92344i 0.0332454 0.0191943i
\(518\) 0 0
\(519\) 144.733 822.727i 0.278869 1.58522i
\(520\) 74.8456 0.143934
\(521\) 606.831 + 350.354i 1.16474 + 0.672464i 0.952436 0.304739i \(-0.0985692\pi\)
0.212306 + 0.977203i \(0.431903\pi\)
\(522\) −621.799 + 522.591i −1.19119 + 1.00113i
\(523\) 302.754 174.795i 0.578879 0.334216i −0.181809 0.983334i \(-0.558195\pi\)
0.760688 + 0.649118i \(0.224862\pi\)
\(524\) 109.728 + 63.3515i 0.209405 + 0.120900i
\(525\) 0 0
\(526\) 399.541 + 692.026i 0.759584 + 1.31564i
\(527\) 280.866 486.474i 0.532953 0.923101i
\(528\) 7.28166 + 19.9816i 0.0137910 + 0.0378439i
\(529\) −107.694 186.531i −0.203580 0.352611i
\(530\) 328.277 189.531i 0.619390 0.357605i
\(531\) −28.3532 + 78.0921i −0.0533959 + 0.147066i
\(532\) 0 0
\(533\) 65.7048 113.804i 0.123273 0.213516i
\(534\) −187.266 + 68.2432i −0.350685 + 0.127796i
\(535\) 270.662i 0.505911i
\(536\) 504.413 0.941070
\(537\) 496.349 592.001i 0.924299 1.10242i
\(538\) 747.204 + 431.399i 1.38886 + 0.801856i
\(539\) 0 0
\(540\) −26.6873 46.0973i −0.0494209 0.0853653i
\(541\) −350.723 607.469i −0.648286 1.12286i −0.983532 0.180734i \(-0.942153\pi\)
0.335246 0.942131i \(-0.391180\pi\)
\(542\) −120.883 + 69.7918i −0.223031 + 0.128767i
\(543\) −15.2056 + 86.4352i −0.0280029 + 0.159181i
\(544\) 158.944 + 91.7664i 0.292177 + 0.168688i
\(545\) 186.096 107.443i 0.341461 0.197143i
\(546\) 0 0
\(547\) −202.629 + 350.964i −0.370437 + 0.641616i −0.989633 0.143620i \(-0.954126\pi\)
0.619195 + 0.785237i \(0.287459\pi\)
\(548\) −2.36124 4.08979i −0.00430884 0.00746313i
\(549\) 216.646 596.700i 0.394619 1.08688i
\(550\) 8.86688 15.3579i 0.0161216 0.0279234i
\(551\) 848.024i 1.53906i
\(552\) −351.132 + 418.799i −0.636108 + 0.758694i
\(553\) 0 0
\(554\) −95.2339 164.950i −0.171902 0.297744i
\(555\) 29.7000 168.828i 0.0535136 0.304195i
\(556\) −38.4515 + 22.2000i −0.0691574 + 0.0399280i
\(557\) −51.7943 + 89.7104i −0.0929880 + 0.161060i −0.908767 0.417304i \(-0.862975\pi\)
0.815779 + 0.578364i \(0.196308\pi\)
\(558\) −335.924 + 925.223i −0.602015 + 1.65811i
\(559\) 124.477i 0.222677i
\(560\) 0 0
\(561\) −2.22706 + 12.6596i −0.00396980 + 0.0225661i
\(562\) 165.535 286.715i 0.294546 0.510168i
\(563\) 130.812i 0.232348i −0.993229 0.116174i \(-0.962937\pi\)
0.993229 0.116174i \(-0.0370630\pi\)
\(564\) −28.2549 + 160.613i −0.0500974 + 0.284776i
\(565\) 196.399i 0.347608i
\(566\) 786.000i 1.38869i
\(567\) 0 0
\(568\) 650.834 1.14584
\(569\) −635.580 −1.11701 −0.558506 0.829500i \(-0.688625\pi\)
−0.558506 + 0.829500i \(0.688625\pi\)
\(570\) 269.596 + 47.4270i 0.472975 + 0.0832052i
\(571\) 172.059 0.301330 0.150665 0.988585i \(-0.451859\pi\)
0.150665 + 0.988585i \(0.451859\pi\)
\(572\) −1.90552 1.10015i −0.00333133 0.00192334i
\(573\) 179.554 + 31.5869i 0.313358 + 0.0551255i
\(574\) 0 0
\(575\) 579.990 1.00868
\(576\) 341.968 + 124.160i 0.593694 + 0.215555i
\(577\) −27.4829 15.8672i −0.0476306 0.0274996i 0.475996 0.879448i \(-0.342088\pi\)
−0.523626 + 0.851948i \(0.675421\pi\)
\(578\) −175.406 303.812i −0.303471 0.525627i
\(579\) −73.5014 12.9303i −0.126946 0.0223321i
\(580\) −68.8189 + 39.7326i −0.118653 + 0.0685045i
\(581\) 0 0
\(582\) 728.789 + 611.035i 1.25222 + 1.04989i
\(583\) 32.5646 0.0558569
\(584\) −502.964 290.386i −0.861240 0.497237i
\(585\) −94.8272 34.4293i −0.162098 0.0588535i
\(586\) 95.8236 55.3238i 0.163521 0.0944092i
\(587\) 780.765 + 450.775i 1.33009 + 0.767929i 0.985314 0.170754i \(-0.0546204\pi\)
0.344779 + 0.938684i \(0.387954\pi\)
\(588\) 0 0
\(589\) −513.842 890.000i −0.872396 1.51104i
\(590\) −20.0043 + 34.6485i −0.0339056 + 0.0587263i
\(591\) −515.051 90.6072i −0.871491 0.153312i
\(592\) −281.193 487.041i −0.474989 0.822705i
\(593\) 92.1847 53.2228i 0.155455 0.0897518i −0.420255 0.907406i \(-0.638059\pi\)
0.575709 + 0.817654i \(0.304726\pi\)
\(594\) −0.0267479 22.5239i −4.50302e−5 0.0379190i
\(595\) 0 0
\(596\) 13.3906 23.1932i 0.0224674 0.0389147i
\(597\) 664.236 + 556.912i 1.11262 + 0.932852i
\(598\) 354.215i 0.592333i
\(599\) −815.080 −1.36073 −0.680367 0.732871i \(-0.738180\pi\)
−0.680367 + 0.732871i \(0.738180\pi\)
\(600\) −145.798 400.085i −0.242997 0.666808i
\(601\) 222.029 + 128.189i 0.369433 + 0.213292i 0.673211 0.739451i \(-0.264915\pi\)
−0.303778 + 0.952743i \(0.598248\pi\)
\(602\) 0 0
\(603\) −639.077 232.032i −1.05983 0.384796i
\(604\) −61.1244 105.871i −0.101199 0.175282i
\(605\) 202.476 116.900i 0.334672 0.193223i
\(606\) 296.314 107.982i 0.488967 0.178189i
\(607\) −280.441 161.913i −0.462012 0.266742i 0.250878 0.968019i \(-0.419281\pi\)
−0.712890 + 0.701276i \(0.752614\pi\)
\(608\) 290.786 167.886i 0.478267 0.276128i
\(609\) 0 0
\(610\) 152.852 264.748i 0.250578 0.434014i
\(611\) 154.436 + 267.492i 0.252760 + 0.437793i
\(612\) −67.9551 80.8557i −0.111038 0.132117i
\(613\) 310.620 538.010i 0.506721 0.877667i −0.493248 0.869888i \(-0.664191\pi\)
0.999970 0.00777855i \(-0.00247602\pi\)
\(614\) 969.418i 1.57886i
\(615\) 129.617 + 22.8021i 0.210759 + 0.0370766i
\(616\) 0 0
\(617\) 372.353 + 644.935i 0.603490 + 1.04527i 0.992288 + 0.123952i \(0.0395569\pi\)
−0.388799 + 0.921323i \(0.627110\pi\)
\(618\) −677.553 568.078i −1.09636 0.919219i
\(619\) 159.035 91.8186i 0.256922 0.148334i −0.366008 0.930612i \(-0.619276\pi\)
0.622930 + 0.782278i \(0.285942\pi\)
\(620\) −48.1502 + 83.3986i −0.0776616 + 0.134514i
\(621\) 637.523 369.084i 1.02661 0.594339i
\(622\) 374.587i 0.602230i
\(623\) 0 0
\(624\) −310.970 + 113.323i −0.498349 + 0.181607i
\(625\) −179.174 + 310.338i −0.286678 + 0.496541i
\(626\) 579.359i 0.925493i
\(627\) 18.0204 + 15.1088i 0.0287407 + 0.0240970i
\(628\) 199.838i 0.318214i
\(629\) 339.911i 0.540399i
\(630\) 0 0
\(631\) 325.873 0.516439 0.258220 0.966086i \(-0.416864\pi\)
0.258220 + 0.966086i \(0.416864\pi\)
\(632\) 315.154 0.498662
\(633\) 307.333 + 843.351i 0.485518 + 1.33231i
\(634\) −453.730 −0.715663
\(635\) −82.2584 47.4919i −0.129541 0.0747904i
\(636\) −171.916 + 205.046i −0.270308 + 0.322400i
\(637\) 0 0
\(638\) −33.6030 −0.0526693
\(639\) −824.588 299.386i −1.29044 0.468523i
\(640\) 258.603 + 149.304i 0.404067 + 0.233288i
\(641\) 89.3312 + 154.726i 0.139362 + 0.241383i 0.927255 0.374429i \(-0.122161\pi\)
−0.787893 + 0.615812i \(0.788828\pi\)
\(642\) −322.003 883.608i −0.501563 1.37634i
\(643\) 60.1837 34.7471i 0.0935983 0.0540390i −0.452470 0.891780i \(-0.649457\pi\)
0.546069 + 0.837740i \(0.316124\pi\)
\(644\) 0 0
\(645\) −117.129 + 42.6840i −0.181595 + 0.0661767i
\(646\) 542.793 0.840236
\(647\) 712.875 + 411.579i 1.10182 + 0.636134i 0.936697 0.350140i \(-0.113866\pi\)
0.165119 + 0.986274i \(0.447199\pi\)
\(648\) −414.860 346.991i −0.640216 0.535480i
\(649\) −2.97660 + 1.71854i −0.00458644 + 0.00264798i
\(650\) 239.012 + 137.993i 0.367710 + 0.212298i
\(651\) 0 0
\(652\) 42.6710 + 73.9084i 0.0654463 + 0.113356i
\(653\) −391.218 + 677.609i −0.599108 + 1.03769i 0.393845 + 0.919177i \(0.371145\pi\)
−0.992953 + 0.118509i \(0.962189\pi\)
\(654\) −479.711 + 572.157i −0.733502 + 0.874857i
\(655\) 120.168 + 208.138i 0.183463 + 0.317768i
\(656\) 373.924 215.885i 0.570006 0.329093i
\(657\) 503.662 + 599.276i 0.766608 + 0.912141i
\(658\) 0 0
\(659\) 90.6800 157.062i 0.137602 0.238334i −0.788986 0.614411i \(-0.789394\pi\)
0.926589 + 0.376077i \(0.122727\pi\)
\(660\) 0.381795 2.17029i 0.000578477 0.00328832i
\(661\) 192.972i 0.291940i 0.989289 + 0.145970i \(0.0466303\pi\)
−0.989289 + 0.145970i \(0.953370\pi\)
\(662\) 76.5270 0.115600
\(663\) −197.018 34.6592i −0.297162 0.0522764i
\(664\) −542.025 312.939i −0.816303 0.471293i
\(665\) 0 0
\(666\) 103.893 + 586.493i 0.155996 + 0.880620i
\(667\) −549.500 951.762i −0.823839 1.42693i
\(668\) −220.112 + 127.082i −0.329509 + 0.190242i
\(669\) 37.3683 + 31.3306i 0.0558570 + 0.0468319i
\(670\) −283.551 163.708i −0.423210 0.244340i
\(671\) 22.7441 13.1313i 0.0338958 0.0195698i
\(672\) 0 0
\(673\) −41.9447 + 72.6503i −0.0623249 + 0.107950i −0.895504 0.445053i \(-0.853185\pi\)
0.833179 + 0.553003i \(0.186518\pi\)
\(674\) 461.215 + 798.849i 0.684296 + 1.18524i
\(675\) 0.681603 + 573.964i 0.00100978 + 0.850317i
\(676\) −69.0532 + 119.604i −0.102150 + 0.176929i
\(677\) 207.203i 0.306060i −0.988222 0.153030i \(-0.951097\pi\)
0.988222 0.153030i \(-0.0489031\pi\)
\(678\) −233.653 641.167i −0.344621 0.945674i
\(679\) 0 0
\(680\) 74.3178 + 128.722i 0.109291 + 0.189297i
\(681\) −86.0958 + 31.3749i −0.126425 + 0.0460718i
\(682\) −35.2663 + 20.3610i −0.0517101 + 0.0298549i
\(683\) −639.939 + 1108.41i −0.936953 + 1.62285i −0.165841 + 0.986153i \(0.553034\pi\)
−0.771113 + 0.636698i \(0.780300\pi\)
\(684\) −190.268 + 33.7047i −0.278170 + 0.0492759i
\(685\) 8.95786i 0.0130772i
\(686\) 0 0
\(687\) 419.772 + 351.948i 0.611022 + 0.512296i
\(688\) −204.495 + 354.197i −0.297232 + 0.514821i
\(689\) 506.796i 0.735553i
\(690\) 333.307 121.463i 0.483053 0.176034i
\(691\) 1215.74i 1.75939i 0.475538 + 0.879695i \(0.342253\pi\)
−0.475538 + 0.879695i \(0.657747\pi\)
\(692\) 283.972i 0.410364i
\(693\) 0 0
\(694\) −1338.67 −1.92892
\(695\) −84.2201 −0.121180
\(696\) −518.405 + 618.307i −0.744834 + 0.888373i
\(697\) 260.966 0.374413
\(698\) 163.168 + 94.2049i 0.233765 + 0.134964i
\(699\) −359.302 985.960i −0.514023 1.41053i
\(700\) 0 0
\(701\) −1171.72 −1.67149 −0.835747 0.549114i \(-0.814965\pi\)
−0.835747 + 0.549114i \(0.814965\pi\)
\(702\) 350.535 0.416273i 0.499337 0.000592981i
\(703\) −538.550 310.932i −0.766074 0.442293i
\(704\) 7.52554 + 13.0346i 0.0106897 + 0.0185151i
\(705\) −198.745 + 237.045i −0.281908 + 0.336235i
\(706\) −889.515 + 513.562i −1.25994 + 0.727425i
\(707\) 0 0
\(708\) 4.89319 27.8150i 0.00691129 0.0392868i
\(709\) −111.673 −0.157508 −0.0787540 0.996894i \(-0.525094\pi\)
−0.0787540 + 0.996894i \(0.525094\pi\)
\(710\) −365.860 211.229i −0.515295 0.297506i
\(711\) −399.291 144.972i −0.561591 0.203899i
\(712\) −171.470 + 98.9981i −0.240828 + 0.139042i
\(713\) −1153.40 665.915i −1.61767 0.933962i
\(714\) 0 0
\(715\) −2.08682 3.61448i −0.00291863 0.00505522i
\(716\) −131.309 + 227.435i −0.183393 + 0.317646i
\(717\) −101.928 279.699i −0.142158 0.390097i
\(718\) 14.4010 + 24.9432i 0.0200571 + 0.0347398i
\(719\) −1204.35 + 695.331i −1.67503 + 0.967081i −0.710283 + 0.703917i \(0.751433\pi\)
−0.964751 + 0.263164i \(0.915234\pi\)
\(720\) −213.268 253.754i −0.296205 0.352437i
\(721\) 0 0
\(722\) 92.1074 159.535i 0.127573 0.220962i
\(723\) 792.014 288.625i 1.09546 0.399204i
\(724\) 29.8339i 0.0412071i
\(725\) 856.287 1.18109
\(726\) −521.934 + 622.517i −0.718917 + 0.857461i
\(727\) −570.198 329.204i −0.784317 0.452826i 0.0536411 0.998560i \(-0.482917\pi\)
−0.837958 + 0.545735i \(0.816251\pi\)
\(728\) 0 0
\(729\) 365.998 + 630.465i 0.502055 + 0.864835i
\(730\) 188.491 + 326.475i 0.258206 + 0.447226i
\(731\) −214.079 + 123.599i −0.292858 + 0.169082i
\(732\) −37.3887 + 212.534i −0.0510775 + 0.290347i
\(733\) −322.167 186.003i −0.439518 0.253756i 0.263875 0.964557i \(-0.414999\pi\)
−0.703393 + 0.710801i \(0.748333\pi\)
\(734\) −1199.80 + 692.703i −1.63460 + 0.943737i
\(735\) 0 0
\(736\) 217.572 376.846i 0.295614 0.512019i
\(737\) −14.0639 24.3594i −0.0190826 0.0330521i
\(738\) −450.278 + 79.7637i −0.610132 + 0.108081i
\(739\) 470.172 814.362i 0.636227 1.10198i −0.350026 0.936740i \(-0.613827\pi\)
0.986254 0.165238i \(-0.0528393\pi\)
\(740\) 58.2726i 0.0787467i
\(741\) −235.135 + 280.448i −0.317321 + 0.378473i
\(742\) 0 0
\(743\) −103.438 179.161i −0.139217 0.241131i 0.787983 0.615697i \(-0.211125\pi\)
−0.927201 + 0.374565i \(0.877792\pi\)
\(744\) −169.415 + 963.028i −0.227708 + 1.29439i
\(745\) 43.9940 25.3999i 0.0590523 0.0340939i
\(746\) −0.648921 + 1.12396i −0.000869867 + 0.00150665i
\(747\) 542.777 + 645.818i 0.726610 + 0.864549i
\(748\) 4.36957i 0.00584167i
\(749\) 0 0
\(750\) −104.208 + 592.365i −0.138944 + 0.789820i
\(751\) −724.153 + 1254.27i −0.964252 + 1.67013i −0.252641 + 0.967560i \(0.581299\pi\)
−0.711611 + 0.702574i \(0.752034\pi\)
\(752\) 1014.86i 1.34955i
\(753\) 8.62738 49.0418i 0.0114573 0.0651285i
\(754\) 522.957i 0.693577i
\(755\) 231.888i 0.307136i
\(756\) 0 0
\(757\) −296.987 −0.392321 −0.196161 0.980572i \(-0.562847\pi\)
−0.196161 + 0.980572i \(0.562847\pi\)
\(758\) 41.4524 0.0546866
\(759\) 30.0150 + 5.28021i 0.0395455 + 0.00695680i
\(760\) 271.927 0.357799
\(761\) −254.681 147.040i −0.334666 0.193220i 0.323245 0.946315i \(-0.395226\pi\)
−0.657911 + 0.753096i \(0.728560\pi\)
\(762\) 325.043 + 57.1812i 0.426565 + 0.0750409i
\(763\) 0 0
\(764\) −61.9748 −0.0811188
\(765\) −34.9457 197.274i −0.0456807 0.257874i
\(766\) −109.859 63.4270i −0.143419 0.0828028i
\(767\) −26.7453 46.3242i −0.0348700 0.0603967i
\(768\) −544.122 95.7213i −0.708492 0.124637i
\(769\) −91.6783 + 52.9305i −0.119218 + 0.0688303i −0.558423 0.829556i \(-0.688593\pi\)
0.439205 + 0.898387i \(0.355260\pi\)
\(770\) 0 0
\(771\) 195.869 + 164.221i 0.254045 + 0.212998i
\(772\) 25.3697 0.0328623
\(773\) 1070.93 + 618.299i 1.38541 + 0.799869i 0.992794 0.119832i \(-0.0382355\pi\)
0.392620 + 0.919701i \(0.371569\pi\)
\(774\) 331.601 278.694i 0.428425 0.360070i
\(775\) 898.671 518.848i 1.15958 0.669481i
\(776\) 818.193 + 472.384i 1.05437 + 0.608742i
\(777\) 0 0
\(778\) −463.296 802.452i −0.595496 1.03143i
\(779\) 238.717 413.470i 0.306440 0.530770i
\(780\) 33.7758 + 5.94180i 0.0433023 + 0.00761769i
\(781\) −18.1464 31.4304i −0.0232348 0.0402438i
\(782\) 609.192 351.717i 0.779018 0.449766i
\(783\) 941.227 544.909i 1.20208 0.695925i
\(784\) 0 0
\(785\) 189.532 328.278i 0.241442 0.418189i
\(786\) −639.923 536.528i −0.814151 0.682605i
\(787\) 841.649i 1.06944i −0.845029 0.534720i \(-0.820417\pi\)
0.845029 0.534720i \(-0.179583\pi\)
\(788\) 177.775 0.225602
\(789\) −366.347 1005.29i −0.464318 1.27413i
\(790\) −177.161 102.284i −0.224254 0.129473i
\(791\) 0 0
\(792\) −3.90284 22.0321i −0.00492783 0.0278183i
\(793\) 204.360 + 353.962i 0.257705 + 0.446358i
\(794\) 1210.99 699.167i 1.52518 0.880564i
\(795\) −476.881 + 173.784i −0.599850 + 0.218597i
\(796\) −255.186 147.332i −0.320585 0.185090i
\(797\) −138.377 + 79.8921i −0.173622 + 0.100241i −0.584293 0.811543i \(-0.698628\pi\)
0.410670 + 0.911784i \(0.365295\pi\)
\(798\) 0 0
\(799\) −306.695 + 531.211i −0.383848 + 0.664844i
\(800\) 169.521 + 293.620i 0.211902 + 0.367025i
\(801\) 262.787 46.5509i 0.328073 0.0581160i
\(802\) −142.131 + 246.178i −0.177220 + 0.306955i
\(803\) 32.3859i 0.0403311i
\(804\) 227.628 + 40.0441i 0.283119 + 0.0498061i
\(805\) 0 0
\(806\) −316.874 548.842i −0.393144 0.680946i
\(807\) −885.287 742.247i −1.09701 0.919761i
\(808\) 271.320 156.646i 0.335792 0.193869i
\(809\) −17.7511 + 30.7458i −0.0219420 + 0.0380046i −0.876788 0.480877i \(-0.840318\pi\)
0.854846 + 0.518882i \(0.173652\pi\)
\(810\) 120.593 + 329.701i 0.148880 + 0.407038i
\(811\) 264.939i 0.326682i 0.986570 + 0.163341i \(0.0522271\pi\)
−0.986570 + 0.163341i \(0.947773\pi\)
\(812\) 0 0
\(813\) 175.604 63.9934i 0.215995 0.0787127i
\(814\) −12.3207 + 21.3401i −0.0151360 + 0.0262163i
\(815\) 161.881i 0.198627i
\(816\) −503.674 422.293i −0.617247 0.517515i
\(817\) 452.245i 0.553544i
\(818\) 969.081i 1.18470i
\(819\) 0 0
\(820\) −44.7386 −0.0545592
\(821\) 1507.56 1.83625 0.918126 0.396289i \(-0.129702\pi\)
0.918126 + 0.396289i \(0.129702\pi\)
\(822\) 10.6570 + 29.2440i 0.0129648 + 0.0355766i
\(823\) 1234.84 1.50041 0.750207 0.661203i \(-0.229954\pi\)
0.750207 + 0.661203i \(0.229954\pi\)
\(824\) −760.672 439.174i −0.923145 0.532978i
\(825\) −15.2560 + 18.1960i −0.0184921 + 0.0220558i
\(826\) 0 0
\(827\) 642.770 0.777231 0.388616 0.921400i \(-0.372953\pi\)
0.388616 + 0.921400i \(0.372953\pi\)
\(828\) −191.704 + 161.117i −0.231526 + 0.194586i
\(829\) −831.340 479.974i −1.00282 0.578980i −0.0937403 0.995597i \(-0.529882\pi\)
−0.909082 + 0.416617i \(0.863216\pi\)
\(830\) 203.129 + 351.830i 0.244734 + 0.423892i
\(831\) 87.3218 + 239.619i 0.105080 + 0.288351i
\(832\) −202.855 + 117.119i −0.243816 + 0.140767i
\(833\) 0 0
\(834\) 274.947 100.196i 0.329672 0.120139i
\(835\) −482.110 −0.577378
\(836\) −6.92308 3.99704i −0.00828120 0.00478115i
\(837\) 657.640 1142.20i 0.785711 1.36463i
\(838\) 337.868 195.068i 0.403184 0.232778i
\(839\) 409.757 + 236.574i 0.488388 + 0.281971i 0.723905 0.689899i \(-0.242345\pi\)
−0.235518 + 0.971870i \(0.575679\pi\)
\(840\) 0 0
\(841\) −390.772 676.837i −0.464652 0.804800i
\(842\) −393.140 + 680.938i −0.466912 + 0.808715i
\(843\) −284.812 + 339.699i −0.337856 + 0.402965i
\(844\) −152.566 264.251i −0.180765 0.313094i
\(845\) −226.870 + 130.984i −0.268486 + 0.155010i
\(846\) 366.816 1010.31i 0.433589 1.19422i
\(847\) 0 0
\(848\) −832.586 + 1442.08i −0.981823 + 1.70057i
\(849\) −182.345 + 1036.53i −0.214776 + 1.22088i
\(850\) 548.081i 0.644801i
\(851\) −805.907 −0.947012
\(852\) 293.704 + 51.6680i 0.344723 + 0.0606432i
\(853\) −1068.57 616.937i −1.25271 0.723255i −0.281067 0.959688i \(-0.590688\pi\)
−0.971648 + 0.236433i \(0.924022\pi\)
\(854\) 0 0
\(855\) −344.524 125.088i −0.402952 0.146301i
\(856\) −467.120 809.075i −0.545701 0.945181i
\(857\) −344.080 + 198.655i −0.401493 + 0.231802i −0.687128 0.726536i \(-0.741129\pi\)
0.285635 + 0.958339i \(0.407796\pi\)
\(858\) 11.1128 + 9.31724i 0.0129520 + 0.0108593i
\(859\) 473.197 + 273.200i 0.550870 + 0.318045i 0.749473 0.662035i \(-0.230307\pi\)
−0.198603 + 0.980080i \(0.563640\pi\)
\(860\) 36.7006 21.1891i 0.0426752 0.0246385i
\(861\) 0 0
\(862\) 824.138 1427.45i 0.956076 1.65597i
\(863\) −7.86960 13.6305i −0.00911888 0.0157944i 0.861430 0.507876i \(-0.169569\pi\)
−0.870549 + 0.492082i \(0.836236\pi\)
\(864\) 373.186 + 214.869i 0.431928 + 0.248690i
\(865\) −269.326 + 466.487i −0.311360 + 0.539291i
\(866\) 301.969i 0.348695i
\(867\) 160.833 + 441.342i 0.185505 + 0.509045i
\(868\) 0 0
\(869\) −8.78704 15.2196i −0.0101117 0.0175139i
\(870\) 492.088 179.326i 0.565618 0.206122i
\(871\) 379.100 218.874i 0.435247 0.251290i
\(872\) −370.858 + 642.346i −0.425296 + 0.736635i
\(873\) −819.328 974.869i −0.938520 1.11669i
\(874\) 1286.93i 1.47246i
\(875\) 0 0
\(876\) −203.921 170.972i −0.232786 0.195174i
\(877\) 86.7339 150.227i 0.0988984 0.171297i −0.812331 0.583197i \(-0.801801\pi\)
0.911229 + 0.411900i \(0.135135\pi\)
\(878\) 13.1000i 0.0149203i
\(879\) −139.201 + 50.7274i −0.158363 + 0.0577104i
\(880\) 13.7133i 0.0155833i
\(881\) 1381.76i 1.56840i 0.620507 + 0.784201i \(0.286927\pi\)
−0.620507 + 0.784201i \(0.713073\pi\)
\(882\) 0 0
\(883\) 1346.90 1.52537 0.762685 0.646771i \(-0.223881\pi\)
0.762685 + 0.646771i \(0.223881\pi\)
\(884\) 68.0028 0.0769262
\(885\) 34.4187 41.0515i 0.0388911 0.0463859i
\(886\) −359.192 −0.405408
\(887\) −532.683 307.545i −0.600544 0.346724i 0.168711 0.985665i \(-0.446039\pi\)
−0.769256 + 0.638941i \(0.779373\pi\)
\(888\) 202.590 + 555.926i 0.228141 + 0.626042i
\(889\) 0 0
\(890\) 128.520 0.144404
\(891\) −5.19007 + 29.7094i −0.00582499 + 0.0333438i
\(892\) −14.3561 8.28852i −0.0160943 0.00929206i
\(893\) 561.095 + 971.844i 0.628325 + 1.08829i
\(894\) −113.406 + 135.260i −0.126852 + 0.151298i
\(895\) −431.410 + 249.074i −0.482022 + 0.278295i
\(896\) 0 0
\(897\) −82.1748 + 467.118i −0.0916107 + 0.520756i
\(898\) 104.833 0.116740
\(899\) −1702.86 983.145i −1.89417 1.09360i
\(900\) −34.0331 192.122i −0.0378146 0.213469i
\(901\) −871.606 + 503.222i −0.967376 + 0.558515i
\(902\) −16.3838 9.45917i −0.0181638 0.0104869i
\(903\) 0 0
\(904\) −338.953 587.084i −0.374948 0.649429i
\(905\) 28.2953 49.0089i 0.0312655 0.0541534i
\(906\) 275.874 + 757.025i 0.304497 + 0.835568i
\(907\) 249.391 + 431.958i 0.274962 + 0.476249i 0.970126 0.242603i \(-0.0780012\pi\)
−0.695163 + 0.718852i \(0.744668\pi\)
\(908\) 26.9768 15.5751i 0.0297102 0.0171532i
\(909\) −415.812 + 73.6583i −0.457439 + 0.0810323i
\(910\) 0 0
\(911\) 462.758 801.521i 0.507967 0.879825i −0.491990 0.870601i \(-0.663730\pi\)
0.999957 0.00922428i \(-0.00293622\pi\)
\(912\) −1129.81 + 411.723i −1.23882 + 0.451450i
\(913\) 34.9010i 0.0382268i
\(914\) 1242.00 1.35886
\(915\) −262.992 + 313.674i −0.287423 + 0.342813i
\(916\) −161.268 93.1080i −0.176057 0.101646i
\(917\) 0 0
\(918\) 348.779 + 602.449i 0.379933 + 0.656262i
\(919\) 544.947 + 943.877i 0.592979 + 1.02707i 0.993829 + 0.110925i \(0.0353815\pi\)
−0.400850 + 0.916144i \(0.631285\pi\)
\(920\) 305.192 176.203i 0.331730 0.191525i
\(921\) 224.896 1278.41i 0.244187 1.38807i
\(922\) 263.602 + 152.191i 0.285903 + 0.165066i
\(923\) 489.146 282.408i 0.529952 0.305968i
\(924\) 0 0
\(925\) 313.961 543.797i 0.339418 0.587889i
\(926\) 2.13331 + 3.69500i 0.00230379 + 0.00399028i
\(927\) 761.727 + 906.333i 0.821712 + 0.977705i
\(928\) 321.219 556.368i 0.346142 0.599535i
\(929\) 537.759i 0.578858i −0.957199 0.289429i \(-0.906535\pi\)
0.957199 0.289429i \(-0.0934654\pi\)
\(930\) 407.787 486.372i 0.438480 0.522981i
\(931\) 0 0
\(932\) 178.364 + 308.936i 0.191378 + 0.331476i
\(933\) 86.9008 493.982i 0.0931413 0.529456i
\(934\) 200.137 115.549i 0.214279 0.123714i
\(935\) 4.14421 7.17799i 0.00443231 0.00767699i
\(936\) 342.881 60.7391i 0.366326 0.0648922i
\(937\) 647.389i 0.690917i 0.938434 + 0.345459i \(0.112277\pi\)
−0.938434 + 0.345459i \(0.887723\pi\)
\(938\) 0 0
\(939\) −134.406 + 764.023i −0.143137 + 0.813656i
\(940\) 52.5781 91.0680i 0.0559342 0.0968808i
\(941\) 131.133i 0.139355i 0.997570 + 0.0696777i \(0.0221971\pi\)
−0.997570 + 0.0696777i \(0.977803\pi\)
\(942\) −228.200 + 1297.19i −0.242250 + 1.37706i
\(943\) 618.732i 0.656132i
\(944\) 175.753i 0.186179i
\(945\) 0 0
\(946\) 17.9202 0.0189432
\(947\) 418.984 0.442433 0.221217 0.975225i \(-0.428997\pi\)
0.221217 + 0.975225i \(0.428997\pi\)
\(948\) 142.221 + 25.0193i 0.150022 + 0.0263916i
\(949\) −504.015 −0.531101
\(950\) 868.371 + 501.354i 0.914075 + 0.527742i
\(951\) 598.352 + 105.261i 0.629182 + 0.110685i
\(952\) 0 0
\(953\) −1131.25 −1.18704 −0.593520 0.804819i \(-0.702262\pi\)
−0.593520 + 0.804819i \(0.702262\pi\)
\(954\) 1350.09 1134.68i 1.41518 1.18939i
\(955\) −101.807 58.7785i −0.106604 0.0615481i
\(956\) 50.5987 + 87.6396i 0.0529275 + 0.0916732i
\(957\) 44.3136 + 7.79560i 0.0463047 + 0.00814587i
\(958\) −371.440 + 214.451i −0.387725 + 0.223853i
\(959\) 0 0
\(960\) −179.766 150.720i −0.187256 0.157000i
\(961\) −1421.86 −1.47956
\(962\) −332.111 191.745i −0.345230 0.199319i
\(963\) 219.649 + 1239.95i 0.228088 + 1.28759i
\(964\) −248.166 + 143.279i −0.257433 + 0.148629i
\(965\) 41.6754 + 24.0613i 0.0431869 + 0.0249340i
\(966\) 0 0
\(967\) −115.840 200.640i −0.119793 0.207488i 0.799893 0.600143i \(-0.204890\pi\)
−0.919686 + 0.392656i \(0.871556\pi\)
\(968\) −403.501 + 698.884i −0.416840 + 0.721987i
\(969\) −715.802 125.923i −0.738702 0.129952i
\(970\) −306.626 531.091i −0.316109 0.547517i
\(971\) −402.557 + 232.416i −0.414579 + 0.239358i −0.692755 0.721173i \(-0.743603\pi\)
0.278176 + 0.960530i \(0.410270\pi\)
\(972\) −159.668 189.522i −0.164268 0.194982i
\(973\) 0 0
\(974\) −502.782 + 870.843i −0.516203 + 0.894089i
\(975\) −283.181 237.426i −0.290442 0.243514i
\(976\) 1342.93i 1.37595i
\(977\) −1778.98 −1.82086 −0.910429 0.413666i \(-0.864248\pi\)
−0.910429 + 0.413666i \(0.864248\pi\)
\(978\) −192.588 528.480i −0.196920 0.540368i
\(979\) 9.56174 + 5.52047i 0.00976684 + 0.00563889i
\(980\) 0 0
\(981\) 765.348 643.237i 0.780172 0.655695i
\(982\) −91.5977 158.652i −0.0932767 0.161560i
\(983\) −199.156 + 114.983i −0.202601 + 0.116972i −0.597868 0.801595i \(-0.703985\pi\)
0.395267 + 0.918566i \(0.370652\pi\)
\(984\) −426.810 + 155.537i −0.433750 + 0.158066i
\(985\) 292.034 + 168.606i 0.296482 + 0.171174i
\(986\) 899.400 519.269i 0.912170 0.526642i
\(987\) 0 0
\(988\) 62.2052 107.743i 0.0629607 0.109051i
\(989\) 293.045 + 507.568i 0.296304 + 0.513213i
\(990\) −4.95661 + 13.6518i −0.00500667 + 0.0137897i
\(991\) −561.974 + 973.368i −0.567078 + 0.982208i 0.429775 + 0.902936i \(0.358593\pi\)
−0.996853 + 0.0792720i \(0.974740\pi\)
\(992\) 778.543i 0.784822i
\(993\) −100.919 17.7536i −0.101631 0.0178787i
\(994\) 0 0
\(995\) −279.466 484.050i −0.280870 0.486482i
\(996\) −219.758 184.251i −0.220640 0.184991i
\(997\) 554.198 319.966i 0.555866 0.320929i −0.195619 0.980680i \(-0.562672\pi\)
0.751484 + 0.659751i \(0.229338\pi\)
\(998\) 30.8550 53.4424i 0.0309168 0.0535495i
\(999\) −0.947100 797.533i −0.000948048 0.798332i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.t.a.178.11 28
7.2 even 3 63.3.k.a.61.4 yes 28
7.3 odd 6 441.3.l.b.97.4 28
7.4 even 3 441.3.l.a.97.4 28
7.5 odd 6 441.3.k.b.313.4 28
7.6 odd 2 63.3.t.a.52.11 yes 28
9.4 even 3 441.3.k.b.31.4 28
21.2 odd 6 189.3.k.a.19.11 28
21.20 even 2 189.3.t.a.73.4 28
63.4 even 3 441.3.l.b.391.4 28
63.13 odd 6 63.3.k.a.31.4 28
63.23 odd 6 189.3.t.a.145.4 28
63.31 odd 6 441.3.l.a.391.4 28
63.40 odd 6 inner 441.3.t.a.166.11 28
63.41 even 6 189.3.k.a.10.11 28
63.58 even 3 63.3.t.a.40.11 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.4 28 63.13 odd 6
63.3.k.a.61.4 yes 28 7.2 even 3
63.3.t.a.40.11 yes 28 63.58 even 3
63.3.t.a.52.11 yes 28 7.6 odd 2
189.3.k.a.10.11 28 63.41 even 6
189.3.k.a.19.11 28 21.2 odd 6
189.3.t.a.73.4 28 21.20 even 2
189.3.t.a.145.4 28 63.23 odd 6
441.3.k.b.31.4 28 9.4 even 3
441.3.k.b.313.4 28 7.5 odd 6
441.3.l.a.97.4 28 7.4 even 3
441.3.l.a.391.4 28 63.31 odd 6
441.3.l.b.97.4 28 7.3 odd 6
441.3.l.b.391.4 28 63.4 even 3
441.3.t.a.166.11 28 63.40 odd 6 inner
441.3.t.a.178.11 28 1.1 even 1 trivial