Properties

Label 441.3.l.b.97.4
Level $441$
Weight $3$
Character 441.97
Analytic conductor $12.016$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,3,Mod(97,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,1,0,-23,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 97.4
Character \(\chi\) \(=\) 441.97
Dual form 441.3.l.b.391.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12025 + 1.94033i) q^{2} +(-1.02718 - 2.81867i) q^{3} +(-0.509909 - 0.883189i) q^{4} +(1.67528 - 0.967222i) q^{5} +(6.61983 + 1.16455i) q^{6} -6.67708 q^{8} +(-6.88982 + 5.79054i) q^{9} +4.33411i q^{10} +(0.186168 - 0.322453i) q^{11} +(-1.96565 + 2.34446i) q^{12} +(5.01827 - 2.89730i) q^{13} +(-4.44709 - 3.72855i) q^{15} +(9.51962 - 16.4885i) q^{16} -11.5075i q^{17} +(-3.51724 - 19.8553i) q^{18} +21.0528i q^{19} +(-1.70848 - 0.986391i) q^{20} +(0.417109 + 0.722455i) q^{22} +(-13.6417 - 23.6282i) q^{23} +(6.85854 + 18.8205i) q^{24} +(-10.6290 + 18.4099i) q^{25} +12.9828i q^{26} +(23.3987 + 13.4722i) q^{27} +(-20.1404 + 34.8842i) q^{29} +(12.2164 - 4.45190i) q^{30} +(-42.2746 + 24.4073i) q^{31} +(7.97450 + 13.8122i) q^{32} +(-1.10012 - 0.193531i) q^{33} +(22.3282 + 12.8912i) q^{34} +(8.62732 + 3.13236i) q^{36} -29.5383 q^{37} +(-40.8493 - 23.5844i) q^{38} +(-13.3212 - 11.1688i) q^{39} +(-11.1860 + 6.45822i) q^{40} +(19.6397 - 11.3390i) q^{41} +(10.7407 - 18.6035i) q^{43} -0.379716 q^{44} +(-5.94161 + 16.3648i) q^{45} +61.1285 q^{46} +(-46.1622 - 26.6518i) q^{47} +(-56.2539 - 9.89612i) q^{48} +(-23.8141 - 41.2473i) q^{50} +(-32.4358 + 11.8202i) q^{51} +(-5.11773 - 2.95472i) q^{52} -87.4600 q^{53} +(-52.3528 + 30.3089i) q^{54} -0.720265i q^{55} +(59.3409 - 21.6249i) q^{57} +(-45.1245 - 78.1579i) q^{58} +(-7.99438 + 4.61556i) q^{59} +(-1.02540 + 5.82884i) q^{60} +(-61.0848 - 35.2673i) q^{61} -109.369i q^{62} +40.4233 q^{64} +(5.60467 - 9.70757i) q^{65} +(1.60792 - 1.91778i) q^{66} +(37.7720 + 65.4230i) q^{67} +(-10.1633 + 5.86777i) q^{68} +(-52.5876 + 62.7219i) q^{69} -97.4729 q^{71} +(46.0039 - 38.6639i) q^{72} +86.9800i q^{73} +(33.0902 - 57.3139i) q^{74} +(62.8093 + 11.0493i) q^{75} +(18.5936 - 10.7350i) q^{76} +(36.5942 - 13.3356i) q^{78} +(23.5997 - 40.8759i) q^{79} -36.8303i q^{80} +(13.9392 - 79.7916i) q^{81} +50.8098i q^{82} +(-81.1770 - 46.8676i) q^{83} +(-11.1303 - 19.2782i) q^{85} +(24.0646 + 41.6810i) q^{86} +(119.015 + 20.9370i) q^{87} +(-1.24306 + 2.15305i) q^{88} -29.6531i q^{89} +(-25.0969 - 29.8612i) q^{90} +(-13.9121 + 24.0965i) q^{92} +(112.220 + 94.0877i) q^{93} +(103.426 - 59.7132i) q^{94} +(20.3627 + 35.2693i) q^{95} +(30.7410 - 36.6651i) q^{96} +(122.538 + 70.7471i) q^{97} +(0.584513 + 3.29966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + q^{2} - 23 q^{4} + 3 q^{5} - 12 q^{6} - 16 q^{8} + 6 q^{9} + 7 q^{11} + 27 q^{12} - 15 q^{13} - 18 q^{15} - 27 q^{16} + 9 q^{18} - 108 q^{20} - 10 q^{22} + 34 q^{23} + 120 q^{24} + 31 q^{25} + 81 q^{27}+ \cdots - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12025 + 1.94033i −0.560124 + 0.970163i 0.437361 + 0.899286i \(0.355913\pi\)
−0.997485 + 0.0708770i \(0.977420\pi\)
\(3\) −1.02718 2.81867i −0.342392 0.939557i
\(4\) −0.509909 0.883189i −0.127477 0.220797i
\(5\) 1.67528 0.967222i 0.335055 0.193444i −0.323028 0.946389i \(-0.604701\pi\)
0.658083 + 0.752945i \(0.271367\pi\)
\(6\) 6.61983 + 1.16455i 1.10331 + 0.194092i
\(7\) 0 0
\(8\) −6.67708 −0.834635
\(9\) −6.88982 + 5.79054i −0.765535 + 0.643394i
\(10\) 4.33411i 0.433411i
\(11\) 0.186168 0.322453i 0.0169244 0.0293139i −0.857439 0.514585i \(-0.827946\pi\)
0.874364 + 0.485271i \(0.161279\pi\)
\(12\) −1.96565 + 2.34446i −0.163804 + 0.195371i
\(13\) 5.01827 2.89730i 0.386021 0.222869i −0.294414 0.955678i \(-0.595124\pi\)
0.680435 + 0.732809i \(0.261791\pi\)
\(14\) 0 0
\(15\) −4.44709 3.72855i −0.296472 0.248570i
\(16\) 9.51962 16.4885i 0.594976 1.03053i
\(17\) 11.5075i 0.676910i −0.940983 0.338455i \(-0.890096\pi\)
0.940983 0.338455i \(-0.109904\pi\)
\(18\) −3.51724 19.8553i −0.195402 1.10307i
\(19\) 21.0528i 1.10804i 0.832503 + 0.554021i \(0.186907\pi\)
−0.832503 + 0.554021i \(0.813093\pi\)
\(20\) −1.70848 0.986391i −0.0854239 0.0493195i
\(21\) 0 0
\(22\) 0.417109 + 0.722455i 0.0189595 + 0.0328389i
\(23\) −13.6417 23.6282i −0.593119 1.02731i −0.993809 0.111099i \(-0.964563\pi\)
0.400690 0.916214i \(-0.368770\pi\)
\(24\) 6.85854 + 18.8205i 0.285773 + 0.784188i
\(25\) −10.6290 + 18.4099i −0.425159 + 0.736396i
\(26\) 12.9828i 0.499338i
\(27\) 23.3987 + 13.4722i 0.866619 + 0.498971i
\(28\) 0 0
\(29\) −20.1404 + 34.8842i −0.694497 + 1.20290i 0.275853 + 0.961200i \(0.411040\pi\)
−0.970350 + 0.241704i \(0.922294\pi\)
\(30\) 12.2164 4.45190i 0.407215 0.148397i
\(31\) −42.2746 + 24.4073i −1.36370 + 0.787331i −0.990114 0.140265i \(-0.955205\pi\)
−0.373584 + 0.927596i \(0.621871\pi\)
\(32\) 7.97450 + 13.8122i 0.249203 + 0.431633i
\(33\) −1.10012 0.193531i −0.0333369 0.00586459i
\(34\) 22.3282 + 12.8912i 0.656713 + 0.379154i
\(35\) 0 0
\(36\) 8.62732 + 3.13236i 0.239648 + 0.0870099i
\(37\) −29.5383 −0.798332 −0.399166 0.916879i \(-0.630700\pi\)
−0.399166 + 0.916879i \(0.630700\pi\)
\(38\) −40.8493 23.5844i −1.07498 0.620641i
\(39\) −13.3212 11.1688i −0.341569 0.286380i
\(40\) −11.1860 + 6.45822i −0.279649 + 0.161455i
\(41\) 19.6397 11.3390i 0.479016 0.276560i −0.240990 0.970528i \(-0.577472\pi\)
0.720006 + 0.693968i \(0.244139\pi\)
\(42\) 0 0
\(43\) 10.7407 18.6035i 0.249785 0.432639i −0.713681 0.700470i \(-0.752974\pi\)
0.963466 + 0.267831i \(0.0863069\pi\)
\(44\) −0.379716 −0.00862991
\(45\) −5.94161 + 16.3648i −0.132036 + 0.363661i
\(46\) 61.1285 1.32888
\(47\) −46.1622 26.6518i −0.982175 0.567059i −0.0792489 0.996855i \(-0.525252\pi\)
−0.902926 + 0.429796i \(0.858586\pi\)
\(48\) −56.2539 9.89612i −1.17196 0.206169i
\(49\) 0 0
\(50\) −23.8141 41.2473i −0.476283 0.824946i
\(51\) −32.4358 + 11.8202i −0.635996 + 0.231769i
\(52\) −5.11773 2.95472i −0.0984178 0.0568216i
\(53\) −87.4600 −1.65019 −0.825094 0.564995i \(-0.808878\pi\)
−0.825094 + 0.564995i \(0.808878\pi\)
\(54\) −52.3528 + 30.3089i −0.969497 + 0.561275i
\(55\) 0.720265i 0.0130957i
\(56\) 0 0
\(57\) 59.3409 21.6249i 1.04107 0.379385i
\(58\) −45.1245 78.1579i −0.778008 1.34755i
\(59\) −7.99438 + 4.61556i −0.135498 + 0.0782298i −0.566217 0.824256i \(-0.691593\pi\)
0.430719 + 0.902486i \(0.358260\pi\)
\(60\) −1.02540 + 5.82884i −0.0170900 + 0.0971473i
\(61\) −61.0848 35.2673i −1.00139 0.578153i −0.0927306 0.995691i \(-0.529560\pi\)
−0.908659 + 0.417539i \(0.862893\pi\)
\(62\) 109.369i 1.76401i
\(63\) 0 0
\(64\) 40.4233 0.631614
\(65\) 5.60467 9.70757i 0.0862256 0.149347i
\(66\) 1.60792 1.91778i 0.0243624 0.0290573i
\(67\) 37.7720 + 65.4230i 0.563761 + 0.976463i 0.997164 + 0.0752625i \(0.0239795\pi\)
−0.433403 + 0.901200i \(0.642687\pi\)
\(68\) −10.1633 + 5.86777i −0.149460 + 0.0862907i
\(69\) −52.5876 + 62.7219i −0.762139 + 0.909013i
\(70\) 0 0
\(71\) −97.4729 −1.37286 −0.686429 0.727197i \(-0.740823\pi\)
−0.686429 + 0.727197i \(0.740823\pi\)
\(72\) 46.0039 38.6639i 0.638943 0.536999i
\(73\) 86.9800i 1.19151i 0.803167 + 0.595754i \(0.203146\pi\)
−0.803167 + 0.595754i \(0.796854\pi\)
\(74\) 33.0902 57.3139i 0.447165 0.774512i
\(75\) 62.8093 + 11.0493i 0.837457 + 0.147325i
\(76\) 18.5936 10.7350i 0.244653 0.141250i
\(77\) 0 0
\(78\) 36.5942 13.3356i 0.469156 0.170969i
\(79\) 23.5997 40.8759i 0.298730 0.517416i −0.677115 0.735877i \(-0.736770\pi\)
0.975846 + 0.218461i \(0.0701036\pi\)
\(80\) 36.8303i 0.460379i
\(81\) 13.9392 79.7916i 0.172089 0.985081i
\(82\) 50.8098i 0.619631i
\(83\) −81.1770 46.8676i −0.978036 0.564669i −0.0763594 0.997080i \(-0.524330\pi\)
−0.901677 + 0.432411i \(0.857663\pi\)
\(84\) 0 0
\(85\) −11.1303 19.2782i −0.130944 0.226802i
\(86\) 24.0646 + 41.6810i 0.279821 + 0.484663i
\(87\) 119.015 + 20.9370i 1.36799 + 0.240655i
\(88\) −1.24306 + 2.15305i −0.0141257 + 0.0244664i
\(89\) 29.6531i 0.333181i −0.986026 0.166590i \(-0.946724\pi\)
0.986026 0.166590i \(-0.0532758\pi\)
\(90\) −25.0969 29.8612i −0.278854 0.331792i
\(91\) 0 0
\(92\) −13.9121 + 24.0965i −0.151218 + 0.261918i
\(93\) 112.220 + 94.0877i 1.20666 + 1.01170i
\(94\) 103.426 59.7132i 1.10028 0.635246i
\(95\) 20.3627 + 35.2693i 0.214345 + 0.371256i
\(96\) 30.7410 36.6651i 0.320218 0.381928i
\(97\) 122.538 + 70.7471i 1.26327 + 0.729351i 0.973706 0.227806i \(-0.0731553\pi\)
0.289567 + 0.957158i \(0.406489\pi\)
\(98\) 0 0
\(99\) 0.584513 + 3.29966i 0.00590417 + 0.0333299i
\(100\) 21.6792 0.216792
\(101\) −40.6345 23.4603i −0.402321 0.232280i 0.285164 0.958479i \(-0.407952\pi\)
−0.687485 + 0.726198i \(0.741285\pi\)
\(102\) 13.4011 76.1775i 0.131383 0.746839i
\(103\) 113.923 65.7733i 1.10605 0.638576i 0.168244 0.985745i \(-0.446190\pi\)
0.937802 + 0.347169i \(0.112857\pi\)
\(104\) −33.5074 + 19.3455i −0.322187 + 0.186015i
\(105\) 0 0
\(106\) 97.9768 169.701i 0.924310 1.60095i
\(107\) −139.917 −1.30764 −0.653819 0.756651i \(-0.726834\pi\)
−0.653819 + 0.756651i \(0.726834\pi\)
\(108\) −0.0326989 27.5351i −0.000302768 0.254954i
\(109\) −111.084 −1.01912 −0.509560 0.860435i \(-0.670192\pi\)
−0.509560 + 0.860435i \(0.670192\pi\)
\(110\) 1.39755 + 0.806875i 0.0127050 + 0.00733522i
\(111\) 30.3410 + 83.2587i 0.273343 + 0.750079i
\(112\) 0 0
\(113\) 50.7636 + 87.9252i 0.449236 + 0.778099i 0.998336 0.0576571i \(-0.0183630\pi\)
−0.549101 + 0.835756i \(0.685030\pi\)
\(114\) −24.5171 + 139.366i −0.215062 + 1.22251i
\(115\) −45.7074 26.3892i −0.397456 0.229471i
\(116\) 41.0791 0.354130
\(117\) −17.7980 + 49.0204i −0.152120 + 0.418978i
\(118\) 20.6823i 0.175273i
\(119\) 0 0
\(120\) 29.6936 + 24.8958i 0.247446 + 0.207465i
\(121\) 60.4307 + 104.669i 0.499427 + 0.865033i
\(122\) 136.860 79.0162i 1.12180 0.647674i
\(123\) −52.1342 43.7106i −0.423855 0.355371i
\(124\) 43.1125 + 24.8910i 0.347681 + 0.200734i
\(125\) 89.4834i 0.715867i
\(126\) 0 0
\(127\) −49.1014 −0.386625 −0.193312 0.981137i \(-0.561923\pi\)
−0.193312 + 0.981137i \(0.561923\pi\)
\(128\) −77.1821 + 133.683i −0.602985 + 1.04440i
\(129\) −63.4698 11.1655i −0.492014 0.0865545i
\(130\) 12.5572 + 21.7498i 0.0965941 + 0.167306i
\(131\) 107.596 62.1204i 0.821341 0.474202i −0.0295376 0.999564i \(-0.509403\pi\)
0.850879 + 0.525362i \(0.176070\pi\)
\(132\) 0.390035 + 1.07029i 0.00295481 + 0.00810829i
\(133\) 0 0
\(134\) −169.256 −1.26310
\(135\) 52.2299 0.0620250i 0.386888 0.000459444i
\(136\) 76.8364i 0.564973i
\(137\) −2.31536 + 4.01032i −0.0169004 + 0.0292724i −0.874352 0.485292i \(-0.838713\pi\)
0.857452 + 0.514565i \(0.172046\pi\)
\(138\) −62.7897 172.301i −0.454998 1.24856i
\(139\) 37.7043 21.7686i 0.271254 0.156608i −0.358204 0.933644i \(-0.616611\pi\)
0.629457 + 0.777035i \(0.283277\pi\)
\(140\) 0 0
\(141\) −27.7058 + 157.492i −0.196495 + 1.11697i
\(142\) 109.194 189.129i 0.768970 1.33190i
\(143\) 2.15754i 0.0150877i
\(144\) 29.8888 + 168.726i 0.207561 + 1.17171i
\(145\) 77.9210i 0.537386i
\(146\) −168.770 97.4391i −1.15596 0.667391i
\(147\) 0 0
\(148\) 15.0618 + 26.0879i 0.101769 + 0.176269i
\(149\) 13.1304 + 22.7425i 0.0881232 + 0.152634i 0.906718 0.421738i \(-0.138580\pi\)
−0.818595 + 0.574372i \(0.805246\pi\)
\(150\) −91.8013 + 109.492i −0.612009 + 0.729950i
\(151\) −59.9365 + 103.813i −0.396931 + 0.687504i −0.993346 0.115172i \(-0.963258\pi\)
0.596415 + 0.802676i \(0.296591\pi\)
\(152\) 140.571i 0.924811i
\(153\) 66.6345 + 79.2844i 0.435520 + 0.518199i
\(154\) 0 0
\(155\) −47.2145 + 81.7779i −0.304610 + 0.527599i
\(156\) −3.07158 + 17.4602i −0.0196896 + 0.111924i
\(157\) 169.702 97.9773i 1.08090 0.624059i 0.149763 0.988722i \(-0.452149\pi\)
0.931140 + 0.364663i \(0.118816\pi\)
\(158\) 52.8750 + 91.5822i 0.334652 + 0.579634i
\(159\) 89.8368 + 246.521i 0.565011 + 1.55045i
\(160\) 26.7190 + 15.4262i 0.166994 + 0.0964139i
\(161\) 0 0
\(162\) 139.206 + 116.433i 0.859299 + 0.718722i
\(163\) −83.6836 −0.513396 −0.256698 0.966492i \(-0.582635\pi\)
−0.256698 + 0.966492i \(0.582635\pi\)
\(164\) −20.0289 11.5637i −0.122127 0.0705102i
\(165\) −2.03019 + 0.739839i −0.0123042 + 0.00448387i
\(166\) 181.877 105.007i 1.09564 0.632569i
\(167\) 215.835 124.612i 1.29242 0.746181i 0.313340 0.949641i \(-0.398552\pi\)
0.979083 + 0.203460i \(0.0652188\pi\)
\(168\) 0 0
\(169\) −67.7113 + 117.279i −0.400659 + 0.693961i
\(170\) 49.8747 0.293380
\(171\) −121.907 145.050i −0.712908 0.848246i
\(172\) −21.9072 −0.127367
\(173\) 241.148 + 139.227i 1.39392 + 0.804779i 0.993746 0.111661i \(-0.0356172\pi\)
0.400171 + 0.916440i \(0.368951\pi\)
\(174\) −173.951 + 207.473i −0.999716 + 1.19237i
\(175\) 0 0
\(176\) −3.54451 6.13926i −0.0201392 0.0348822i
\(177\) 21.2214 + 17.7925i 0.119895 + 0.100523i
\(178\) 57.5367 + 33.2188i 0.323240 + 0.186623i
\(179\) 257.515 1.43863 0.719317 0.694682i \(-0.244455\pi\)
0.719317 + 0.694682i \(0.244455\pi\)
\(180\) 17.4828 3.09697i 0.0971269 0.0172054i
\(181\) 29.2542i 0.161625i 0.996729 + 0.0808126i \(0.0257515\pi\)
−0.996729 + 0.0808126i \(0.974248\pi\)
\(182\) 0 0
\(183\) −36.6621 + 208.404i −0.200340 + 1.13882i
\(184\) 91.0870 + 157.767i 0.495038 + 0.857431i
\(185\) −49.4848 + 28.5701i −0.267486 + 0.154433i
\(186\) −308.275 + 112.341i −1.65739 + 0.603984i
\(187\) −3.71062 2.14233i −0.0198429 0.0114563i
\(188\) 54.3599i 0.289149i
\(189\) 0 0
\(190\) −91.2452 −0.480238
\(191\) 30.3852 52.6287i 0.159085 0.275543i −0.775454 0.631404i \(-0.782479\pi\)
0.934539 + 0.355861i \(0.115812\pi\)
\(192\) −41.5219 113.940i −0.216260 0.593438i
\(193\) −12.4384 21.5439i −0.0644474 0.111626i 0.832001 0.554774i \(-0.187195\pi\)
−0.896449 + 0.443147i \(0.853862\pi\)
\(194\) −274.545 + 158.508i −1.41518 + 0.817054i
\(195\) −33.1194 5.82633i −0.169843 0.0298786i
\(196\) 0 0
\(197\) 174.320 0.884873 0.442437 0.896800i \(-0.354114\pi\)
0.442437 + 0.896800i \(0.354114\pi\)
\(198\) −7.05721 2.56229i −0.0356425 0.0129409i
\(199\) 288.937i 1.45194i −0.687724 0.725972i \(-0.741390\pi\)
0.687724 0.725972i \(-0.258610\pi\)
\(200\) 70.9705 122.924i 0.354852 0.614622i
\(201\) 145.607 173.668i 0.724415 0.864019i
\(202\) 91.0413 52.5627i 0.450699 0.260211i
\(203\) 0 0
\(204\) 26.9788 + 22.6197i 0.132249 + 0.110881i
\(205\) 21.9346 37.9918i 0.106998 0.185326i
\(206\) 294.730i 1.43073i
\(207\) 230.809 + 83.8008i 1.11502 + 0.404835i
\(208\) 110.325i 0.530408i
\(209\) 6.78854 + 3.91937i 0.0324811 + 0.0187530i
\(210\) 0 0
\(211\) −149.601 259.116i −0.709009 1.22804i −0.965225 0.261419i \(-0.915809\pi\)
0.256217 0.966619i \(-0.417524\pi\)
\(212\) 44.5967 + 77.2437i 0.210362 + 0.364357i
\(213\) 100.122 + 274.744i 0.470055 + 1.28988i
\(214\) 156.742 271.485i 0.732439 1.26862i
\(215\) 41.5547i 0.193278i
\(216\) −156.235 89.9551i −0.723310 0.416459i
\(217\) 0 0
\(218\) 124.442 215.539i 0.570833 0.988712i
\(219\) 245.168 89.3438i 1.11949 0.407963i
\(220\) −0.636130 + 0.367270i −0.00289150 + 0.00166941i
\(221\) −33.3406 57.7477i −0.150863 0.261302i
\(222\) −195.539 34.3989i −0.880804 0.154950i
\(223\) 14.0772 + 8.12745i 0.0631263 + 0.0364460i 0.531231 0.847227i \(-0.321730\pi\)
−0.468105 + 0.883673i \(0.655063\pi\)
\(224\) 0 0
\(225\) −33.3718 188.388i −0.148319 0.837282i
\(226\) −227.471 −1.00651
\(227\) 26.4526 + 15.2724i 0.116531 + 0.0672793i 0.557133 0.830423i \(-0.311901\pi\)
−0.440602 + 0.897703i \(0.645235\pi\)
\(228\) −49.3574 41.3825i −0.216480 0.181502i
\(229\) −158.134 + 91.2986i −0.690541 + 0.398684i −0.803815 0.594880i \(-0.797200\pi\)
0.113274 + 0.993564i \(0.463866\pi\)
\(230\) 102.407 59.1248i 0.445249 0.257064i
\(231\) 0 0
\(232\) 134.479 232.925i 0.579652 1.00399i
\(233\) −349.796 −1.50127 −0.750635 0.660717i \(-0.770252\pi\)
−0.750635 + 0.660717i \(0.770252\pi\)
\(234\) −75.1774 89.4490i −0.321271 0.382261i
\(235\) −103.113 −0.438777
\(236\) 8.15281 + 4.70703i 0.0345458 + 0.0199450i
\(237\) −139.457 24.5331i −0.588425 0.103515i
\(238\) 0 0
\(239\) 49.6154 + 85.9365i 0.207596 + 0.359567i 0.950957 0.309324i \(-0.100103\pi\)
−0.743361 + 0.668891i \(0.766769\pi\)
\(240\) −103.813 + 37.8313i −0.432553 + 0.157630i
\(241\) −243.343 140.494i −1.00972 0.582964i −0.0986123 0.995126i \(-0.531440\pi\)
−0.911110 + 0.412162i \(0.864774\pi\)
\(242\) −270.789 −1.11896
\(243\) −239.224 + 42.6701i −0.984462 + 0.175597i
\(244\) 71.9325i 0.294805i
\(245\) 0 0
\(246\) 143.216 52.1906i 0.582179 0.212157i
\(247\) 60.9963 + 105.649i 0.246949 + 0.427728i
\(248\) 282.271 162.969i 1.13819 0.657135i
\(249\) −48.7212 + 276.952i −0.195667 + 1.11226i
\(250\) −173.627 100.244i −0.694507 0.400974i
\(251\) 16.5983i 0.0661286i −0.999453 0.0330643i \(-0.989473\pi\)
0.999453 0.0330643i \(-0.0105266\pi\)
\(252\) 0 0
\(253\) −10.1586 −0.0401527
\(254\) 55.0057 95.2726i 0.216558 0.375089i
\(255\) −42.9062 + 51.1747i −0.168260 + 0.200685i
\(256\) −92.0795 159.486i −0.359686 0.622994i
\(257\) −73.7864 + 42.6006i −0.287106 + 0.165761i −0.636636 0.771164i \(-0.719675\pi\)
0.349530 + 0.936925i \(0.386341\pi\)
\(258\) 92.7666 110.644i 0.359561 0.428852i
\(259\) 0 0
\(260\) −11.4315 −0.0439672
\(261\) −63.2348 356.970i −0.242279 1.36770i
\(262\) 278.361i 1.06245i
\(263\) 178.327 308.872i 0.678050 1.17442i −0.297517 0.954717i \(-0.596158\pi\)
0.975567 0.219701i \(-0.0705082\pi\)
\(264\) 7.34557 + 1.29222i 0.0278241 + 0.00489479i
\(265\) −146.520 + 84.5932i −0.552905 + 0.319220i
\(266\) 0 0
\(267\) −83.5824 + 30.4590i −0.313043 + 0.114079i
\(268\) 38.5206 66.7196i 0.143733 0.248954i
\(269\) 385.092i 1.43157i 0.698321 + 0.715785i \(0.253931\pi\)
−0.698321 + 0.715785i \(0.746069\pi\)
\(270\) −58.3901 + 101.413i −0.216260 + 0.375602i
\(271\) 62.3003i 0.229890i 0.993372 + 0.114945i \(0.0366692\pi\)
−0.993372 + 0.114945i \(0.963331\pi\)
\(272\) −189.741 109.547i −0.697576 0.402746i
\(273\) 0 0
\(274\) −5.18755 8.98509i −0.0189327 0.0327923i
\(275\) 3.95755 + 6.85469i 0.0143911 + 0.0249261i
\(276\) 82.2102 + 14.4623i 0.297863 + 0.0523997i
\(277\) −42.5057 + 73.6221i −0.153450 + 0.265784i −0.932494 0.361186i \(-0.882372\pi\)
0.779043 + 0.626970i \(0.215705\pi\)
\(278\) 97.5447i 0.350880i
\(279\) 149.933 412.955i 0.537395 1.48012i
\(280\) 0 0
\(281\) 73.8831 127.969i 0.262929 0.455407i −0.704090 0.710111i \(-0.748645\pi\)
0.967019 + 0.254704i \(0.0819781\pi\)
\(282\) −274.549 230.189i −0.973577 0.816272i
\(283\) 303.815 175.408i 1.07355 0.619815i 0.144402 0.989519i \(-0.453874\pi\)
0.929150 + 0.369704i \(0.120541\pi\)
\(284\) 49.7023 + 86.0869i 0.175008 + 0.303123i
\(285\) 78.4964 93.6236i 0.275426 0.328504i
\(286\) 4.18634 + 2.41698i 0.0146375 + 0.00845099i
\(287\) 0 0
\(288\) −134.923 48.9871i −0.468484 0.170094i
\(289\) 156.578 0.541793
\(290\) −151.192 87.2908i −0.521352 0.301003i
\(291\) 73.5451 418.063i 0.252732 1.43664i
\(292\) 76.8198 44.3519i 0.263081 0.151890i
\(293\) −42.7689 + 24.6927i −0.145969 + 0.0842753i −0.571206 0.820807i \(-0.693524\pi\)
0.425237 + 0.905082i \(0.360191\pi\)
\(294\) 0 0
\(295\) −8.92853 + 15.4647i −0.0302662 + 0.0524226i
\(296\) 197.230 0.666316
\(297\) 8.70026 5.03688i 0.0292938 0.0169592i
\(298\) −58.8370 −0.197440
\(299\) −136.916 79.0484i −0.457913 0.264376i
\(300\) −22.2684 61.1066i −0.0742280 0.203689i
\(301\) 0 0
\(302\) −134.288 232.593i −0.444661 0.770175i
\(303\) −24.3882 + 138.633i −0.0804890 + 0.457535i
\(304\) 347.129 + 200.415i 1.14187 + 0.659259i
\(305\) −136.445 −0.447362
\(306\) −228.485 + 40.4746i −0.746682 + 0.132270i
\(307\) 432.680i 1.40938i −0.709515 0.704691i \(-0.751086\pi\)
0.709515 0.704691i \(-0.248914\pi\)
\(308\) 0 0
\(309\) −302.412 253.550i −0.978680 0.820550i
\(310\) −105.784 183.223i −0.341238 0.591042i
\(311\) −144.790 + 83.5947i −0.465563 + 0.268793i −0.714381 0.699757i \(-0.753291\pi\)
0.248817 + 0.968550i \(0.419958\pi\)
\(312\) 88.9467 + 74.5752i 0.285086 + 0.239023i
\(313\) −223.941 129.293i −0.715467 0.413075i 0.0976148 0.995224i \(-0.468879\pi\)
−0.813082 + 0.582149i \(0.802212\pi\)
\(314\) 439.035i 1.39820i
\(315\) 0 0
\(316\) −48.1348 −0.152325
\(317\) 101.257 175.382i 0.319422 0.553255i −0.660946 0.750434i \(-0.729845\pi\)
0.980368 + 0.197179i \(0.0631780\pi\)
\(318\) −578.970 101.852i −1.82066 0.320289i
\(319\) 7.49902 + 12.9887i 0.0235079 + 0.0407169i
\(320\) 67.7203 39.0983i 0.211626 0.122182i
\(321\) 143.720 + 394.381i 0.447725 + 1.22860i
\(322\) 0 0
\(323\) 242.265 0.750045
\(324\) −77.5787 + 28.3755i −0.239441 + 0.0875788i
\(325\) 123.181i 0.379019i
\(326\) 93.7463 162.373i 0.287565 0.498078i
\(327\) 114.103 + 313.109i 0.348938 + 0.957521i
\(328\) −131.136 + 75.7112i −0.399804 + 0.230827i
\(329\) 0 0
\(330\) 0.838787 4.76803i 0.00254178 0.0144486i
\(331\) −17.0781 + 29.5802i −0.0515956 + 0.0893662i −0.890670 0.454651i \(-0.849764\pi\)
0.839074 + 0.544017i \(0.183097\pi\)
\(332\) 95.5928i 0.287930i
\(333\) 203.513 171.043i 0.611152 0.513642i
\(334\) 558.386i 1.67181i
\(335\) 126.557 + 73.0678i 0.377783 + 0.218113i
\(336\) 0 0
\(337\) 205.854 + 356.550i 0.610844 + 1.05801i 0.991099 + 0.133130i \(0.0425029\pi\)
−0.380255 + 0.924882i \(0.624164\pi\)
\(338\) −151.707 262.764i −0.448837 0.777408i
\(339\) 195.689 233.401i 0.577254 0.688498i
\(340\) −11.3509 + 19.6603i −0.0333849 + 0.0578243i
\(341\) 18.1755i 0.0533005i
\(342\) 418.010 74.0478i 1.22225 0.216514i
\(343\) 0 0
\(344\) −71.7168 + 124.217i −0.208479 + 0.361096i
\(345\) −27.4329 + 155.940i −0.0795155 + 0.452001i
\(346\) −540.290 + 311.937i −1.56153 + 0.901551i
\(347\) 298.744 + 517.439i 0.860933 + 1.49118i 0.871029 + 0.491231i \(0.163453\pi\)
−0.0100965 + 0.999949i \(0.503214\pi\)
\(348\) −42.1955 115.789i −0.121251 0.332726i
\(349\) −72.8266 42.0465i −0.208672 0.120477i 0.392022 0.919956i \(-0.371776\pi\)
−0.600694 + 0.799479i \(0.705109\pi\)
\(350\) 0 0
\(351\) 156.454 0.185795i 0.445738 0.000529331i
\(352\) 5.93840 0.0168705
\(353\) −397.017 229.218i −1.12469 0.649343i −0.182099 0.983280i \(-0.558289\pi\)
−0.942595 + 0.333937i \(0.891623\pi\)
\(354\) −58.2965 + 21.2443i −0.164679 + 0.0600122i
\(355\) −163.294 + 94.2779i −0.459983 + 0.265572i
\(356\) −26.1893 + 15.1204i −0.0735654 + 0.0424730i
\(357\) 0 0
\(358\) −288.481 + 499.664i −0.805813 + 1.39571i
\(359\) −12.8552 −0.0358083 −0.0179041 0.999840i \(-0.505699\pi\)
−0.0179041 + 0.999840i \(0.505699\pi\)
\(360\) 39.6726 109.269i 0.110202 0.303524i
\(361\) −82.2206 −0.227758
\(362\) −56.7626 32.7719i −0.156803 0.0905302i
\(363\) 232.955 277.848i 0.641748 0.765421i
\(364\) 0 0
\(365\) 84.1290 + 145.716i 0.230490 + 0.399221i
\(366\) −363.300 304.600i −0.992624 0.832241i
\(367\) −535.505 309.174i −1.45914 0.842436i −0.460173 0.887829i \(-0.652213\pi\)
−0.998969 + 0.0453934i \(0.985546\pi\)
\(368\) −519.457 −1.41157
\(369\) −69.6549 + 191.848i −0.188767 + 0.519912i
\(370\) 128.022i 0.346006i
\(371\) 0 0
\(372\) 25.8754 147.087i 0.0695576 0.395396i
\(373\) −0.289633 0.501659i −0.000776495 0.00134493i 0.865637 0.500672i \(-0.166914\pi\)
−0.866413 + 0.499327i \(0.833580\pi\)
\(374\) 8.31363 4.79988i 0.0222290 0.0128339i
\(375\) 252.224 91.9152i 0.672598 0.245107i
\(376\) 308.229 + 177.956i 0.819758 + 0.473287i
\(377\) 233.411i 0.619128i
\(378\) 0 0
\(379\) 18.5015 0.0488165 0.0244083 0.999702i \(-0.492230\pi\)
0.0244083 + 0.999702i \(0.492230\pi\)
\(380\) 20.7663 35.9683i 0.0546481 0.0946533i
\(381\) 50.4358 + 138.401i 0.132377 + 0.363256i
\(382\) 68.0779 + 117.914i 0.178214 + 0.308676i
\(383\) −49.0332 + 28.3093i −0.128024 + 0.0739147i −0.562644 0.826699i \(-0.690216\pi\)
0.434620 + 0.900614i \(0.356883\pi\)
\(384\) 456.089 + 80.2347i 1.18773 + 0.208944i
\(385\) 0 0
\(386\) 55.7361 0.144394
\(387\) 33.7227 + 190.369i 0.0871387 + 0.491911i
\(388\) 144.298i 0.371903i
\(389\) −206.783 + 358.158i −0.531575 + 0.920715i 0.467746 + 0.883863i \(0.345066\pi\)
−0.999321 + 0.0368521i \(0.988267\pi\)
\(390\) 48.4069 57.7355i 0.124120 0.148040i
\(391\) −271.901 + 156.982i −0.695398 + 0.401488i
\(392\) 0 0
\(393\) −285.617 239.468i −0.726760 0.609334i
\(394\) −195.282 + 338.238i −0.495639 + 0.858471i
\(395\) 91.3046i 0.231151i
\(396\) 2.61617 2.19876i 0.00660650 0.00555243i
\(397\) 624.119i 1.57209i −0.618171 0.786044i \(-0.712126\pi\)
0.618171 0.786044i \(-0.287874\pi\)
\(398\) 560.632 + 323.681i 1.40862 + 0.813269i
\(399\) 0 0
\(400\) 202.367 + 350.511i 0.505919 + 0.876277i
\(401\) −63.4372 109.876i −0.158198 0.274006i 0.776021 0.630707i \(-0.217235\pi\)
−0.934219 + 0.356701i \(0.883902\pi\)
\(402\) 173.856 + 477.077i 0.432477 + 1.18676i
\(403\) −141.430 + 244.965i −0.350944 + 0.607853i
\(404\) 47.8505i 0.118442i
\(405\) −53.8242 147.155i −0.132899 0.363347i
\(406\) 0 0
\(407\) −5.49910 + 9.52472i −0.0135113 + 0.0234023i
\(408\) 216.576 78.9245i 0.530825 0.193442i
\(409\) −374.582 + 216.265i −0.915848 + 0.528765i −0.882308 0.470672i \(-0.844011\pi\)
−0.0335397 + 0.999437i \(0.510678\pi\)
\(410\) 49.1443 + 85.1205i 0.119864 + 0.207611i
\(411\) 13.6820 + 2.40693i 0.0332896 + 0.00585628i
\(412\) −116.181 67.0769i −0.281992 0.162808i
\(413\) 0 0
\(414\) −421.164 + 353.967i −1.01730 + 0.854993i
\(415\) −181.325 −0.436928
\(416\) 80.0365 + 46.2091i 0.192395 + 0.111080i
\(417\) −100.087 83.9158i −0.240018 0.201237i
\(418\) −15.2097 + 8.78132i −0.0363868 + 0.0210080i
\(419\) −150.801 + 87.0648i −0.359906 + 0.207792i −0.669040 0.743227i \(-0.733294\pi\)
0.309134 + 0.951019i \(0.399961\pi\)
\(420\) 0 0
\(421\) −175.470 + 303.923i −0.416793 + 0.721907i −0.995615 0.0935470i \(-0.970179\pi\)
0.578822 + 0.815454i \(0.303513\pi\)
\(422\) 670.360 1.58853
\(423\) 472.378 83.6786i 1.11673 0.197822i
\(424\) 583.978 1.37731
\(425\) 211.852 + 122.313i 0.498474 + 0.287794i
\(426\) −645.254 113.512i −1.51468 0.266461i
\(427\) 0 0
\(428\) 71.3451 + 123.573i 0.166694 + 0.288723i
\(429\) −6.08141 + 2.21618i −0.0141758 + 0.00516592i
\(430\) 80.6296 + 46.5515i 0.187511 + 0.108259i
\(431\) −735.675 −1.70690 −0.853451 0.521173i \(-0.825495\pi\)
−0.853451 + 0.521173i \(0.825495\pi\)
\(432\) 444.883 257.558i 1.02982 0.596200i
\(433\) 134.778i 0.311266i 0.987815 + 0.155633i \(0.0497417\pi\)
−0.987815 + 0.155633i \(0.950258\pi\)
\(434\) 0 0
\(435\) 219.634 80.0386i 0.504905 0.183997i
\(436\) 56.6427 + 98.1081i 0.129915 + 0.225019i
\(437\) 497.439 287.197i 1.13831 0.657201i
\(438\) −101.293 + 575.793i −0.231262 + 1.31460i
\(439\) 5.06360 + 2.92347i 0.0115344 + 0.00665939i 0.505756 0.862677i \(-0.331214\pi\)
−0.494222 + 0.869336i \(0.664547\pi\)
\(440\) 4.80927i 0.0109302i
\(441\) 0 0
\(442\) 149.399 0.338007
\(443\) 80.1590 138.839i 0.180946 0.313407i −0.761257 0.648450i \(-0.775417\pi\)
0.942203 + 0.335043i \(0.108751\pi\)
\(444\) 58.0620 69.2513i 0.130770 0.155971i
\(445\) −28.6811 49.6772i −0.0644520 0.111634i
\(446\) −31.5398 + 18.2095i −0.0707170 + 0.0408285i
\(447\) 50.6163 60.3707i 0.113236 0.135057i
\(448\) 0 0
\(449\) 46.7901 0.104209 0.0521047 0.998642i \(-0.483407\pi\)
0.0521047 + 0.998642i \(0.483407\pi\)
\(450\) 402.919 + 146.290i 0.895377 + 0.325088i
\(451\) 8.44382i 0.0187224i
\(452\) 51.7697 89.6677i 0.114535 0.198380i
\(453\) 354.181 + 62.3070i 0.781855 + 0.137543i
\(454\) −59.2669 + 34.2177i −0.130544 + 0.0753695i
\(455\) 0 0
\(456\) −396.224 + 144.392i −0.868913 + 0.316648i
\(457\) −277.170 + 480.073i −0.606499 + 1.05049i 0.385314 + 0.922786i \(0.374093\pi\)
−0.991813 + 0.127702i \(0.959240\pi\)
\(458\) 409.108i 0.893250i
\(459\) 155.031 269.260i 0.337759 0.586623i
\(460\) 53.8243i 0.117009i
\(461\) −117.654 67.9273i −0.255214 0.147348i 0.366935 0.930246i \(-0.380407\pi\)
−0.622149 + 0.782899i \(0.713740\pi\)
\(462\) 0 0
\(463\) 0.952160 + 1.64919i 0.00205650 + 0.00356196i 0.867052 0.498218i \(-0.166012\pi\)
−0.864995 + 0.501780i \(0.832679\pi\)
\(464\) 383.458 + 664.169i 0.826418 + 1.43140i
\(465\) 279.003 + 49.0818i 0.600006 + 0.105552i
\(466\) 391.858 678.718i 0.840897 1.45648i
\(467\) 103.146i 0.220869i −0.993883 0.110435i \(-0.964776\pi\)
0.993883 0.110435i \(-0.0352243\pi\)
\(468\) 52.3697 9.27694i 0.111901 0.0198225i
\(469\) 0 0
\(470\) 115.512 200.072i 0.245770 0.425686i
\(471\) −450.479 377.693i −0.956432 0.801897i
\(472\) 53.3791 30.8184i 0.113091 0.0652933i
\(473\) −3.99917 6.92677i −0.00845491 0.0146443i
\(474\) 203.828 243.108i 0.430017 0.512887i
\(475\) −387.580 223.769i −0.815958 0.471094i
\(476\) 0 0
\(477\) 602.583 506.441i 1.26328 1.06172i
\(478\) −222.326 −0.465118
\(479\) −165.785 95.7160i −0.346106 0.199825i 0.316863 0.948471i \(-0.397371\pi\)
−0.662969 + 0.748647i \(0.730704\pi\)
\(480\) 16.0363 91.1575i 0.0334090 0.189912i
\(481\) −148.231 + 85.5813i −0.308173 + 0.177924i
\(482\) 545.209 314.777i 1.13114 0.653064i
\(483\) 0 0
\(484\) 61.6283 106.743i 0.127331 0.220544i
\(485\) 273.712 0.564356
\(486\) 185.197 511.974i 0.381063 1.05344i
\(487\) 448.813 0.921587 0.460794 0.887507i \(-0.347565\pi\)
0.460794 + 0.887507i \(0.347565\pi\)
\(488\) 407.868 + 235.483i 0.835795 + 0.482547i
\(489\) 85.9578 + 235.876i 0.175783 + 0.482365i
\(490\) 0 0
\(491\) −40.8828 70.8111i −0.0832644 0.144218i 0.821386 0.570373i \(-0.193201\pi\)
−0.904650 + 0.426155i \(0.859868\pi\)
\(492\) −12.0210 + 68.3328i −0.0244330 + 0.138888i
\(493\) 401.429 + 231.765i 0.814258 + 0.470112i
\(494\) −273.324 −0.553287
\(495\) 4.17072 + 4.96249i 0.00842571 + 0.0100252i
\(496\) 929.392i 1.87377i
\(497\) 0 0
\(498\) −482.798 404.790i −0.969474 0.812832i
\(499\) 13.7715 + 23.8529i 0.0275982 + 0.0478014i 0.879495 0.475909i \(-0.157881\pi\)
−0.851896 + 0.523710i \(0.824547\pi\)
\(500\) 79.0307 45.6284i 0.158061 0.0912568i
\(501\) −572.941 480.368i −1.14359 0.958819i
\(502\) 32.2061 + 18.5942i 0.0641556 + 0.0370402i
\(503\) 49.4903i 0.0983902i −0.998789 0.0491951i \(-0.984334\pi\)
0.998789 0.0491951i \(-0.0156656\pi\)
\(504\) 0 0
\(505\) −90.7653 −0.179733
\(506\) 11.3802 19.7111i 0.0224905 0.0389547i
\(507\) 400.124 + 70.3893i 0.789198 + 0.138835i
\(508\) 25.0372 + 43.3658i 0.0492859 + 0.0853657i
\(509\) 108.850 62.8447i 0.213851 0.123467i −0.389249 0.921133i \(-0.627265\pi\)
0.603100 + 0.797666i \(0.293932\pi\)
\(510\) −51.2301 140.580i −0.100451 0.275648i
\(511\) 0 0
\(512\) −204.849 −0.400097
\(513\) −283.628 + 492.608i −0.552881 + 0.960250i
\(514\) 190.893i 0.371387i
\(515\) 127.235 220.377i 0.247058 0.427917i
\(516\) 22.5026 + 61.7492i 0.0436096 + 0.119669i
\(517\) −17.1879 + 9.92344i −0.0332454 + 0.0191943i
\(518\) 0 0
\(519\) 144.733 822.727i 0.278869 1.58522i
\(520\) −37.4228 + 64.8182i −0.0719670 + 0.124650i
\(521\) 700.708i 1.34493i 0.740130 + 0.672464i \(0.234764\pi\)
−0.740130 + 0.672464i \(0.765236\pi\)
\(522\) 763.476 + 277.198i 1.46260 + 0.531031i
\(523\) 349.590i 0.668432i −0.942496 0.334216i \(-0.891528\pi\)
0.942496 0.334216i \(-0.108472\pi\)
\(524\) −109.728 63.3515i −0.209405 0.120900i
\(525\) 0 0
\(526\) 399.541 + 692.026i 0.759584 + 1.31564i
\(527\) 280.866 + 486.474i 0.532953 + 0.923101i
\(528\) −13.6637 + 16.2969i −0.0258783 + 0.0308653i
\(529\) −107.694 + 186.531i −0.203580 + 0.352611i
\(530\) 379.061i 0.715210i
\(531\) 28.3532 78.0921i 0.0533959 0.147066i
\(532\) 0 0
\(533\) 65.7048 113.804i 0.123273 0.213516i
\(534\) 34.5326 196.299i 0.0646678 0.367600i
\(535\) −234.400 + 135.331i −0.438131 + 0.252955i
\(536\) −252.207 436.835i −0.470535 0.814990i
\(537\) −264.514 725.851i −0.492577 1.35168i
\(538\) −747.204 431.399i −1.38886 0.801856i
\(539\) 0 0
\(540\) −26.6873 46.0973i −0.0494209 0.0853653i
\(541\) 701.445 1.29657 0.648286 0.761397i \(-0.275486\pi\)
0.648286 + 0.761397i \(0.275486\pi\)
\(542\) −120.883 69.7918i −0.223031 0.128767i
\(543\) 82.4579 30.0492i 0.151856 0.0553392i
\(544\) 158.944 91.7664i 0.292177 0.168688i
\(545\) −186.096 + 107.443i −0.341461 + 0.197143i
\(546\) 0 0
\(547\) −202.629 + 350.964i −0.370437 + 0.641616i −0.989633 0.143620i \(-0.954126\pi\)
0.619195 + 0.785237i \(0.287459\pi\)
\(548\) 4.72249 0.00861768
\(549\) 625.080 110.729i 1.13858 0.201692i
\(550\) −17.7338 −0.0322432
\(551\) −734.410 424.012i −1.33287 0.769532i
\(552\) 351.132 418.799i 0.636108 0.758694i
\(553\) 0 0
\(554\) −95.2339 164.950i −0.171902 0.297744i
\(555\) 131.359 + 110.135i 0.236683 + 0.198441i
\(556\) −38.4515 22.2000i −0.0691574 0.0399280i
\(557\) 103.589 0.185976 0.0929880 0.995667i \(-0.470358\pi\)
0.0929880 + 0.995667i \(0.470358\pi\)
\(558\) 633.305 + 753.531i 1.13495 + 1.35041i
\(559\) 124.477i 0.222677i
\(560\) 0 0
\(561\) −2.22706 + 12.6596i −0.00396980 + 0.0225661i
\(562\) 165.535 + 286.715i 0.294546 + 0.510168i
\(563\) 113.286 65.4059i 0.201219 0.116174i −0.396005 0.918248i \(-0.629604\pi\)
0.597224 + 0.802074i \(0.296270\pi\)
\(564\) 153.223 55.8372i 0.271672 0.0990022i
\(565\) 170.086 + 98.1994i 0.301038 + 0.173804i
\(566\) 786.000i 1.38869i
\(567\) 0 0
\(568\) 650.834 1.14584
\(569\) 317.790 550.428i 0.558506 0.967361i −0.439115 0.898431i \(-0.644708\pi\)
0.997621 0.0689303i \(-0.0219586\pi\)
\(570\) 93.7249 + 257.190i 0.164430 + 0.451211i
\(571\) −86.0297 149.008i −0.150665 0.260959i 0.780807 0.624772i \(-0.214808\pi\)
−0.931472 + 0.363813i \(0.881475\pi\)
\(572\) −1.90552 + 1.10015i −0.00333133 + 0.00192334i
\(573\) −179.554 31.5869i −0.313358 0.0551255i
\(574\) 0 0
\(575\) 579.990 1.00868
\(576\) −278.509 + 234.073i −0.483523 + 0.406377i
\(577\) 31.7345i 0.0549991i −0.999622 0.0274996i \(-0.991246\pi\)
0.999622 0.0274996i \(-0.00875448\pi\)
\(578\) −175.406 + 303.812i −0.303471 + 0.525627i
\(579\) −47.9487 + 57.1890i −0.0828129 + 0.0987720i
\(580\) 68.8189 39.7326i 0.118653 0.0685045i
\(581\) 0 0
\(582\) 728.789 + 611.035i 1.25222 + 1.04989i
\(583\) −16.2823 + 28.2017i −0.0279285 + 0.0483735i
\(584\) 580.773i 0.994474i
\(585\) 17.5970 + 99.3374i 0.0300803 + 0.169808i
\(586\) 110.648i 0.188818i
\(587\) −780.765 450.775i −1.33009 0.767929i −0.344779 0.938684i \(-0.612046\pi\)
−0.985314 + 0.170754i \(0.945380\pi\)
\(588\) 0 0
\(589\) −513.842 890.000i −0.872396 1.51104i
\(590\) −20.0043 34.6485i −0.0339056 0.0587263i
\(591\) −179.057 491.351i −0.302974 0.831389i
\(592\) −281.193 + 487.041i −0.474989 + 0.822705i
\(593\) 106.446i 0.179504i −0.995964 0.0897518i \(-0.971393\pi\)
0.995964 0.0897518i \(-0.0286074\pi\)
\(594\) 0.0267479 + 22.5239i 4.50302e−5 + 0.0379190i
\(595\) 0 0
\(596\) 13.3906 23.1932i 0.0224674 0.0389147i
\(597\) −814.418 + 296.789i −1.36418 + 0.497134i
\(598\) 306.759 177.108i 0.512976 0.296167i
\(599\) 407.540 + 705.880i 0.680367 + 1.17843i 0.974869 + 0.222780i \(0.0715131\pi\)
−0.294501 + 0.955651i \(0.595154\pi\)
\(600\) −419.383 73.7773i −0.698971 0.122962i
\(601\) −222.029 128.189i −0.369433 0.213292i 0.303778 0.952743i \(-0.401752\pi\)
−0.673211 + 0.739451i \(0.735085\pi\)
\(602\) 0 0
\(603\) −639.077 232.032i −1.05983 0.384796i
\(604\) 122.249 0.202399
\(605\) 202.476 + 116.900i 0.334672 + 0.193223i
\(606\) −241.672 202.624i −0.398799 0.334364i
\(607\) −280.441 + 161.913i −0.462012 + 0.266742i −0.712890 0.701276i \(-0.752614\pi\)
0.250878 + 0.968019i \(0.419281\pi\)
\(608\) −290.786 + 167.886i −0.478267 + 0.276128i
\(609\) 0 0
\(610\) 152.852 264.748i 0.250578 0.434014i
\(611\) −308.873 −0.505520
\(612\) 36.0455 99.2787i 0.0588979 0.162220i
\(613\) −621.240 −1.01344 −0.506721 0.862110i \(-0.669143\pi\)
−0.506721 + 0.862110i \(0.669143\pi\)
\(614\) 839.540 + 484.709i 1.36733 + 0.789428i
\(615\) −129.617 22.8021i −0.210759 0.0370766i
\(616\) 0 0
\(617\) 372.353 + 644.935i 0.603490 + 1.04527i 0.992288 + 0.123952i \(0.0395569\pi\)
−0.388799 + 0.921323i \(0.627110\pi\)
\(618\) 830.746 302.739i 1.34425 0.489870i
\(619\) 159.035 + 91.8186i 0.256922 + 0.148334i 0.622930 0.782278i \(-0.285942\pi\)
−0.366008 + 0.930612i \(0.619276\pi\)
\(620\) 96.3004 0.155323
\(621\) −0.874803 736.653i −0.00140870 1.18624i
\(622\) 374.587i 0.602230i
\(623\) 0 0
\(624\) −310.970 + 113.323i −0.498349 + 0.181607i
\(625\) −179.174 310.338i −0.286678 0.496541i
\(626\) 501.739 289.679i 0.801501 0.462747i
\(627\) 4.07438 23.1606i 0.00649821 0.0369387i
\(628\) −173.065 99.9191i −0.275581 0.159107i
\(629\) 339.911i 0.540399i
\(630\) 0 0
\(631\) 325.873 0.516439 0.258220 0.966086i \(-0.416864\pi\)
0.258220 + 0.966086i \(0.416864\pi\)
\(632\) −157.577 + 272.932i −0.249331 + 0.431854i
\(633\) −576.697 + 687.834i −0.911054 + 1.08662i
\(634\) 226.865 + 392.942i 0.357831 + 0.619782i
\(635\) −82.2584 + 47.4919i −0.129541 + 0.0747904i
\(636\) 171.916 205.046i 0.270308 0.322400i
\(637\) 0 0
\(638\) −33.6030 −0.0526693
\(639\) 671.570 564.421i 1.05097 0.883288i
\(640\) 298.609i 0.466576i
\(641\) 89.3312 154.726i 0.139362 0.241383i −0.787893 0.615812i \(-0.788828\pi\)
0.927255 + 0.374429i \(0.122161\pi\)
\(642\) −926.229 162.941i −1.44272 0.253802i
\(643\) −60.1837 + 34.7471i −0.0935983 + 0.0540390i −0.546069 0.837740i \(-0.683876\pi\)
0.452470 + 0.891780i \(0.350543\pi\)
\(644\) 0 0
\(645\) −117.129 + 42.6840i −0.181595 + 0.0661767i
\(646\) −271.396 + 470.072i −0.420118 + 0.727666i
\(647\) 823.157i 1.27227i 0.771579 + 0.636134i \(0.219467\pi\)
−0.771579 + 0.636134i \(0.780533\pi\)
\(648\) −93.0730 + 532.775i −0.143631 + 0.822184i
\(649\) 3.43708i 0.00529597i
\(650\) −239.012 137.993i −0.367710 0.212298i
\(651\) 0 0
\(652\) 42.6710 + 73.9084i 0.0654463 + 0.113356i
\(653\) −391.218 677.609i −0.599108 1.03769i −0.992953 0.118509i \(-0.962189\pi\)
0.393845 0.919177i \(-0.371145\pi\)
\(654\) −735.357 129.363i −1.12440 0.197803i
\(655\) 120.168 208.138i 0.183463 0.317768i
\(656\) 431.770i 0.658187i
\(657\) −503.662 599.276i −0.766608 0.912141i
\(658\) 0 0
\(659\) 90.6800 157.062i 0.137602 0.238334i −0.788986 0.614411i \(-0.789394\pi\)
0.926589 + 0.376077i \(0.122727\pi\)
\(660\) 1.68863 + 1.41579i 0.00255853 + 0.00214514i
\(661\) −167.119 + 96.4862i −0.252827 + 0.145970i −0.621058 0.783764i \(-0.713297\pi\)
0.368231 + 0.929734i \(0.379964\pi\)
\(662\) −38.2635 66.2743i −0.0577999 0.100112i
\(663\) −128.525 + 153.293i −0.193854 + 0.231212i
\(664\) 542.025 + 312.939i 0.816303 + 0.471293i
\(665\) 0 0
\(666\) 103.893 + 586.493i 0.155996 + 0.880620i
\(667\) 1099.00 1.64768
\(668\) −220.112 127.082i −0.329509 0.190242i
\(669\) 8.44889 48.0272i 0.0126291 0.0717895i
\(670\) −283.551 + 163.708i −0.423210 + 0.244340i
\(671\) −22.7441 + 13.1313i −0.0338958 + 0.0195698i
\(672\) 0 0
\(673\) −41.9447 + 72.6503i −0.0623249 + 0.107950i −0.895504 0.445053i \(-0.853185\pi\)
0.833179 + 0.553003i \(0.186518\pi\)
\(674\) −922.431 −1.36859
\(675\) −496.726 + 287.572i −0.735891 + 0.426033i
\(676\) 138.106 0.204299
\(677\) −179.443 103.601i −0.265056 0.153030i 0.361583 0.932340i \(-0.382236\pi\)
−0.626639 + 0.779310i \(0.715570\pi\)
\(678\) 233.653 + 641.167i 0.344621 + 0.945674i
\(679\) 0 0
\(680\) 74.3178 + 128.722i 0.109291 + 0.189297i
\(681\) 15.8764 90.2486i 0.0233134 0.132524i
\(682\) −35.2663 20.3610i −0.0517101 0.0298549i
\(683\) 1279.88 1.87391 0.936953 0.349454i \(-0.113633\pi\)
0.936953 + 0.349454i \(0.113633\pi\)
\(684\) −65.9449 + 181.629i −0.0964107 + 0.265540i
\(685\) 8.95786i 0.0130772i
\(686\) 0 0
\(687\) 419.772 + 351.948i 0.611022 + 0.512296i
\(688\) −204.495 354.197i −0.297232 0.514821i
\(689\) −438.898 + 253.398i −0.637007 + 0.367776i
\(690\) −271.844 227.921i −0.393976 0.330320i
\(691\) 1052.86 + 607.869i 1.52368 + 0.879695i 0.999607 + 0.0280193i \(0.00892000\pi\)
0.524069 + 0.851676i \(0.324413\pi\)
\(692\) 283.972i 0.410364i
\(693\) 0 0
\(694\) −1338.67 −1.92892
\(695\) 42.1101 72.9368i 0.0605900 0.104945i
\(696\) −794.672 139.798i −1.14177 0.200859i
\(697\) −130.483 226.003i −0.187206 0.324251i
\(698\) 163.168 94.2049i 0.233765 0.134964i
\(699\) 359.302 + 985.960i 0.514023 + 1.41053i
\(700\) 0 0
\(701\) −1171.72 −1.67149 −0.835747 0.549114i \(-0.814965\pi\)
−0.835747 + 0.549114i \(0.814965\pi\)
\(702\) −174.907 + 303.780i −0.249155 + 0.432735i
\(703\) 621.864i 0.884586i
\(704\) 7.52554 13.0346i 0.0106897 0.0185151i
\(705\) 105.915 + 290.641i 0.150234 + 0.412256i
\(706\) 889.515 513.562i 1.25994 0.727425i
\(707\) 0 0
\(708\) 4.89319 27.8150i 0.00691129 0.0392868i
\(709\) 55.8366 96.7119i 0.0787540 0.136406i −0.823959 0.566650i \(-0.808239\pi\)
0.902713 + 0.430244i \(0.141572\pi\)
\(710\) 422.458i 0.595012i
\(711\) 74.0960 + 418.282i 0.104214 + 0.588302i
\(712\) 197.996i 0.278085i
\(713\) 1153.40 + 665.915i 1.61767 + 0.933962i
\(714\) 0 0
\(715\) −2.08682 3.61448i −0.00291863 0.00505522i
\(716\) −131.309 227.435i −0.183393 0.317646i
\(717\) 191.263 228.121i 0.266754 0.318161i
\(718\) 14.4010 24.9432i 0.0200571 0.0347398i
\(719\) 1390.66i 1.93416i 0.254468 + 0.967081i \(0.418100\pi\)
−0.254468 + 0.967081i \(0.581900\pi\)
\(720\) 213.268 + 253.754i 0.296205 + 0.352437i
\(721\) 0 0
\(722\) 92.1074 159.535i 0.127573 0.220962i
\(723\) −146.051 + 830.217i −0.202007 + 1.14829i
\(724\) 25.8370 14.9170i 0.0356864 0.0206036i
\(725\) −428.143 741.566i −0.590543 1.02285i
\(726\) 278.148 + 763.266i 0.383124 + 1.05133i
\(727\) 570.198 + 329.204i 0.784317 + 0.452826i 0.837958 0.545735i \(-0.183749\pi\)
−0.0536411 + 0.998560i \(0.517083\pi\)
\(728\) 0 0
\(729\) 365.998 + 630.465i 0.502055 + 0.864835i
\(730\) −376.981 −0.516412
\(731\) −214.079 123.599i −0.292858 0.169082i
\(732\) 202.754 73.8874i 0.276987 0.100939i
\(733\) −322.167 + 186.003i −0.439518 + 0.253756i −0.703393 0.710801i \(-0.748333\pi\)
0.263875 + 0.964557i \(0.414999\pi\)
\(734\) 1199.80 692.703i 1.63460 0.943737i
\(735\) 0 0
\(736\) 217.572 376.846i 0.295614 0.512019i
\(737\) 28.1278 0.0381653
\(738\) −294.216 350.070i −0.398667 0.474350i
\(739\) −940.344 −1.27245 −0.636227 0.771502i \(-0.719506\pi\)
−0.636227 + 0.771502i \(0.719506\pi\)
\(740\) 50.4655 + 29.1363i 0.0681967 + 0.0393734i
\(741\) 235.135 280.448i 0.317321 0.378473i
\(742\) 0 0
\(743\) −103.438 179.161i −0.139217 0.241131i 0.787983 0.615697i \(-0.211125\pi\)
−0.927201 + 0.374565i \(0.877792\pi\)
\(744\) −749.299 628.232i −1.00712 0.844397i
\(745\) 43.9940 + 25.3999i 0.0590523 + 0.0340939i
\(746\) 1.29784 0.00173973
\(747\) 830.683 147.150i 1.11203 0.196988i
\(748\) 4.36957i 0.00584167i
\(749\) 0 0
\(750\) −104.208 + 592.365i −0.138944 + 0.789820i
\(751\) −724.153 1254.27i −0.964252 1.67013i −0.711611 0.702574i \(-0.752034\pi\)
−0.252641 0.967560i \(-0.581299\pi\)
\(752\) −878.894 + 507.430i −1.16874 + 0.674773i
\(753\) −46.7851 + 17.0494i −0.0621316 + 0.0226419i
\(754\) −452.894 261.478i −0.600655 0.346788i
\(755\) 231.888i 0.307136i
\(756\) 0 0
\(757\) −296.987 −0.392321 −0.196161 0.980572i \(-0.562847\pi\)
−0.196161 + 0.980572i \(0.562847\pi\)
\(758\) −20.7262 + 35.8989i −0.0273433 + 0.0473600i
\(759\) 10.4347 + 28.6339i 0.0137480 + 0.0377258i
\(760\) −135.964 235.496i −0.178900 0.309863i
\(761\) −254.681 + 147.040i −0.334666 + 0.193220i −0.657911 0.753096i \(-0.728560\pi\)
0.323245 + 0.946315i \(0.395226\pi\)
\(762\) −325.043 57.1812i −0.426565 0.0750409i
\(763\) 0 0
\(764\) −61.9748 −0.0811188
\(765\) 188.317 + 68.3730i 0.246166 + 0.0893764i
\(766\) 126.854i 0.165606i
\(767\) −26.7453 + 46.3242i −0.0348700 + 0.0603967i
\(768\) −354.958 + 423.363i −0.462185 + 0.551254i
\(769\) 91.6783 52.9305i 0.119218 0.0688303i −0.439205 0.898387i \(-0.644740\pi\)
0.558423 + 0.829556i \(0.311407\pi\)
\(770\) 0 0
\(771\) 195.869 + 164.221i 0.254045 + 0.212998i
\(772\) −12.6849 + 21.9708i −0.0164312 + 0.0284596i
\(773\) 1236.60i 1.59974i 0.600174 + 0.799869i \(0.295098\pi\)
−0.600174 + 0.799869i \(0.704902\pi\)
\(774\) −407.156 147.828i −0.526042 0.190992i
\(775\) 1037.70i 1.33896i
\(776\) −818.193 472.384i −1.05437 0.608742i
\(777\) 0 0
\(778\) −463.296 802.452i −0.595496 1.03143i
\(779\) 238.717 + 413.470i 0.306440 + 0.530770i
\(780\) 11.7421 + 32.2216i 0.0150540 + 0.0413097i
\(781\) −18.1464 + 31.4304i −0.0232348 + 0.0402438i
\(782\) 703.434i 0.899533i
\(783\) −941.227 + 544.909i −1.20208 + 0.695925i
\(784\) 0 0
\(785\) 189.532 328.278i 0.241442 0.418189i
\(786\) 784.608 285.926i 0.998229 0.363773i
\(787\) 728.889 420.825i 0.926162 0.534720i 0.0405663 0.999177i \(-0.487084\pi\)
0.885596 + 0.464457i \(0.153750\pi\)
\(788\) −88.8874 153.957i −0.112801 0.195377i
\(789\) −1053.78 185.380i −1.33559 0.234956i
\(790\) 177.161 + 102.284i 0.224254 + 0.129473i
\(791\) 0 0
\(792\) −3.90284 22.0321i −0.00492783 0.0278183i
\(793\) −408.720 −0.515410
\(794\) 1210.99 + 699.167i 1.52518 + 0.880564i
\(795\) 388.942 + 326.099i 0.489235 + 0.410187i
\(796\) −255.186 + 147.332i −0.320585 + 0.185090i
\(797\) 138.377 79.8921i 0.173622 0.100241i −0.410670 0.911784i \(-0.634705\pi\)
0.584293 + 0.811543i \(0.301372\pi\)
\(798\) 0 0
\(799\) −306.695 + 531.211i −0.383848 + 0.664844i
\(800\) −339.043 −0.423803
\(801\) 171.708 + 204.304i 0.214367 + 0.255062i
\(802\) 284.261 0.354441
\(803\) 28.0470 + 16.1929i 0.0349277 + 0.0201655i
\(804\) −227.628 40.0441i −0.283119 0.0498061i
\(805\) 0 0
\(806\) −316.874 548.842i −0.393144 0.680946i
\(807\) 1085.45 395.558i 1.34504 0.490158i
\(808\) 271.320 + 156.646i 0.335792 + 0.193869i
\(809\) 35.5021 0.0438840 0.0219420 0.999759i \(-0.493015\pi\)
0.0219420 + 0.999759i \(0.493015\pi\)
\(810\) 345.826 + 60.4140i 0.426945 + 0.0745851i
\(811\) 264.939i 0.326682i −0.986570 0.163341i \(-0.947773\pi\)
0.986570 0.163341i \(-0.0522271\pi\)
\(812\) 0 0
\(813\) 175.604 63.9934i 0.215995 0.0787127i
\(814\) −12.3207 21.3401i −0.0151360 0.0262163i
\(815\) −140.193 + 80.9406i −0.172016 + 0.0993136i
\(816\) −113.879 + 647.340i −0.139558 + 0.793309i
\(817\) 391.656 + 226.123i 0.479383 + 0.276772i
\(818\) 969.081i 1.18470i
\(819\) 0 0
\(820\) −44.7386 −0.0545592
\(821\) −753.781 + 1305.59i −0.918126 + 1.59024i −0.115866 + 0.993265i \(0.536964\pi\)
−0.802260 + 0.596975i \(0.796369\pi\)
\(822\) −19.9975 + 23.8513i −0.0243279 + 0.0290161i
\(823\) −617.420 1069.40i −0.750207 1.29940i −0.947722 0.319097i \(-0.896621\pi\)
0.197515 0.980300i \(-0.436713\pi\)
\(824\) −760.672 + 439.174i −0.923145 + 0.532978i
\(825\) 15.2560 18.1960i 0.0184921 0.0220558i
\(826\) 0 0
\(827\) 642.770 0.777231 0.388616 0.921400i \(-0.372953\pi\)
0.388616 + 0.921400i \(0.372953\pi\)
\(828\) −43.6798 246.579i −0.0527534 0.297800i
\(829\) 959.949i 1.15796i −0.815342 0.578980i \(-0.803451\pi\)
0.815342 0.578980i \(-0.196549\pi\)
\(830\) 203.129 351.830i 0.244734 0.423892i
\(831\) 251.177 + 44.1868i 0.302259 + 0.0531731i
\(832\) 202.855 117.119i 0.243816 0.140767i
\(833\) 0 0
\(834\) 274.947 100.196i 0.329672 0.120139i
\(835\) 241.055 417.520i 0.288689 0.500024i
\(836\) 7.99409i 0.00956230i
\(837\) −1317.99 + 1.56516i −1.57466 + 0.00186997i
\(838\) 390.136i 0.465557i
\(839\) −409.757 236.574i −0.488388 0.281971i 0.235518 0.971870i \(-0.424321\pi\)
−0.723905 + 0.689899i \(0.757655\pi\)
\(840\) 0 0
\(841\) −390.772 676.837i −0.464652 0.804800i
\(842\) −393.140 680.938i −0.466912 0.808715i
\(843\) −436.594 76.8052i −0.517906 0.0911094i
\(844\) −152.566 + 264.251i −0.180765 + 0.313094i
\(845\) 261.967i 0.310021i
\(846\) −366.816 + 1010.31i −0.433589 + 1.19422i
\(847\) 0 0
\(848\) −832.586 + 1442.08i −0.981823 + 1.70057i
\(849\) −806.488 676.180i −0.949927 0.796443i
\(850\) −474.652 + 274.041i −0.558414 + 0.322401i
\(851\) 402.954 + 697.936i 0.473506 + 0.820136i
\(852\) 191.598 228.521i 0.224880 0.268217i
\(853\) 1068.57 + 616.937i 1.25271 + 0.723255i 0.971648 0.236433i \(-0.0759783\pi\)
0.281067 + 0.959688i \(0.409312\pi\)
\(854\) 0 0
\(855\) −344.524 125.088i −0.402952 0.146301i
\(856\) 934.239 1.09140
\(857\) −344.080 198.655i −0.401493 0.231802i 0.285635 0.958339i \(-0.407796\pi\)
−0.687128 + 0.726536i \(0.741129\pi\)
\(858\) 2.51258 14.2826i 0.00292841 0.0166464i
\(859\) 473.197 273.200i 0.550870 0.318045i −0.198603 0.980080i \(-0.563640\pi\)
0.749473 + 0.662035i \(0.230307\pi\)
\(860\) −36.7006 + 21.1891i −0.0426752 + 0.0246385i
\(861\) 0 0
\(862\) 824.138 1427.45i 0.956076 1.65597i
\(863\) 15.7392 0.0182378 0.00911888 0.999958i \(-0.497097\pi\)
0.00911888 + 0.999958i \(0.497097\pi\)
\(864\) 0.511380 + 430.623i 0.000591875 + 0.498406i
\(865\) 538.653 0.622720
\(866\) −261.513 150.985i −0.301978 0.174347i
\(867\) −160.833 441.342i −0.185505 0.509045i
\(868\) 0 0
\(869\) −8.78704 15.2196i −0.0101117 0.0175139i
\(870\) −90.7431 + 515.824i −0.104302 + 0.592901i
\(871\) 379.100 + 218.874i 0.435247 + 0.251290i
\(872\) 741.717 0.850593
\(873\) −1253.93 + 222.125i −1.43634 + 0.254438i
\(874\) 1286.93i 1.47246i
\(875\) 0 0
\(876\) −203.921 170.972i −0.232786 0.195174i
\(877\) 86.7339 + 150.227i 0.0988984 + 0.171297i 0.911229 0.411900i \(-0.135135\pi\)
−0.812331 + 0.583197i \(0.801801\pi\)
\(878\) −11.3450 + 6.55002i −0.0129214 + 0.00746017i
\(879\) 113.532 + 95.1879i 0.129160 + 0.108291i
\(880\) −11.8761 6.85665i −0.0134955 0.00779164i
\(881\) 1381.76i 1.56840i −0.620507 0.784201i \(-0.713073\pi\)
0.620507 0.784201i \(-0.286927\pi\)
\(882\) 0 0
\(883\) 1346.90 1.52537 0.762685 0.646771i \(-0.223881\pi\)
0.762685 + 0.646771i \(0.223881\pi\)
\(884\) −34.0014 + 58.8921i −0.0384631 + 0.0666200i
\(885\) 52.7610 + 9.28166i 0.0596170 + 0.0104877i
\(886\) 179.596 + 311.069i 0.202704 + 0.351094i
\(887\) −532.683 + 307.545i −0.600544 + 0.346724i −0.769256 0.638941i \(-0.779373\pi\)
0.168711 + 0.985665i \(0.446039\pi\)
\(888\) −202.590 555.926i −0.228141 0.626042i
\(889\) 0 0
\(890\) 128.520 0.144404
\(891\) −23.1340 19.3494i −0.0259641 0.0217165i
\(892\) 16.5770i 0.0185841i
\(893\) 561.095 971.844i 0.628325 1.08829i
\(894\) 60.4360 + 165.842i 0.0676018 + 0.185506i
\(895\) 431.410 249.074i 0.482022 0.278295i
\(896\) 0 0
\(897\) −82.1748 + 467.118i −0.0916107 + 0.520756i
\(898\) −52.4164 + 90.7880i −0.0583702 + 0.101100i
\(899\) 1966.29i 2.18720i
\(900\) −149.366 + 125.535i −0.165962 + 0.139483i
\(901\) 1006.44i 1.11703i
\(902\) 16.3838 + 9.45917i 0.0181638 + 0.0104869i
\(903\) 0 0
\(904\) −338.953 587.084i −0.374948 0.649429i
\(905\) 28.2953 + 49.0089i 0.0312655 + 0.0541534i
\(906\) −517.666 + 617.426i −0.571375 + 0.681486i
\(907\) 249.391 431.958i 0.274962 0.476249i −0.695163 0.718852i \(-0.744668\pi\)
0.970126 + 0.242603i \(0.0780012\pi\)
\(908\) 31.1501i 0.0343063i
\(909\) 415.812 73.6583i 0.457439 0.0810323i
\(910\) 0 0
\(911\) 462.758 801.521i 0.507967 0.879825i −0.491990 0.870601i \(-0.663730\pi\)
0.999957 0.00922428i \(-0.00293622\pi\)
\(912\) 208.341 1184.30i 0.228444 1.29858i
\(913\) −30.2252 + 17.4505i −0.0331053 + 0.0191134i
\(914\) −620.998 1075.60i −0.679429 1.17681i
\(915\) 140.153 + 384.594i 0.153173 + 0.420322i
\(916\) 161.268 + 93.1080i 0.176057 + 0.101646i
\(917\) 0 0
\(918\) 348.779 + 602.449i 0.379933 + 0.656262i
\(919\) −1089.89 −1.18596 −0.592979 0.805218i \(-0.702048\pi\)
−0.592979 + 0.805218i \(0.702048\pi\)
\(920\) 305.192 + 176.203i 0.331730 + 0.191525i
\(921\) −1219.58 + 444.439i −1.32419 + 0.482561i
\(922\) 263.602 152.191i 0.285903 0.165066i
\(923\) −489.146 + 282.408i −0.529952 + 0.305968i
\(924\) 0 0
\(925\) 313.961 543.797i 0.339418 0.587889i
\(926\) −4.26662 −0.00460758
\(927\) −404.044 + 1112.84i −0.435862 + 1.20048i
\(928\) −642.439 −0.692283
\(929\) −465.713 268.879i −0.501306 0.289429i 0.227947 0.973674i \(-0.426799\pi\)
−0.729253 + 0.684245i \(0.760132\pi\)
\(930\) −407.787 + 486.372i −0.438480 + 0.522981i
\(931\) 0 0
\(932\) 178.364 + 308.936i 0.191378 + 0.331476i
\(933\) 384.351 + 322.250i 0.411952 + 0.345391i
\(934\) 200.137 + 115.549i 0.214279 + 0.123714i
\(935\) −8.28843 −0.00886463
\(936\) 118.839 327.313i 0.126965 0.349694i
\(937\) 647.389i 0.690917i −0.938434 0.345459i \(-0.887723\pi\)
0.938434 0.345459i \(-0.112277\pi\)
\(938\) 0 0
\(939\) −134.406 + 764.023i −0.143137 + 0.813656i
\(940\) 52.5781 + 91.0680i 0.0559342 + 0.0968808i
\(941\) −113.565 + 65.5667i −0.120685 + 0.0696777i −0.559127 0.829082i \(-0.688864\pi\)
0.438442 + 0.898759i \(0.355530\pi\)
\(942\) 1237.50 450.967i 1.31369 0.478733i
\(943\) −535.838 309.366i −0.568227 0.328066i
\(944\) 175.753i 0.186179i
\(945\) 0 0
\(946\) 17.9202 0.0189432
\(947\) −209.492 + 362.851i −0.221217 + 0.383159i −0.955178 0.296033i \(-0.904336\pi\)
0.733961 + 0.679192i \(0.237669\pi\)
\(948\) 49.4429 + 135.676i 0.0521550 + 0.143118i
\(949\) 252.007 + 436.489i 0.265550 + 0.459947i
\(950\) 868.371 501.354i 0.914075 0.527742i
\(951\) −598.352 105.261i −0.629182 0.110685i
\(952\) 0 0
\(953\) −1131.25 −1.18704 −0.593520 0.804819i \(-0.702262\pi\)
−0.593520 + 0.804819i \(0.702262\pi\)
\(954\) 307.618 + 1736.55i 0.322451 + 1.82028i
\(955\) 117.557i 0.123096i
\(956\) 50.5987 87.6396i 0.0529275 0.0916732i
\(957\) 28.9080 34.4789i 0.0302069 0.0360281i
\(958\) 371.440 214.451i 0.387725 0.223853i
\(959\) 0 0
\(960\) −179.766 150.720i −0.187256 0.157000i
\(961\) 710.930 1231.37i 0.739781 1.28134i
\(962\) 383.489i 0.398637i
\(963\) 964.005 810.197i 1.00104 0.841326i
\(964\) 286.557i 0.297259i
\(965\) −41.6754 24.0613i −0.0431869 0.0249340i
\(966\) 0 0
\(967\) −115.840 200.640i −0.119793 0.207488i 0.799893 0.600143i \(-0.204890\pi\)
−0.919686 + 0.392656i \(0.871556\pi\)
\(968\) −403.501 698.884i −0.416840 0.721987i
\(969\) −248.848 682.864i −0.256810 0.704710i
\(970\) −306.626 + 531.091i −0.316109 + 0.547517i
\(971\) 464.832i 0.478715i 0.970932 + 0.239358i \(0.0769368\pi\)
−0.970932 + 0.239358i \(0.923063\pi\)
\(972\) 159.668 + 189.522i 0.164268 + 0.194982i
\(973\) 0 0
\(974\) −502.782 + 870.843i −0.516203 + 0.894089i
\(975\) 347.207 126.529i 0.356110 0.129773i
\(976\) −1163.01 + 671.463i −1.19161 + 0.687974i
\(977\) 889.489 + 1540.64i 0.910429 + 1.57691i 0.813459 + 0.581622i \(0.197582\pi\)
0.0969695 + 0.995287i \(0.469085\pi\)
\(978\) −553.971 97.4540i −0.566433 0.0996462i
\(979\) −9.56174 5.52047i −0.00976684 0.00563889i
\(980\) 0 0
\(981\) 765.348 643.237i 0.780172 0.655695i
\(982\) 183.195 0.186553
\(983\) −199.156 114.983i −0.202601 0.116972i 0.395267 0.918566i \(-0.370652\pi\)
−0.597868 + 0.801595i \(0.703985\pi\)
\(984\) 348.104 + 291.859i 0.353764 + 0.296605i
\(985\) 292.034 168.606i 0.296482 0.171174i
\(986\) −899.400 + 519.269i −0.912170 + 0.526642i
\(987\) 0 0
\(988\) 62.2052 107.743i 0.0629607 0.109051i
\(989\) −586.089 −0.592608
\(990\) −14.3011 + 2.53334i −0.0144456 + 0.00255893i
\(991\) 1123.95 1.13416 0.567078 0.823664i \(-0.308074\pi\)
0.567078 + 0.823664i \(0.308074\pi\)
\(992\) −674.238 389.272i −0.679676 0.392411i
\(993\) 100.919 + 17.7536i 0.101631 + 0.0178787i
\(994\) 0 0
\(995\) −279.466 484.050i −0.280870 0.486482i
\(996\) 269.445 98.1906i 0.270527 0.0985850i
\(997\) 554.198 + 319.966i 0.555866 + 0.320929i 0.751484 0.659751i \(-0.229338\pi\)
−0.195619 + 0.980680i \(0.562672\pi\)
\(998\) −61.7099 −0.0618336
\(999\) −691.158 397.946i −0.691850 0.398345i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.l.b.97.4 28
7.2 even 3 63.3.t.a.52.11 yes 28
7.3 odd 6 63.3.k.a.61.4 yes 28
7.4 even 3 441.3.k.b.313.4 28
7.5 odd 6 441.3.t.a.178.11 28
7.6 odd 2 441.3.l.a.97.4 28
9.4 even 3 441.3.l.a.391.4 28
21.2 odd 6 189.3.t.a.73.4 28
21.17 even 6 189.3.k.a.19.11 28
63.4 even 3 441.3.t.a.166.11 28
63.13 odd 6 inner 441.3.l.b.391.4 28
63.23 odd 6 189.3.k.a.10.11 28
63.31 odd 6 63.3.t.a.40.11 yes 28
63.40 odd 6 441.3.k.b.31.4 28
63.58 even 3 63.3.k.a.31.4 28
63.59 even 6 189.3.t.a.145.4 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.4 28 63.58 even 3
63.3.k.a.61.4 yes 28 7.3 odd 6
63.3.t.a.40.11 yes 28 63.31 odd 6
63.3.t.a.52.11 yes 28 7.2 even 3
189.3.k.a.10.11 28 63.23 odd 6
189.3.k.a.19.11 28 21.17 even 6
189.3.t.a.73.4 28 21.2 odd 6
189.3.t.a.145.4 28 63.59 even 6
441.3.k.b.31.4 28 63.40 odd 6
441.3.k.b.313.4 28 7.4 even 3
441.3.l.a.97.4 28 7.6 odd 2
441.3.l.a.391.4 28 9.4 even 3
441.3.l.b.97.4 28 1.1 even 1 trivial
441.3.l.b.391.4 28 63.13 odd 6 inner
441.3.t.a.166.11 28 63.4 even 3
441.3.t.a.178.11 28 7.5 odd 6