Properties

Label 441.2.o.e.293.16
Level $441$
Weight $2$
Character 441.293
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(146,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.146"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 293.16
Character \(\chi\) \(=\) 441.293
Dual form 441.2.o.e.146.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.575298 - 0.332148i) q^{2} +(1.69462 - 0.358137i) q^{3} +(-0.779355 + 1.34988i) q^{4} +(-0.0141520 + 0.0245119i) q^{5} +(0.855956 - 0.768901i) q^{6} +2.36404i q^{8} +(2.74348 - 1.21381i) q^{9} +0.0188022i q^{10} +(-0.885324 + 0.511142i) q^{11} +(-0.837267 + 2.56665i) q^{12} +(4.87844 + 2.81657i) q^{13} +(-0.0152036 + 0.0466067i) q^{15} +(-0.773498 - 1.33974i) q^{16} +5.67880 q^{17} +(1.17515 - 1.60955i) q^{18} -2.09274i q^{19} +(-0.0220588 - 0.0382070i) q^{20} +(-0.339550 + 0.588118i) q^{22} +(-6.28849 - 3.63066i) q^{23} +(0.846651 + 4.00615i) q^{24} +(2.49960 + 4.32943i) q^{25} +3.74208 q^{26} +(4.21444 - 3.03949i) q^{27} +(-3.52577 + 2.03560i) q^{29} +(0.00673377 + 0.0318626i) q^{30} +(-2.87364 - 1.65910i) q^{31} +(-4.98462 - 2.87787i) q^{32} +(-1.31723 + 1.18326i) q^{33} +(3.26700 - 1.88620i) q^{34} +(-0.499635 + 4.64936i) q^{36} -2.47265 q^{37} +(-0.695101 - 1.20395i) q^{38} +(9.27583 + 3.02586i) q^{39} +(-0.0579471 - 0.0334558i) q^{40} +(-3.52867 + 6.11183i) q^{41} +(-1.15994 - 2.00908i) q^{43} -1.59344i q^{44} +(-0.00907265 + 0.0844257i) q^{45} -4.82367 q^{46} +(-5.43997 - 9.42231i) q^{47} +(-1.79060 - 1.99333i) q^{48} +(2.87603 + 1.66048i) q^{50} +(9.62341 - 2.03379i) q^{51} +(-7.60408 + 4.39022i) q^{52} -11.5995i q^{53} +(1.41499 - 3.14843i) q^{54} -0.0289346i q^{55} +(-0.749489 - 3.54640i) q^{57} +(-1.35224 + 2.34215i) q^{58} +(3.01111 - 5.21540i) q^{59} +(-0.0510646 - 0.0568462i) q^{60} +(-2.05220 + 1.18484i) q^{61} -2.20427 q^{62} -0.729528 q^{64} +(-0.138079 + 0.0797200i) q^{65} +(-0.364781 + 1.11824i) q^{66} +(-6.38995 + 11.0677i) q^{67} +(-4.42580 + 7.66571i) q^{68} +(-11.9569 - 3.90045i) q^{69} -7.93415i q^{71} +(2.86950 + 6.48568i) q^{72} -10.8991i q^{73} +(-1.42251 + 0.821285i) q^{74} +(5.78640 + 6.44154i) q^{75} +(2.82496 + 1.63099i) q^{76} +(6.34140 - 1.34018i) q^{78} +(7.80018 + 13.5103i) q^{79} +0.0437861 q^{80} +(6.05331 - 6.66014i) q^{81} +4.68816i q^{82} +(-3.07406 - 5.32442i) q^{83} +(-0.0803661 + 0.139198i) q^{85} +(-1.33463 - 0.770546i) q^{86} +(-5.24581 + 4.71228i) q^{87} +(-1.20836 - 2.09294i) q^{88} +12.0516 q^{89} +(0.0228224 + 0.0515834i) q^{90} +(9.80194 - 5.65915i) q^{92} +(-5.46392 - 1.78238i) q^{93} +(-6.25921 - 3.61376i) q^{94} +(0.0512971 + 0.0296164i) q^{95} +(-9.47771 - 3.09172i) q^{96} +(-6.77565 + 3.91192i) q^{97} +(-1.80843 + 2.47692i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} + 16 q^{9} - 24 q^{11} - 40 q^{15} - 24 q^{16} - 16 q^{18} - 48 q^{23} - 24 q^{25} - 24 q^{30} + 120 q^{32} - 8 q^{36} + 88 q^{39} + 48 q^{50} + 24 q^{51} + 80 q^{57} - 96 q^{60} - 48 q^{64}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.575298 0.332148i 0.406797 0.234864i −0.282616 0.959233i \(-0.591202\pi\)
0.689413 + 0.724369i \(0.257869\pi\)
\(3\) 1.69462 0.358137i 0.978389 0.206771i
\(4\) −0.779355 + 1.34988i −0.389677 + 0.674941i
\(5\) −0.0141520 + 0.0245119i −0.00632895 + 0.0109621i −0.869173 0.494509i \(-0.835348\pi\)
0.862844 + 0.505471i \(0.168681\pi\)
\(6\) 0.855956 0.768901i 0.349443 0.313903i
\(7\) 0 0
\(8\) 2.36404i 0.835814i
\(9\) 2.74348 1.21381i 0.914492 0.404605i
\(10\) 0.0188022i 0.00594578i
\(11\) −0.885324 + 0.511142i −0.266935 + 0.154115i −0.627494 0.778621i \(-0.715919\pi\)
0.360559 + 0.932736i \(0.382586\pi\)
\(12\) −0.837267 + 2.56665i −0.241698 + 0.740929i
\(13\) 4.87844 + 2.81657i 1.35304 + 0.781176i 0.988674 0.150081i \(-0.0479534\pi\)
0.364363 + 0.931257i \(0.381287\pi\)
\(14\) 0 0
\(15\) −0.0152036 + 0.0466067i −0.00392554 + 0.0120338i
\(16\) −0.773498 1.33974i −0.193375 0.334935i
\(17\) 5.67880 1.37731 0.688656 0.725089i \(-0.258201\pi\)
0.688656 + 0.725089i \(0.258201\pi\)
\(18\) 1.17515 1.60955i 0.276985 0.379373i
\(19\) 2.09274i 0.480108i −0.970760 0.240054i \(-0.922835\pi\)
0.970760 0.240054i \(-0.0771651\pi\)
\(20\) −0.0220588 0.0382070i −0.00493250 0.00854334i
\(21\) 0 0
\(22\) −0.339550 + 0.588118i −0.0723923 + 0.125387i
\(23\) −6.28849 3.63066i −1.31124 0.757046i −0.328940 0.944351i \(-0.606691\pi\)
−0.982302 + 0.187305i \(0.940025\pi\)
\(24\) 0.846651 + 4.00615i 0.172822 + 0.817752i
\(25\) 2.49960 + 4.32943i 0.499920 + 0.865887i
\(26\) 3.74208 0.733882
\(27\) 4.21444 3.03949i 0.811069 0.584951i
\(28\) 0 0
\(29\) −3.52577 + 2.03560i −0.654718 + 0.378002i −0.790262 0.612770i \(-0.790055\pi\)
0.135543 + 0.990771i \(0.456722\pi\)
\(30\) 0.00673377 + 0.0318626i 0.00122941 + 0.00581729i
\(31\) −2.87364 1.65910i −0.516122 0.297983i 0.219225 0.975674i \(-0.429647\pi\)
−0.735346 + 0.677691i \(0.762981\pi\)
\(32\) −4.98462 2.87787i −0.881165 0.508741i
\(33\) −1.31723 + 1.18326i −0.229300 + 0.205979i
\(34\) 3.26700 1.88620i 0.560286 0.323481i
\(35\) 0 0
\(36\) −0.499635 + 4.64936i −0.0832725 + 0.774893i
\(37\) −2.47265 −0.406501 −0.203250 0.979127i \(-0.565151\pi\)
−0.203250 + 0.979127i \(0.565151\pi\)
\(38\) −0.695101 1.20395i −0.112760 0.195306i
\(39\) 9.27583 + 3.02586i 1.48532 + 0.484526i
\(40\) −0.0579471 0.0334558i −0.00916224 0.00528982i
\(41\) −3.52867 + 6.11183i −0.551085 + 0.954508i 0.447111 + 0.894478i \(0.352453\pi\)
−0.998197 + 0.0600295i \(0.980881\pi\)
\(42\) 0 0
\(43\) −1.15994 2.00908i −0.176890 0.306382i 0.763924 0.645306i \(-0.223270\pi\)
−0.940814 + 0.338924i \(0.889937\pi\)
\(44\) 1.59344i 0.240221i
\(45\) −0.00907265 + 0.0844257i −0.00135247 + 0.0125854i
\(46\) −4.82367 −0.711212
\(47\) −5.43997 9.42231i −0.793502 1.37439i −0.923786 0.382908i \(-0.874922\pi\)
0.130285 0.991477i \(-0.458411\pi\)
\(48\) −1.79060 1.99333i −0.258450 0.287712i
\(49\) 0 0
\(50\) 2.87603 + 1.66048i 0.406732 + 0.234827i
\(51\) 9.62341 2.03379i 1.34755 0.284788i
\(52\) −7.60408 + 4.39022i −1.05450 + 0.608814i
\(53\) 11.5995i 1.59331i −0.604435 0.796655i \(-0.706601\pi\)
0.604435 0.796655i \(-0.293399\pi\)
\(54\) 1.41499 3.14843i 0.192556 0.428447i
\(55\) 0.0289346i 0.00390155i
\(56\) 0 0
\(57\) −0.749489 3.54640i −0.0992723 0.469733i
\(58\) −1.35224 + 2.34215i −0.177558 + 0.307540i
\(59\) 3.01111 5.21540i 0.392013 0.678987i −0.600702 0.799473i \(-0.705112\pi\)
0.992715 + 0.120486i \(0.0384454\pi\)
\(60\) −0.0510646 0.0568462i −0.00659242 0.00733881i
\(61\) −2.05220 + 1.18484i −0.262757 + 0.151703i −0.625592 0.780151i \(-0.715142\pi\)
0.362834 + 0.931854i \(0.381809\pi\)
\(62\) −2.20427 −0.279942
\(63\) 0 0
\(64\) −0.729528 −0.0911909
\(65\) −0.138079 + 0.0797200i −0.0171266 + 0.00988805i
\(66\) −0.364781 + 1.11824i −0.0449014 + 0.137646i
\(67\) −6.38995 + 11.0677i −0.780656 + 1.35214i 0.150903 + 0.988549i \(0.451782\pi\)
−0.931560 + 0.363588i \(0.881552\pi\)
\(68\) −4.42580 + 7.66571i −0.536707 + 0.929604i
\(69\) −11.9569 3.90045i −1.43944 0.469559i
\(70\) 0 0
\(71\) 7.93415i 0.941610i −0.882237 0.470805i \(-0.843964\pi\)
0.882237 0.470805i \(-0.156036\pi\)
\(72\) 2.86950 + 6.48568i 0.338174 + 0.764345i
\(73\) 10.8991i 1.27564i −0.770185 0.637821i \(-0.779836\pi\)
0.770185 0.637821i \(-0.220164\pi\)
\(74\) −1.42251 + 0.821285i −0.165363 + 0.0954725i
\(75\) 5.78640 + 6.44154i 0.668156 + 0.743806i
\(76\) 2.82496 + 1.63099i 0.324045 + 0.187087i
\(77\) 0 0
\(78\) 6.34140 1.34018i 0.718022 0.151745i
\(79\) 7.80018 + 13.5103i 0.877588 + 1.52003i 0.853980 + 0.520306i \(0.174182\pi\)
0.0236086 + 0.999721i \(0.492484\pi\)
\(80\) 0.0437861 0.00489543
\(81\) 6.05331 6.66014i 0.672590 0.740015i
\(82\) 4.68816i 0.517721i
\(83\) −3.07406 5.32442i −0.337421 0.584431i 0.646526 0.762892i \(-0.276221\pi\)
−0.983947 + 0.178461i \(0.942888\pi\)
\(84\) 0 0
\(85\) −0.0803661 + 0.139198i −0.00871693 + 0.0150982i
\(86\) −1.33463 0.770546i −0.143916 0.0830902i
\(87\) −5.24581 + 4.71228i −0.562410 + 0.505210i
\(88\) −1.20836 2.09294i −0.128812 0.223108i
\(89\) 12.0516 1.27747 0.638736 0.769426i \(-0.279458\pi\)
0.638736 + 0.769426i \(0.279458\pi\)
\(90\) 0.0228224 + 0.0515834i 0.00240569 + 0.00543736i
\(91\) 0 0
\(92\) 9.80194 5.65915i 1.02192 0.590007i
\(93\) −5.46392 1.78238i −0.566582 0.184825i
\(94\) −6.25921 3.61376i −0.645588 0.372730i
\(95\) 0.0512971 + 0.0296164i 0.00526297 + 0.00303858i
\(96\) −9.47771 3.09172i −0.967315 0.315547i
\(97\) −6.77565 + 3.91192i −0.687963 + 0.397196i −0.802848 0.596183i \(-0.796683\pi\)
0.114885 + 0.993379i \(0.463350\pi\)
\(98\) 0 0
\(99\) −1.80843 + 2.47692i −0.181754 + 0.248940i
\(100\) −7.79230 −0.779230
\(101\) 0.226924 + 0.393043i 0.0225797 + 0.0391093i 0.877094 0.480318i \(-0.159479\pi\)
−0.854515 + 0.519427i \(0.826145\pi\)
\(102\) 4.86081 4.36643i 0.481291 0.432341i
\(103\) −4.58316 2.64609i −0.451592 0.260727i 0.256910 0.966435i \(-0.417296\pi\)
−0.708502 + 0.705708i \(0.750629\pi\)
\(104\) −6.65848 + 11.5328i −0.652918 + 1.13089i
\(105\) 0 0
\(106\) −3.85274 6.67315i −0.374212 0.648153i
\(107\) 9.06755i 0.876593i 0.898830 + 0.438296i \(0.144418\pi\)
−0.898830 + 0.438296i \(0.855582\pi\)
\(108\) 0.818419 + 8.05784i 0.0787524 + 0.775366i
\(109\) 4.73027 0.453078 0.226539 0.974002i \(-0.427259\pi\)
0.226539 + 0.974002i \(0.427259\pi\)
\(110\) −0.00961059 0.0166460i −0.000916334 0.00158714i
\(111\) −4.19020 + 0.885547i −0.397716 + 0.0840524i
\(112\) 0 0
\(113\) −8.21108 4.74067i −0.772433 0.445965i 0.0613086 0.998119i \(-0.480473\pi\)
−0.833742 + 0.552154i \(0.813806\pi\)
\(114\) −1.60911 1.79130i −0.150707 0.167770i
\(115\) 0.177989 0.102762i 0.0165976 0.00958261i
\(116\) 6.34583i 0.589195i
\(117\) 16.8027 + 1.80567i 1.55341 + 0.166934i
\(118\) 4.00054i 0.368280i
\(119\) 0 0
\(120\) −0.110180 0.0359418i −0.0100580 0.00328102i
\(121\) −4.97747 + 8.62123i −0.452497 + 0.783748i
\(122\) −0.787084 + 1.36327i −0.0712593 + 0.123425i
\(123\) −3.79088 + 11.6210i −0.341812 + 1.04783i
\(124\) 4.47918 2.58606i 0.402242 0.232235i
\(125\) −0.283017 −0.0253138
\(126\) 0 0
\(127\) 4.37297 0.388039 0.194019 0.980998i \(-0.437848\pi\)
0.194019 + 0.980998i \(0.437848\pi\)
\(128\) 9.54954 5.51343i 0.844068 0.487323i
\(129\) −2.68519 2.98921i −0.236418 0.263185i
\(130\) −0.0529577 + 0.0917255i −0.00464470 + 0.00804486i
\(131\) −1.27231 + 2.20371i −0.111162 + 0.192539i −0.916239 0.400632i \(-0.868791\pi\)
0.805077 + 0.593171i \(0.202124\pi\)
\(132\) −0.570672 2.70028i −0.0496706 0.235029i
\(133\) 0 0
\(134\) 8.48964i 0.733393i
\(135\) 0.0148613 + 0.146319i 0.00127906 + 0.0125931i
\(136\) 13.4249i 1.15118i
\(137\) −9.82536 + 5.67267i −0.839437 + 0.484649i −0.857073 0.515195i \(-0.827719\pi\)
0.0176357 + 0.999844i \(0.494386\pi\)
\(138\) −8.17430 + 1.72754i −0.695842 + 0.147058i
\(139\) −3.04891 1.76029i −0.258605 0.149306i 0.365093 0.930971i \(-0.381037\pi\)
−0.623698 + 0.781665i \(0.714371\pi\)
\(140\) 0 0
\(141\) −12.5932 14.0190i −1.06054 1.18061i
\(142\) −2.63531 4.56450i −0.221151 0.383044i
\(143\) −5.75867 −0.481564
\(144\) −3.74827 2.73666i −0.312356 0.228055i
\(145\) 0.115231i 0.00956942i
\(146\) −3.62012 6.27022i −0.299603 0.518927i
\(147\) 0 0
\(148\) 1.92707 3.33778i 0.158404 0.274364i
\(149\) −13.7806 7.95623i −1.12895 0.651800i −0.185279 0.982686i \(-0.559319\pi\)
−0.943671 + 0.330886i \(0.892652\pi\)
\(150\) 5.46845 + 1.78386i 0.446497 + 0.145652i
\(151\) −1.73008 2.99659i −0.140792 0.243859i 0.787003 0.616949i \(-0.211632\pi\)
−0.927795 + 0.373090i \(0.878298\pi\)
\(152\) 4.94732 0.401281
\(153\) 15.5796 6.89301i 1.25954 0.557267i
\(154\) 0 0
\(155\) 0.0813354 0.0469590i 0.00653302 0.00377184i
\(156\) −11.3137 + 10.1631i −0.905823 + 0.813696i
\(157\) 14.1585 + 8.17442i 1.12997 + 0.652390i 0.943928 0.330151i \(-0.107100\pi\)
0.186045 + 0.982541i \(0.440433\pi\)
\(158\) 8.97485 + 5.18163i 0.714001 + 0.412228i
\(159\) −4.15420 19.6567i −0.329450 1.55888i
\(160\) 0.141084 0.0814550i 0.0111537 0.00643959i
\(161\) 0 0
\(162\) 1.27030 5.84216i 0.0998044 0.459003i
\(163\) 10.3556 0.811116 0.405558 0.914069i \(-0.367077\pi\)
0.405558 + 0.914069i \(0.367077\pi\)
\(164\) −5.50017 9.52657i −0.429491 0.743900i
\(165\) −0.0103626 0.0490332i −0.000806726 0.00381723i
\(166\) −3.53699 2.04208i −0.274524 0.158497i
\(167\) 2.94297 5.09738i 0.227734 0.394447i −0.729402 0.684085i \(-0.760202\pi\)
0.957136 + 0.289638i \(0.0935349\pi\)
\(168\) 0 0
\(169\) 9.36614 + 16.2226i 0.720473 + 1.24790i
\(170\) 0.106774i 0.00818919i
\(171\) −2.54020 5.74139i −0.194254 0.439055i
\(172\) 3.61603 0.275720
\(173\) −2.43276 4.21366i −0.184959 0.320359i 0.758604 0.651552i \(-0.225882\pi\)
−0.943563 + 0.331194i \(0.892549\pi\)
\(174\) −1.45273 + 4.45335i −0.110131 + 0.337608i
\(175\) 0 0
\(176\) 1.36959 + 0.790735i 0.103237 + 0.0596039i
\(177\) 3.23486 9.91651i 0.243147 0.745371i
\(178\) 6.93328 4.00293i 0.519671 0.300032i
\(179\) 0.202645i 0.0151464i −0.999971 0.00757319i \(-0.997589\pi\)
0.999971 0.00757319i \(-0.00241064\pi\)
\(180\) −0.106894 0.0780446i −0.00796740 0.00581710i
\(181\) 6.26273i 0.465505i 0.972536 + 0.232753i \(0.0747732\pi\)
−0.972536 + 0.232753i \(0.925227\pi\)
\(182\) 0 0
\(183\) −3.05337 + 2.74282i −0.225711 + 0.202755i
\(184\) 8.58303 14.8662i 0.632749 1.09595i
\(185\) 0.0349928 0.0606093i 0.00257272 0.00445608i
\(186\) −3.73540 + 0.789431i −0.273893 + 0.0578839i
\(187\) −5.02758 + 2.90267i −0.367653 + 0.212264i
\(188\) 16.9587 1.23684
\(189\) 0 0
\(190\) 0.0393482 0.00285462
\(191\) 11.9541 6.90168i 0.864965 0.499388i −0.000706698 1.00000i \(-0.500225\pi\)
0.865672 + 0.500612i \(0.166892\pi\)
\(192\) −1.23627 + 0.261271i −0.0892203 + 0.0188556i
\(193\) 10.5387 18.2536i 0.758593 1.31392i −0.184976 0.982743i \(-0.559221\pi\)
0.943568 0.331178i \(-0.107446\pi\)
\(194\) −2.59868 + 4.50104i −0.186574 + 0.323156i
\(195\) −0.205441 + 0.184546i −0.0147119 + 0.0132156i
\(196\) 0 0
\(197\) 15.1679i 1.08067i 0.841451 + 0.540334i \(0.181702\pi\)
−0.841451 + 0.540334i \(0.818298\pi\)
\(198\) −0.217681 + 2.02564i −0.0154699 + 0.143956i
\(199\) 9.68724i 0.686710i −0.939206 0.343355i \(-0.888437\pi\)
0.939206 0.343355i \(-0.111563\pi\)
\(200\) −10.2349 + 5.90915i −0.723720 + 0.417840i
\(201\) −6.86477 + 21.0441i −0.484204 + 1.48433i
\(202\) 0.261097 + 0.150745i 0.0183707 + 0.0106064i
\(203\) 0 0
\(204\) −4.75467 + 14.5755i −0.332894 + 1.02049i
\(205\) −0.0998751 0.172989i −0.00697558 0.0120821i
\(206\) −3.51558 −0.244942
\(207\) −21.6593 2.32757i −1.50542 0.161777i
\(208\) 8.71445i 0.604238i
\(209\) 1.06969 + 1.85275i 0.0739919 + 0.128158i
\(210\) 0 0
\(211\) −7.05942 + 12.2273i −0.485991 + 0.841761i −0.999870 0.0161017i \(-0.994874\pi\)
0.513880 + 0.857862i \(0.328208\pi\)
\(212\) 15.6579 + 9.04010i 1.07539 + 0.620877i
\(213\) −2.84152 13.4454i −0.194697 0.921261i
\(214\) 3.01177 + 5.21654i 0.205880 + 0.356595i
\(215\) 0.0656619 0.00447810
\(216\) 7.18549 + 9.96309i 0.488910 + 0.677903i
\(217\) 0 0
\(218\) 2.72132 1.57115i 0.184311 0.106412i
\(219\) −3.90337 18.4698i −0.263766 1.24807i
\(220\) 0.0390584 + 0.0225504i 0.00263331 + 0.00152034i
\(221\) 27.7037 + 15.9947i 1.86355 + 1.07592i
\(222\) −2.11648 + 1.90122i −0.142049 + 0.127602i
\(223\) 2.58777 1.49405i 0.173290 0.100049i −0.410846 0.911705i \(-0.634767\pi\)
0.584136 + 0.811656i \(0.301433\pi\)
\(224\) 0 0
\(225\) 12.1127 + 8.84364i 0.807514 + 0.589576i
\(226\) −6.29842 −0.418965
\(227\) 14.3867 + 24.9184i 0.954876 + 1.65389i 0.734652 + 0.678444i \(0.237346\pi\)
0.220224 + 0.975449i \(0.429321\pi\)
\(228\) 5.37135 + 1.75218i 0.355726 + 0.116041i
\(229\) 7.67401 + 4.43059i 0.507113 + 0.292782i 0.731646 0.681685i \(-0.238752\pi\)
−0.224533 + 0.974466i \(0.572086\pi\)
\(230\) 0.0682645 0.118238i 0.00450122 0.00779635i
\(231\) 0 0
\(232\) −4.81224 8.33505i −0.315939 0.547223i
\(233\) 12.9082i 0.845646i 0.906212 + 0.422823i \(0.138961\pi\)
−0.906212 + 0.422823i \(0.861039\pi\)
\(234\) 10.2663 4.54219i 0.671129 0.296932i
\(235\) 0.307945 0.0200881
\(236\) 4.69345 + 8.12929i 0.305518 + 0.529172i
\(237\) 18.0569 + 20.1013i 1.17292 + 1.30572i
\(238\) 0 0
\(239\) −4.85712 2.80426i −0.314181 0.181392i 0.334615 0.942355i \(-0.391394\pi\)
−0.648796 + 0.760963i \(0.724727\pi\)
\(240\) 0.0742008 0.0156814i 0.00478964 0.00101223i
\(241\) 9.51481 5.49338i 0.612903 0.353860i −0.161198 0.986922i \(-0.551536\pi\)
0.774101 + 0.633063i \(0.218202\pi\)
\(242\) 6.61303i 0.425102i
\(243\) 7.87282 13.4543i 0.505042 0.863095i
\(244\) 3.69364i 0.236461i
\(245\) 0 0
\(246\) 1.67901 + 7.94466i 0.107050 + 0.506533i
\(247\) 5.89436 10.2093i 0.375049 0.649604i
\(248\) 3.92218 6.79341i 0.249058 0.431382i
\(249\) −7.11623 7.92193i −0.450973 0.502032i
\(250\) −0.162819 + 0.0940035i −0.0102976 + 0.00594530i
\(251\) 24.2241 1.52901 0.764505 0.644618i \(-0.222984\pi\)
0.764505 + 0.644618i \(0.222984\pi\)
\(252\) 0 0
\(253\) 7.42314 0.466689
\(254\) 2.51576 1.45248i 0.157853 0.0911365i
\(255\) −0.0863380 + 0.264670i −0.00540669 + 0.0165743i
\(256\) 4.39208 7.60731i 0.274505 0.475457i
\(257\) −8.86142 + 15.3484i −0.552760 + 0.957409i 0.445314 + 0.895375i \(0.353092\pi\)
−0.998074 + 0.0620341i \(0.980241\pi\)
\(258\) −2.53765 0.827804i −0.157987 0.0515368i
\(259\) 0 0
\(260\) 0.248521i 0.0154126i
\(261\) −7.20201 + 9.86425i −0.445793 + 0.610582i
\(262\) 1.69039i 0.104432i
\(263\) 2.51031 1.44933i 0.154793 0.0893695i −0.420603 0.907245i \(-0.638181\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(264\) −2.79727 3.11398i −0.172160 0.191652i
\(265\) 0.284325 + 0.164155i 0.0174660 + 0.0100840i
\(266\) 0 0
\(267\) 20.4230 4.31614i 1.24986 0.264144i
\(268\) −9.96008 17.2514i −0.608408 1.05379i
\(269\) −21.8938 −1.33489 −0.667444 0.744660i \(-0.732612\pi\)
−0.667444 + 0.744660i \(0.732612\pi\)
\(270\) 0.0571492 + 0.0792407i 0.00347799 + 0.00482243i
\(271\) 8.98347i 0.545707i 0.962056 + 0.272854i \(0.0879675\pi\)
−0.962056 + 0.272854i \(0.912033\pi\)
\(272\) −4.39254 7.60811i −0.266337 0.461309i
\(273\) 0 0
\(274\) −3.76834 + 6.52695i −0.227654 + 0.394308i
\(275\) −4.42591 2.55530i −0.266892 0.154090i
\(276\) 14.5838 13.1006i 0.877842 0.788561i
\(277\) −7.95091 13.7714i −0.477724 0.827442i 0.521950 0.852976i \(-0.325205\pi\)
−0.999674 + 0.0255339i \(0.991871\pi\)
\(278\) −2.33871 −0.140267
\(279\) −9.89761 1.06363i −0.592554 0.0636777i
\(280\) 0 0
\(281\) −4.50324 + 2.59995i −0.268641 + 0.155100i −0.628270 0.777996i \(-0.716237\pi\)
0.359629 + 0.933095i \(0.382903\pi\)
\(282\) −11.9012 3.88229i −0.708706 0.231187i
\(283\) 16.2587 + 9.38694i 0.966476 + 0.557995i 0.898160 0.439668i \(-0.144904\pi\)
0.0683162 + 0.997664i \(0.478237\pi\)
\(284\) 10.7102 + 6.18352i 0.635531 + 0.366924i
\(285\) 0.0975359 + 0.0318171i 0.00577753 + 0.00188468i
\(286\) −3.31295 + 1.91273i −0.195899 + 0.113102i
\(287\) 0 0
\(288\) −17.1684 1.84497i −1.01166 0.108716i
\(289\) 15.2488 0.896986
\(290\) −0.0382738 0.0662922i −0.00224751 0.00389281i
\(291\) −10.0811 + 9.05584i −0.590967 + 0.530863i
\(292\) 14.7125 + 8.49426i 0.860983 + 0.497089i
\(293\) 11.4201 19.7802i 0.667169 1.15557i −0.311523 0.950238i \(-0.600839\pi\)
0.978692 0.205332i \(-0.0658274\pi\)
\(294\) 0 0
\(295\) 0.0852263 + 0.147616i 0.00496206 + 0.00859455i
\(296\) 5.84543i 0.339759i
\(297\) −2.17753 + 4.84511i −0.126353 + 0.281142i
\(298\) −10.5706 −0.612338
\(299\) −20.4520 35.4240i −1.18277 2.04862i
\(300\) −13.2050 + 2.79072i −0.762390 + 0.161122i
\(301\) 0 0
\(302\) −1.99062 1.14929i −0.114548 0.0661341i
\(303\) 0.525313 + 0.584789i 0.0301784 + 0.0335953i
\(304\) −2.80373 + 1.61873i −0.160805 + 0.0928407i
\(305\) 0.0670711i 0.00384048i
\(306\) 6.67343 9.14028i 0.381495 0.522515i
\(307\) 18.6325i 1.06341i −0.846928 0.531707i \(-0.821551\pi\)
0.846928 0.531707i \(-0.178449\pi\)
\(308\) 0 0
\(309\) −8.71438 2.84271i −0.495744 0.161716i
\(310\) 0.0311947 0.0540308i 0.00177174 0.00306875i
\(311\) −10.2747 + 17.7964i −0.582628 + 1.00914i 0.412539 + 0.910940i \(0.364642\pi\)
−0.995167 + 0.0982007i \(0.968691\pi\)
\(312\) −7.15326 + 21.9284i −0.404974 + 1.24145i
\(313\) −0.624466 + 0.360536i −0.0352969 + 0.0203787i −0.517545 0.855656i \(-0.673154\pi\)
0.482248 + 0.876035i \(0.339821\pi\)
\(314\) 10.8605 0.612893
\(315\) 0 0
\(316\) −24.3164 −1.36791
\(317\) −18.9915 + 10.9647i −1.06667 + 0.615841i −0.927269 0.374396i \(-0.877850\pi\)
−0.139398 + 0.990236i \(0.544517\pi\)
\(318\) −8.91884 9.92864i −0.500144 0.556770i
\(319\) 2.08096 3.60433i 0.116512 0.201804i
\(320\) 0.0103242 0.0178821i 0.000577143 0.000999641i
\(321\) 3.24743 + 15.3660i 0.181254 + 0.857649i
\(322\) 0 0
\(323\) 11.8843i 0.661258i
\(324\) 4.27272 + 13.3619i 0.237374 + 0.742326i
\(325\) 28.1612i 1.56210i
\(326\) 5.95757 3.43961i 0.329959 0.190502i
\(327\) 8.01602 1.69409i 0.443287 0.0936833i
\(328\) −14.4486 8.34191i −0.797791 0.460605i
\(329\) 0 0
\(330\) −0.0222479 0.0247668i −0.00122470 0.00136337i
\(331\) −10.8338 18.7647i −0.595480 1.03140i −0.993479 0.114016i \(-0.963629\pi\)
0.397999 0.917386i \(-0.369705\pi\)
\(332\) 9.58312 0.525942
\(333\) −6.78364 + 3.00133i −0.371741 + 0.164472i
\(334\) 3.91002i 0.213947i
\(335\) −0.180861 0.313260i −0.00988147 0.0171152i
\(336\) 0 0
\(337\) 12.6455 21.9026i 0.688844 1.19311i −0.283369 0.959011i \(-0.591452\pi\)
0.972212 0.234101i \(-0.0752147\pi\)
\(338\) 10.7766 + 6.22190i 0.586172 + 0.338427i
\(339\) −15.6125 5.09294i −0.847953 0.276610i
\(340\) −0.125268 0.216970i −0.00679358 0.0117668i
\(341\) 3.39214 0.183695
\(342\) −3.36836 2.45928i −0.182140 0.132983i
\(343\) 0 0
\(344\) 4.74955 2.74215i 0.256078 0.147847i
\(345\) 0.264821 0.237887i 0.0142575 0.0128074i
\(346\) −2.79912 1.61607i −0.150482 0.0868806i
\(347\) −4.92420 2.84299i −0.264345 0.152620i 0.361970 0.932190i \(-0.382104\pi\)
−0.626315 + 0.779570i \(0.715438\pi\)
\(348\) −2.27268 10.7538i −0.121828 0.576462i
\(349\) −9.68412 + 5.59113i −0.518379 + 0.299286i −0.736271 0.676687i \(-0.763415\pi\)
0.217892 + 0.975973i \(0.430082\pi\)
\(350\) 0 0
\(351\) 29.1208 2.95775i 1.55436 0.157873i
\(352\) 5.88400 0.313618
\(353\) 7.02111 + 12.1609i 0.373696 + 0.647260i 0.990131 0.140146i \(-0.0447571\pi\)
−0.616435 + 0.787406i \(0.711424\pi\)
\(354\) −1.43274 6.77940i −0.0761495 0.360321i
\(355\) 0.194481 + 0.112284i 0.0103220 + 0.00595940i
\(356\) −9.39250 + 16.2683i −0.497802 + 0.862218i
\(357\) 0 0
\(358\) −0.0673081 0.116581i −0.00355734 0.00616150i
\(359\) 27.1414i 1.43247i 0.697859 + 0.716235i \(0.254136\pi\)
−0.697859 + 0.716235i \(0.745864\pi\)
\(360\) −0.199586 0.0214481i −0.0105191 0.00113041i
\(361\) 14.6204 0.769496
\(362\) 2.08016 + 3.60294i 0.109331 + 0.189366i
\(363\) −5.34733 + 16.3923i −0.280662 + 0.860374i
\(364\) 0 0
\(365\) 0.267158 + 0.154244i 0.0139837 + 0.00807347i
\(366\) −0.845571 + 2.59211i −0.0441987 + 0.135492i
\(367\) 5.95891 3.44038i 0.311053 0.179586i −0.336345 0.941739i \(-0.609191\pi\)
0.647397 + 0.762153i \(0.275857\pi\)
\(368\) 11.2332i 0.585573i
\(369\) −2.26219 + 21.0508i −0.117765 + 1.09586i
\(370\) 0.0464912i 0.00241696i
\(371\) 0 0
\(372\) 6.66434 5.98654i 0.345530 0.310388i
\(373\) 0.123926 0.214645i 0.00641662 0.0111139i −0.862799 0.505547i \(-0.831291\pi\)
0.869216 + 0.494433i \(0.164624\pi\)
\(374\) −1.92824 + 3.33980i −0.0997067 + 0.172697i
\(375\) −0.479606 + 0.101359i −0.0247667 + 0.00523415i
\(376\) 22.2747 12.8603i 1.14873 0.663220i
\(377\) −22.9337 −1.18114
\(378\) 0 0
\(379\) −8.91863 −0.458119 −0.229060 0.973412i \(-0.573565\pi\)
−0.229060 + 0.973412i \(0.573565\pi\)
\(380\) −0.0799573 + 0.0461634i −0.00410172 + 0.00236813i
\(381\) 7.41053 1.56613i 0.379653 0.0802351i
\(382\) 4.58476 7.94104i 0.234577 0.406299i
\(383\) 0.163545 0.283268i 0.00835675 0.0144743i −0.861817 0.507220i \(-0.830673\pi\)
0.870174 + 0.492745i \(0.164007\pi\)
\(384\) 14.2083 12.7632i 0.725063 0.651320i
\(385\) 0 0
\(386\) 14.0017i 0.712665i
\(387\) −5.62093 4.10391i −0.285728 0.208613i
\(388\) 12.1951i 0.619113i
\(389\) −5.72348 + 3.30445i −0.290192 + 0.167542i −0.638028 0.770013i \(-0.720250\pi\)
0.347837 + 0.937555i \(0.386916\pi\)
\(390\) −0.0568929 + 0.174406i −0.00288088 + 0.00883139i
\(391\) −35.7111 20.6178i −1.80599 1.04269i
\(392\) 0 0
\(393\) −1.36686 + 4.19011i −0.0689487 + 0.211363i
\(394\) 5.03799 + 8.72606i 0.253810 + 0.439613i
\(395\) −0.441551 −0.0222168
\(396\) −1.93414 4.37157i −0.0971944 0.219680i
\(397\) 7.51057i 0.376945i 0.982078 + 0.188472i \(0.0603536\pi\)
−0.982078 + 0.188472i \(0.939646\pi\)
\(398\) −3.21760 5.57305i −0.161284 0.279352i
\(399\) 0 0
\(400\) 3.86687 6.69762i 0.193344 0.334881i
\(401\) −5.48595 3.16732i −0.273956 0.158168i 0.356728 0.934208i \(-0.383892\pi\)
−0.630684 + 0.776040i \(0.717226\pi\)
\(402\) 3.04046 + 14.3867i 0.151644 + 0.717544i
\(403\) −9.34594 16.1876i −0.465555 0.806364i
\(404\) −0.707416 −0.0351953
\(405\) 0.0775865 + 0.242632i 0.00385530 + 0.0120565i
\(406\) 0 0
\(407\) 2.18909 1.26387i 0.108509 0.0626479i
\(408\) 4.80796 + 22.7501i 0.238030 + 1.12630i
\(409\) −29.0045 16.7457i −1.43418 0.828024i −0.436743 0.899586i \(-0.643868\pi\)
−0.997436 + 0.0715625i \(0.977201\pi\)
\(410\) −0.114916 0.0663467i −0.00567529 0.00327663i
\(411\) −14.6187 + 13.1319i −0.721085 + 0.647747i
\(412\) 7.14382 4.12448i 0.351951 0.203199i
\(413\) 0 0
\(414\) −13.2336 + 5.85504i −0.650398 + 0.287760i
\(415\) 0.174016 0.00854209
\(416\) −16.2115 28.0791i −0.794832 1.37669i
\(417\) −5.79718 1.89109i −0.283889 0.0926073i
\(418\) 1.23078 + 0.710590i 0.0601993 + 0.0347561i
\(419\) 0.896459 1.55271i 0.0437949 0.0758550i −0.843297 0.537448i \(-0.819389\pi\)
0.887092 + 0.461593i \(0.152722\pi\)
\(420\) 0 0
\(421\) 1.90262 + 3.29543i 0.0927278 + 0.160609i 0.908658 0.417541i \(-0.137108\pi\)
−0.815930 + 0.578150i \(0.803775\pi\)
\(422\) 9.37910i 0.456568i
\(423\) −26.3614 19.2468i −1.28173 0.935809i
\(424\) 27.4216 1.33171
\(425\) 14.1947 + 24.5860i 0.688545 + 1.19260i
\(426\) −6.10057 6.79128i −0.295574 0.329039i
\(427\) 0 0
\(428\) −12.2401 7.06684i −0.591649 0.341589i
\(429\) −9.75876 + 2.06240i −0.471157 + 0.0995734i
\(430\) 0.0377751 0.0218095i 0.00182168 0.00105175i
\(431\) 1.32957i 0.0640434i −0.999487 0.0320217i \(-0.989805\pi\)
0.999487 0.0320217i \(-0.0101946\pi\)
\(432\) −7.33199 3.29520i −0.352760 0.158540i
\(433\) 37.4292i 1.79873i 0.437194 + 0.899367i \(0.355972\pi\)
−0.437194 + 0.899367i \(0.644028\pi\)
\(434\) 0 0
\(435\) −0.0412686 0.195273i −0.00197868 0.00936262i
\(436\) −3.68656 + 6.38531i −0.176554 + 0.305801i
\(437\) −7.59804 + 13.1602i −0.363464 + 0.629537i
\(438\) −8.38032 9.32915i −0.400427 0.445764i
\(439\) −20.5584 + 11.8694i −0.981201 + 0.566496i −0.902632 0.430412i \(-0.858368\pi\)
−0.0785682 + 0.996909i \(0.525035\pi\)
\(440\) 0.0684026 0.00326097
\(441\) 0 0
\(442\) 21.2505 1.01078
\(443\) 9.74317 5.62522i 0.462912 0.267262i −0.250356 0.968154i \(-0.580548\pi\)
0.713268 + 0.700891i \(0.247214\pi\)
\(444\) 2.07027 6.34643i 0.0982505 0.301188i
\(445\) −0.170554 + 0.295409i −0.00808505 + 0.0140037i
\(446\) 0.992491 1.71904i 0.0469958 0.0813991i
\(447\) −26.2023 8.54744i −1.23933 0.404280i
\(448\) 0 0
\(449\) 14.3953i 0.679357i 0.940542 + 0.339679i \(0.110318\pi\)
−0.940542 + 0.339679i \(0.889682\pi\)
\(450\) 9.90582 + 1.06451i 0.466965 + 0.0501815i
\(451\) 7.21460i 0.339722i
\(452\) 12.7987 7.38933i 0.602000 0.347565i
\(453\) −4.00502 4.45848i −0.188172 0.209477i
\(454\) 16.5532 + 9.55701i 0.776881 + 0.448533i
\(455\) 0 0
\(456\) 8.38384 1.77182i 0.392609 0.0829732i
\(457\) 10.3135 + 17.8635i 0.482444 + 0.835617i 0.999797 0.0201547i \(-0.00641589\pi\)
−0.517353 + 0.855772i \(0.673083\pi\)
\(458\) 5.88646 0.275056
\(459\) 23.9329 17.2607i 1.11709 0.805660i
\(460\) 0.320352i 0.0149365i
\(461\) −0.832511 1.44195i −0.0387739 0.0671584i 0.845987 0.533203i \(-0.179012\pi\)
−0.884761 + 0.466045i \(0.845679\pi\)
\(462\) 0 0
\(463\) 0.604175 1.04646i 0.0280784 0.0486332i −0.851645 0.524119i \(-0.824395\pi\)
0.879723 + 0.475486i \(0.157728\pi\)
\(464\) 5.45435 + 3.14907i 0.253212 + 0.146192i
\(465\) 0.121015 0.108707i 0.00561193 0.00504116i
\(466\) 4.28745 + 7.42608i 0.198612 + 0.344006i
\(467\) −9.23988 −0.427571 −0.213785 0.976881i \(-0.568579\pi\)
−0.213785 + 0.976881i \(0.568579\pi\)
\(468\) −15.5327 + 21.2744i −0.717999 + 0.983409i
\(469\) 0 0
\(470\) 0.177160 0.102283i 0.00817179 0.00471798i
\(471\) 26.9209 + 8.78185i 1.24045 + 0.404646i
\(472\) 12.3294 + 7.11839i 0.567507 + 0.327650i
\(473\) 2.05385 + 1.18579i 0.0944361 + 0.0545227i
\(474\) 17.0647 + 5.56667i 0.783807 + 0.255685i
\(475\) 9.06039 5.23102i 0.415719 0.240016i
\(476\) 0 0
\(477\) −14.0796 31.8229i −0.644660 1.45707i
\(478\) −3.72572 −0.170410
\(479\) −8.77241 15.1943i −0.400822 0.694243i 0.593004 0.805200i \(-0.297942\pi\)
−0.993825 + 0.110956i \(0.964609\pi\)
\(480\) 0.209912 0.188563i 0.00958114 0.00860668i
\(481\) −12.0627 6.96438i −0.550010 0.317549i
\(482\) 3.64923 6.32066i 0.166218 0.287898i
\(483\) 0 0
\(484\) −7.75843 13.4380i −0.352656 0.610818i
\(485\) 0.221446i 0.0100553i
\(486\) 0.0603850 10.3552i 0.00273912 0.469721i
\(487\) −43.1898 −1.95712 −0.978558 0.205974i \(-0.933964\pi\)
−0.978558 + 0.205974i \(0.933964\pi\)
\(488\) −2.80100 4.85148i −0.126796 0.219616i
\(489\) 17.5489 3.70874i 0.793587 0.167715i
\(490\) 0 0
\(491\) 23.0046 + 13.2817i 1.03818 + 0.599396i 0.919319 0.393514i \(-0.128741\pi\)
0.118866 + 0.992910i \(0.462074\pi\)
\(492\) −12.7325 14.1741i −0.574026 0.639018i
\(493\) −20.0221 + 11.5598i −0.901751 + 0.520626i
\(494\) 7.83120i 0.352342i
\(495\) −0.0351213 0.0793815i −0.00157858 0.00356793i
\(496\) 5.13324i 0.230489i
\(497\) 0 0
\(498\) −6.72521 2.19383i −0.301364 0.0983078i
\(499\) −2.65759 + 4.60308i −0.118970 + 0.206062i −0.919360 0.393418i \(-0.871293\pi\)
0.800390 + 0.599480i \(0.204626\pi\)
\(500\) 0.220570 0.382039i 0.00986421 0.0170853i
\(501\) 3.16166 9.69212i 0.141253 0.433012i
\(502\) 13.9361 8.04598i 0.621996 0.359110i
\(503\) −35.5334 −1.58436 −0.792178 0.610290i \(-0.791053\pi\)
−0.792178 + 0.610290i \(0.791053\pi\)
\(504\) 0 0
\(505\) −0.0128457 −0.000571624
\(506\) 4.27051 2.46558i 0.189847 0.109608i
\(507\) 21.6820 + 24.1368i 0.962931 + 1.07195i
\(508\) −3.40810 + 5.90300i −0.151210 + 0.261903i
\(509\) 6.81654 11.8066i 0.302138 0.523318i −0.674482 0.738291i \(-0.735633\pi\)
0.976620 + 0.214973i \(0.0689663\pi\)
\(510\) 0.0382397 + 0.180941i 0.00169328 + 0.00801221i
\(511\) 0 0
\(512\) 16.2184i 0.716760i
\(513\) −6.36088 8.81973i −0.280840 0.389400i
\(514\) 11.7732i 0.519295i
\(515\) 0.129721 0.0748947i 0.00571621 0.00330025i
\(516\) 6.12780 1.29504i 0.269761 0.0570108i
\(517\) 9.63227 + 5.56120i 0.423627 + 0.244581i
\(518\) 0 0
\(519\) −5.63167 6.26929i −0.247203 0.275191i
\(520\) −0.188461 0.326424i −0.00826457 0.0143147i
\(521\) −10.2252 −0.447973 −0.223987 0.974592i \(-0.571907\pi\)
−0.223987 + 0.974592i \(0.571907\pi\)
\(522\) −0.866907 + 8.06702i −0.0379435 + 0.353084i
\(523\) 5.17480i 0.226278i −0.993579 0.113139i \(-0.963909\pi\)
0.993579 0.113139i \(-0.0360905\pi\)
\(524\) −1.98317 3.43495i −0.0866350 0.150056i
\(525\) 0 0
\(526\) 0.962785 1.66759i 0.0419794 0.0727105i
\(527\) −16.3189 9.42169i −0.710860 0.410415i
\(528\) 2.60413 + 0.849493i 0.113330 + 0.0369694i
\(529\) 14.8634 + 25.7442i 0.646236 + 1.11931i
\(530\) 0.218096 0.00947346
\(531\) 1.93039 17.9632i 0.0837716 0.779538i
\(532\) 0 0
\(533\) −34.4288 + 19.8775i −1.49128 + 0.860990i
\(534\) 10.3157 9.26652i 0.446403 0.401001i
\(535\) −0.222263 0.128324i −0.00960927 0.00554791i
\(536\) −26.1645 15.1061i −1.13013 0.652484i
\(537\) −0.0725746 0.343406i −0.00313183 0.0148191i
\(538\) −12.5955 + 7.27199i −0.543029 + 0.313518i
\(539\) 0 0
\(540\) −0.209095 0.0939732i −0.00899803 0.00404396i
\(541\) −25.4395 −1.09373 −0.546864 0.837222i \(-0.684178\pi\)
−0.546864 + 0.837222i \(0.684178\pi\)
\(542\) 2.98385 + 5.16817i 0.128167 + 0.221992i
\(543\) 2.24292 + 10.6130i 0.0962529 + 0.455445i
\(544\) −28.3067 16.3429i −1.21364 0.700694i
\(545\) −0.0669427 + 0.115948i −0.00286751 + 0.00496667i
\(546\) 0 0
\(547\) 14.7771 + 25.5947i 0.631824 + 1.09435i 0.987179 + 0.159620i \(0.0510267\pi\)
−0.355355 + 0.934732i \(0.615640\pi\)
\(548\) 17.6841i 0.755428i
\(549\) −4.19199 + 5.74156i −0.178910 + 0.245044i
\(550\) −3.39495 −0.144761
\(551\) 4.25999 + 7.37852i 0.181482 + 0.314336i
\(552\) 9.22082 28.2665i 0.392464 1.20310i
\(553\) 0 0
\(554\) −9.14828 5.28176i −0.388673 0.224401i
\(555\) 0.0375930 0.115242i 0.00159574 0.00489175i
\(556\) 4.75237 2.74378i 0.201545 0.116362i
\(557\) 19.6054i 0.830706i 0.909660 + 0.415353i \(0.136342\pi\)
−0.909660 + 0.415353i \(0.863658\pi\)
\(558\) −6.04736 + 2.67557i −0.256005 + 0.113266i
\(559\) 13.0683i 0.552728i
\(560\) 0 0
\(561\) −7.48028 + 6.71949i −0.315817 + 0.283697i
\(562\) −1.72714 + 2.99149i −0.0728548 + 0.126188i
\(563\) 7.23796 12.5365i 0.305044 0.528351i −0.672227 0.740345i \(-0.734662\pi\)
0.977271 + 0.211994i \(0.0679956\pi\)
\(564\) 28.7385 6.07354i 1.21011 0.255742i
\(565\) 0.232406 0.134180i 0.00977738 0.00564497i
\(566\) 12.4714 0.524213
\(567\) 0 0
\(568\) 18.7566 0.787011
\(569\) 6.70970 3.87385i 0.281285 0.162400i −0.352720 0.935729i \(-0.614743\pi\)
0.634005 + 0.773329i \(0.281410\pi\)
\(570\) 0.0666802 0.0140920i 0.00279293 0.000590251i
\(571\) −8.06856 + 13.9752i −0.337659 + 0.584842i −0.983992 0.178213i \(-0.942968\pi\)
0.646333 + 0.763055i \(0.276302\pi\)
\(572\) 4.48805 7.77353i 0.187655 0.325027i
\(573\) 17.7858 15.9769i 0.743014 0.667445i
\(574\) 0 0
\(575\) 36.3008i 1.51385i
\(576\) −2.00144 + 0.885511i −0.0833934 + 0.0368963i
\(577\) 12.1708i 0.506679i −0.967377 0.253339i \(-0.918471\pi\)
0.967377 0.253339i \(-0.0815290\pi\)
\(578\) 8.77258 5.06485i 0.364891 0.210670i
\(579\) 11.3218 34.7072i 0.470519 1.44238i
\(580\) 0.155548 + 0.0898059i 0.00645879 + 0.00372899i
\(581\) 0 0
\(582\) −2.79178 + 8.55824i −0.115723 + 0.354750i
\(583\) 5.92897 + 10.2693i 0.245553 + 0.425310i
\(584\) 25.7659 1.06620
\(585\) −0.282051 + 0.386312i −0.0116614 + 0.0159720i
\(586\) 15.1727i 0.626777i
\(587\) 16.8761 + 29.2302i 0.696550 + 1.20646i 0.969655 + 0.244476i \(0.0786158\pi\)
−0.273106 + 0.961984i \(0.588051\pi\)
\(588\) 0 0
\(589\) −3.47207 + 6.01380i −0.143064 + 0.247794i
\(590\) 0.0980610 + 0.0566155i 0.00403711 + 0.00233082i
\(591\) 5.43219 + 25.7038i 0.223451 + 1.05731i
\(592\) 1.91259 + 3.31270i 0.0786069 + 0.136151i
\(593\) 18.3025 0.751592 0.375796 0.926702i \(-0.377369\pi\)
0.375796 + 0.926702i \(0.377369\pi\)
\(594\) 0.356569 + 3.51064i 0.0146302 + 0.144043i
\(595\) 0 0
\(596\) 21.4799 12.4015i 0.879853 0.507983i
\(597\) −3.46936 16.4162i −0.141992 0.671870i
\(598\) −23.5320 13.5862i −0.962296 0.555582i
\(599\) −34.1905 19.7399i −1.39699 0.806551i −0.402911 0.915239i \(-0.632002\pi\)
−0.994076 + 0.108689i \(0.965335\pi\)
\(600\) −15.2281 + 13.6793i −0.621683 + 0.558454i
\(601\) 34.4865 19.9108i 1.40673 0.812177i 0.411661 0.911337i \(-0.364949\pi\)
0.995072 + 0.0991600i \(0.0316155\pi\)
\(602\) 0 0
\(603\) −4.09652 + 38.1202i −0.166823 + 1.55237i
\(604\) 5.39339 0.219454
\(605\) −0.140882 0.244015i −0.00572766 0.00992060i
\(606\) 0.496448 + 0.161946i 0.0201668 + 0.00657861i
\(607\) 21.6104 + 12.4768i 0.877140 + 0.506417i 0.869714 0.493555i \(-0.164303\pi\)
0.00742570 + 0.999972i \(0.497636\pi\)
\(608\) −6.02264 + 10.4315i −0.244250 + 0.423054i
\(609\) 0 0
\(610\) −0.0222776 0.0385859i −0.000901992 0.00156230i
\(611\) 61.2883i 2.47946i
\(612\) −2.83733 + 26.4028i −0.114692 + 1.06727i
\(613\) 28.0570 1.13321 0.566605 0.823990i \(-0.308257\pi\)
0.566605 + 0.823990i \(0.308257\pi\)
\(614\) −6.18876 10.7192i −0.249758 0.432594i
\(615\) −0.231204 0.257381i −0.00932305 0.0103786i
\(616\) 0 0
\(617\) 29.8093 + 17.2104i 1.20008 + 0.692865i 0.960573 0.278030i \(-0.0896813\pi\)
0.239506 + 0.970895i \(0.423015\pi\)
\(618\) −5.95757 + 1.25906i −0.239648 + 0.0506468i
\(619\) 17.2889 9.98173i 0.694898 0.401200i −0.110546 0.993871i \(-0.535260\pi\)
0.805444 + 0.592671i \(0.201927\pi\)
\(620\) 0.146391i 0.00587920i
\(621\) −37.5378 + 3.81265i −1.50634 + 0.152996i
\(622\) 13.6510i 0.547354i
\(623\) 0 0
\(624\) −3.12097 14.7677i −0.124939 0.591181i
\(625\) −12.4940 + 21.6402i −0.499760 + 0.865609i
\(626\) −0.239503 + 0.414831i −0.00957245 + 0.0165800i
\(627\) 2.47626 + 2.75662i 0.0988921 + 0.110089i
\(628\) −22.0690 + 12.7416i −0.880650 + 0.508443i
\(629\) −14.0417 −0.559878
\(630\) 0 0
\(631\) −46.8447 −1.86486 −0.932429 0.361354i \(-0.882314\pi\)
−0.932429 + 0.361354i \(0.882314\pi\)
\(632\) −31.9389 + 18.4399i −1.27046 + 0.733501i
\(633\) −7.58399 + 23.2488i −0.301437 + 0.924058i
\(634\) −7.28384 + 12.6160i −0.289278 + 0.501044i
\(635\) −0.0618862 + 0.107190i −0.00245588 + 0.00425370i
\(636\) 29.7718 + 9.71185i 1.18053 + 0.385100i
\(637\) 0 0
\(638\) 2.76475i 0.109458i
\(639\) −9.63058 21.7671i −0.380980 0.861094i
\(640\) 0.312103i 0.0123370i
\(641\) −3.34281 + 1.92997i −0.132033 + 0.0762293i −0.564562 0.825391i \(-0.690955\pi\)
0.432529 + 0.901620i \(0.357621\pi\)
\(642\) 6.97205 + 7.76143i 0.275165 + 0.306319i
\(643\) 31.0233 + 17.9113i 1.22344 + 0.706352i 0.965649 0.259849i \(-0.0836727\pi\)
0.257789 + 0.966201i \(0.417006\pi\)
\(644\) 0 0
\(645\) 0.111272 0.0235160i 0.00438133 0.000925941i
\(646\) −3.94734 6.83699i −0.155306 0.268998i
\(647\) 43.6492 1.71603 0.858013 0.513627i \(-0.171699\pi\)
0.858013 + 0.513627i \(0.171699\pi\)
\(648\) 15.7448 + 14.3103i 0.618515 + 0.562160i
\(649\) 6.15642i 0.241661i
\(650\) 9.35369 + 16.2011i 0.366882 + 0.635458i
\(651\) 0 0
\(652\) −8.07072 + 13.9789i −0.316074 + 0.547456i
\(653\) 6.45191 + 3.72501i 0.252483 + 0.145771i 0.620901 0.783889i \(-0.286767\pi\)
−0.368418 + 0.929660i \(0.620100\pi\)
\(654\) 4.04891 3.63711i 0.158325 0.142222i
\(655\) −0.0360114 0.0623736i −0.00140708 0.00243714i
\(656\) 10.9177 0.426264
\(657\) −13.2295 29.9014i −0.516131 1.16656i
\(658\) 0 0
\(659\) −7.52607 + 4.34518i −0.293174 + 0.169264i −0.639372 0.768897i \(-0.720806\pi\)
0.346198 + 0.938161i \(0.387472\pi\)
\(660\) 0.0742652 + 0.0242260i 0.00289077 + 0.000942997i
\(661\) 24.9853 + 14.4253i 0.971815 + 0.561077i 0.899789 0.436325i \(-0.143720\pi\)
0.0720256 + 0.997403i \(0.477054\pi\)
\(662\) −12.4653 7.19686i −0.484479 0.279714i
\(663\) 52.6756 + 17.1833i 2.04575 + 0.667343i
\(664\) 12.5871 7.26719i 0.488476 0.282022i
\(665\) 0 0
\(666\) −2.90573 + 3.97984i −0.112595 + 0.154216i
\(667\) 29.5623 1.14466
\(668\) 4.58724 + 7.94534i 0.177486 + 0.307414i
\(669\) 3.85021 3.45862i 0.148858 0.133718i
\(670\) −0.208097 0.120145i −0.00803950 0.00464161i
\(671\) 1.21124 2.09793i 0.0467594 0.0809897i
\(672\) 0 0
\(673\) −3.60695 6.24742i −0.139038 0.240820i 0.788095 0.615554i \(-0.211068\pi\)
−0.927133 + 0.374733i \(0.877734\pi\)
\(674\) 16.8007i 0.647139i
\(675\) 23.6937 + 10.6486i 0.911971 + 0.409865i
\(676\) −29.1982 −1.12301
\(677\) 18.1911 + 31.5079i 0.699140 + 1.21095i 0.968765 + 0.247980i \(0.0797667\pi\)
−0.269626 + 0.962965i \(0.586900\pi\)
\(678\) −10.6734 + 2.25570i −0.409911 + 0.0866297i
\(679\) 0 0
\(680\) −0.329070 0.189989i −0.0126193 0.00728573i
\(681\) 33.3041 + 37.0749i 1.27622 + 1.42071i
\(682\) 1.95149 1.12669i 0.0747265 0.0431433i
\(683\) 23.7326i 0.908101i −0.890976 0.454050i \(-0.849979\pi\)
0.890976 0.454050i \(-0.150021\pi\)
\(684\) 9.72991 + 1.04561i 0.372033 + 0.0399798i
\(685\) 0.321118i 0.0122693i
\(686\) 0 0
\(687\) 14.5913 + 4.75982i 0.556693 + 0.181599i
\(688\) −1.79443 + 3.10804i −0.0684119 + 0.118493i
\(689\) 32.6707 56.5874i 1.24466 2.15581i
\(690\) 0.0733370 0.224816i 0.00279189 0.00855859i
\(691\) −2.86127 + 1.65195i −0.108848 + 0.0628433i −0.553436 0.832892i \(-0.686684\pi\)
0.444588 + 0.895735i \(0.353350\pi\)
\(692\) 7.58393 0.288298
\(693\) 0 0
\(694\) −3.77718 −0.143380
\(695\) 0.0862962 0.0498231i 0.00327340 0.00188990i
\(696\) −11.1400 12.4013i −0.422261 0.470070i
\(697\) −20.0386 + 34.7079i −0.759016 + 1.31465i
\(698\) −3.71417 + 6.43313i −0.140583 + 0.243498i
\(699\) 4.62292 + 21.8746i 0.174855 + 0.827371i
\(700\) 0 0
\(701\) 0.873603i 0.0329955i 0.999864 + 0.0164978i \(0.00525164\pi\)
−0.999864 + 0.0164978i \(0.994748\pi\)
\(702\) 15.7707 11.3740i 0.595228 0.429285i
\(703\) 5.17461i 0.195164i
\(704\) 0.645868 0.372892i 0.0243421 0.0140539i
\(705\) 0.521850 0.110287i 0.0196540 0.00415364i
\(706\) 8.07845 + 4.66410i 0.304037 + 0.175536i
\(707\) 0 0
\(708\) 10.8650 + 12.0952i 0.408332 + 0.454564i
\(709\) −8.07767 13.9909i −0.303363 0.525441i 0.673532 0.739158i \(-0.264776\pi\)
−0.976896 + 0.213717i \(0.931443\pi\)
\(710\) 0.149179 0.00559860
\(711\) 37.7986 + 27.5972i 1.41756 + 1.03498i
\(712\) 28.4905i 1.06773i
\(713\) 12.0473 + 20.8665i 0.451174 + 0.781456i
\(714\) 0 0
\(715\) 0.0814965 0.141156i 0.00304779 0.00527894i
\(716\) 0.273546 + 0.157932i 0.0102229 + 0.00590220i
\(717\) −9.23528 3.01264i −0.344898 0.112509i
\(718\) 9.01498 + 15.6144i 0.336436 + 0.582724i
\(719\) −45.1905 −1.68532 −0.842661 0.538445i \(-0.819012\pi\)
−0.842661 + 0.538445i \(0.819012\pi\)
\(720\) 0.120126 0.0531481i 0.00447683 0.00198071i
\(721\) 0 0
\(722\) 8.41110 4.85615i 0.313029 0.180727i
\(723\) 14.1566 12.7168i 0.526490 0.472943i
\(724\) −8.45395 4.88089i −0.314189 0.181397i
\(725\) −17.6260 10.1764i −0.654613 0.377941i
\(726\) 2.36837 + 11.2066i 0.0878986 + 0.415915i
\(727\) −7.15775 + 4.13253i −0.265466 + 0.153267i −0.626826 0.779160i \(-0.715646\pi\)
0.361359 + 0.932427i \(0.382313\pi\)
\(728\) 0 0
\(729\) 8.52294 25.6195i 0.315664 0.948871i
\(730\) 0.204927 0.00758468
\(731\) −6.58709 11.4092i −0.243632 0.421983i
\(732\) −1.32283 6.25931i −0.0488932 0.231351i
\(733\) −10.5799 6.10830i −0.390777 0.225615i 0.291720 0.956504i \(-0.405773\pi\)
−0.682497 + 0.730889i \(0.739106\pi\)
\(734\) 2.28543 3.95849i 0.0843569 0.146110i
\(735\) 0 0
\(736\) 20.8972 + 36.1949i 0.770280 + 1.33416i
\(737\) 13.0647i 0.481244i
\(738\) 5.69056 + 12.8619i 0.209472 + 0.473452i
\(739\) −20.7072 −0.761726 −0.380863 0.924631i \(-0.624373\pi\)
−0.380863 + 0.924631i \(0.624373\pi\)
\(740\) 0.0545436 + 0.0944723i 0.00200506 + 0.00347287i
\(741\) 6.33235 19.4119i 0.232625 0.713115i
\(742\) 0 0
\(743\) 10.2862 + 5.93873i 0.377363 + 0.217871i 0.676670 0.736286i \(-0.263422\pi\)
−0.299307 + 0.954157i \(0.596756\pi\)
\(744\) 4.21362 12.9169i 0.154479 0.473557i
\(745\) 0.390045 0.225192i 0.0142901 0.00825041i
\(746\) 0.164647i 0.00602814i
\(747\) −14.8964 10.8761i −0.545033 0.397935i
\(748\) 9.04885i 0.330859i
\(749\) 0 0
\(750\) −0.242250 + 0.217612i −0.00884571 + 0.00794606i
\(751\) −11.8554 + 20.5342i −0.432610 + 0.749303i −0.997097 0.0761390i \(-0.975741\pi\)
0.564487 + 0.825442i \(0.309074\pi\)
\(752\) −8.41562 + 14.5763i −0.306886 + 0.531542i
\(753\) 41.0506 8.67555i 1.49597 0.316154i
\(754\) −13.1937 + 7.61738i −0.480486 + 0.277409i
\(755\) 0.0979362 0.00356426
\(756\) 0 0
\(757\) 44.2494 1.60827 0.804136 0.594446i \(-0.202628\pi\)
0.804136 + 0.594446i \(0.202628\pi\)
\(758\) −5.13087 + 2.96231i −0.186362 + 0.107596i
\(759\) 12.5794 2.65850i 0.456603 0.0964975i
\(760\) −0.0700143 + 0.121268i −0.00253969 + 0.00439887i
\(761\) 24.3767 42.2217i 0.883656 1.53054i 0.0364098 0.999337i \(-0.488408\pi\)
0.847246 0.531200i \(-0.178259\pi\)
\(762\) 3.74308 3.36238i 0.135597 0.121806i
\(763\) 0 0
\(764\) 21.5154i 0.778401i
\(765\) −0.0515217 + 0.479436i −0.00186277 + 0.0173341i
\(766\) 0.217284i 0.00785081i
\(767\) 29.3791 16.9620i 1.06082 0.612463i
\(768\) 4.71845 14.4645i 0.170262 0.521942i
\(769\) 23.3870 + 13.5025i 0.843357 + 0.486912i 0.858404 0.512975i \(-0.171457\pi\)
−0.0150472 + 0.999887i \(0.504790\pi\)
\(770\) 0 0
\(771\) −9.51989 + 29.1834i −0.342851 + 1.05101i
\(772\) 16.4268 + 28.4520i 0.591213 + 1.02401i
\(773\) −26.7135 −0.960817 −0.480408 0.877045i \(-0.659512\pi\)
−0.480408 + 0.877045i \(0.659512\pi\)
\(774\) −4.59681 0.493988i −0.165229 0.0177560i
\(775\) 16.5883i 0.595871i
\(776\) −9.24794 16.0179i −0.331982 0.575009i
\(777\) 0 0
\(778\) −2.19514 + 3.80209i −0.0786994 + 0.136311i
\(779\) 12.7905 + 7.38459i 0.458267 + 0.264580i
\(780\) −0.0890046 0.421148i −0.00318688 0.0150795i
\(781\) 4.05547 + 7.02429i 0.145116 + 0.251349i
\(782\) −27.3927 −0.979560
\(783\) −8.67191 + 19.2955i −0.309909 + 0.689564i
\(784\) 0 0
\(785\) −0.400742 + 0.231368i −0.0143031 + 0.00825789i
\(786\) 0.605391 + 2.86456i 0.0215936 + 0.102176i
\(787\) −41.0093 23.6767i −1.46182 0.843983i −0.462726 0.886501i \(-0.653129\pi\)
−0.999096 + 0.0425177i \(0.986462\pi\)
\(788\) −20.4749 11.8212i −0.729388 0.421112i
\(789\) 3.73497 3.35510i 0.132968 0.119445i
\(790\) −0.254023 + 0.146660i −0.00903775 + 0.00521795i
\(791\) 0 0
\(792\) −5.85554 4.27520i −0.208068 0.151913i
\(793\) −13.3487 −0.474027
\(794\) 2.49462 + 4.32082i 0.0885309 + 0.153340i
\(795\) 0.540613 + 0.176353i 0.0191736 + 0.00625461i
\(796\) 13.0766 + 7.54980i 0.463489 + 0.267596i
\(797\) −4.42781 + 7.66919i −0.156841 + 0.271657i −0.933728 0.357984i \(-0.883464\pi\)
0.776887 + 0.629640i \(0.216798\pi\)
\(798\) 0 0
\(799\) −30.8925 53.5074i −1.09290 1.89296i
\(800\) 28.7741i 1.01732i
\(801\) 33.0634 14.6284i 1.16824 0.516871i
\(802\) −4.20808 −0.148592
\(803\) 5.57098 + 9.64922i 0.196596 + 0.340514i
\(804\) −23.0569 25.6674i −0.813154 0.905220i
\(805\) 0 0
\(806\) −10.7534 6.20848i −0.378772 0.218684i
\(807\) −37.1017 + 7.84099i −1.30604 + 0.276016i
\(808\) −0.929170 + 0.536456i −0.0326881 + 0.0188725i
\(809\) 7.40014i 0.260175i −0.991503 0.130087i \(-0.958474\pi\)
0.991503 0.130087i \(-0.0415258\pi\)
\(810\) 0.125225 + 0.113816i 0.00439997 + 0.00399907i
\(811\) 25.0843i 0.880829i −0.897794 0.440415i \(-0.854831\pi\)
0.897794 0.440415i \(-0.145169\pi\)
\(812\) 0 0
\(813\) 3.21732 + 15.2236i 0.112836 + 0.533914i
\(814\) 0.839587 1.45421i 0.0294275 0.0509699i
\(815\) −0.146553 + 0.253836i −0.00513351 + 0.00889150i
\(816\) −10.1684 11.3197i −0.355967 0.396269i
\(817\) −4.20449 + 2.42746i −0.147096 + 0.0849262i
\(818\) −22.2483 −0.777893
\(819\) 0 0
\(820\) 0.311353 0.0108729
\(821\) 18.3781 10.6106i 0.641401 0.370313i −0.143753 0.989614i \(-0.545917\pi\)
0.785154 + 0.619300i \(0.212584\pi\)
\(822\) −4.04836 + 12.4103i −0.141203 + 0.432859i
\(823\) −8.47690 + 14.6824i −0.295486 + 0.511797i −0.975098 0.221775i \(-0.928815\pi\)
0.679612 + 0.733572i \(0.262148\pi\)
\(824\) 6.25546 10.8348i 0.217919 0.377447i
\(825\) −8.41538 2.74518i −0.292986 0.0955749i
\(826\) 0 0
\(827\) 25.3052i 0.879949i −0.898010 0.439975i \(-0.854987\pi\)
0.898010 0.439975i \(-0.145013\pi\)
\(828\) 20.0222 27.4235i 0.695820 0.953031i
\(829\) 41.5277i 1.44232i −0.692770 0.721158i \(-0.743610\pi\)
0.692770 0.721158i \(-0.256390\pi\)
\(830\) 0.100111 0.0577990i 0.00347490 0.00200623i
\(831\) −18.4058 20.4897i −0.638491 0.710781i
\(832\) −3.55896 2.05477i −0.123385 0.0712362i
\(833\) 0 0
\(834\) −3.96323 + 0.837580i −0.137235 + 0.0290030i
\(835\) 0.0832977 + 0.144276i 0.00288264 + 0.00499287i
\(836\) −3.33467 −0.115332
\(837\) −17.1536 + 1.74226i −0.592916 + 0.0602213i
\(838\) 1.19103i 0.0411434i
\(839\) 6.61780 + 11.4624i 0.228472 + 0.395725i 0.957355 0.288913i \(-0.0932938\pi\)
−0.728884 + 0.684638i \(0.759960\pi\)
\(840\) 0 0
\(841\) −6.21265 + 10.7606i −0.214229 + 0.371056i
\(842\) 2.18914 + 1.26390i 0.0754428 + 0.0435569i
\(843\) −6.70014 + 6.01870i −0.230765 + 0.207295i
\(844\) −11.0036 19.0588i −0.378759 0.656030i
\(845\) −0.530197 −0.0182393
\(846\) −21.5584 2.31673i −0.741193 0.0796509i
\(847\) 0 0
\(848\) −15.5403 + 8.97217i −0.533654 + 0.308106i
\(849\) 30.9141 + 10.0845i 1.06097 + 0.346098i
\(850\) 16.3324 + 9.42951i 0.560196 + 0.323429i
\(851\) 15.5492 + 8.97735i 0.533020 + 0.307739i
\(852\) 20.3642 + 6.64300i 0.697666 + 0.227585i
\(853\) −15.3814 + 8.88048i −0.526651 + 0.304062i −0.739651 0.672990i \(-0.765010\pi\)
0.213001 + 0.977052i \(0.431676\pi\)
\(854\) 0 0
\(855\) 0.176681 + 0.0189867i 0.00604237 + 0.000649332i
\(856\) −21.4360 −0.732669
\(857\) 9.17157 + 15.8856i 0.313295 + 0.542643i 0.979074 0.203507i \(-0.0652338\pi\)
−0.665779 + 0.746149i \(0.731900\pi\)
\(858\) −4.92917 + 4.42785i −0.168279 + 0.151164i
\(859\) −2.69126 1.55380i −0.0918246 0.0530150i 0.453385 0.891315i \(-0.350216\pi\)
−0.545209 + 0.838300i \(0.683550\pi\)
\(860\) −0.0511739 + 0.0886358i −0.00174502 + 0.00302246i
\(861\) 0 0
\(862\) −0.441616 0.764902i −0.0150415 0.0260527i
\(863\) 41.4060i 1.40948i 0.709467 + 0.704739i \(0.248936\pi\)
−0.709467 + 0.704739i \(0.751064\pi\)
\(864\) −29.7546 + 3.02212i −1.01227 + 0.102815i
\(865\) 0.137713 0.00468239
\(866\) 12.4321 + 21.5330i 0.422458 + 0.731720i
\(867\) 25.8409 5.46115i 0.877602 0.185471i
\(868\) 0 0
\(869\) −13.8114 7.97399i −0.468518 0.270499i
\(870\) −0.0886013 0.0986328i −0.00300386 0.00334396i
\(871\) −62.3460 + 35.9955i −2.11251 + 1.21966i
\(872\) 11.1826i 0.378689i
\(873\) −13.8405 + 18.9566i −0.468429 + 0.641585i
\(874\) 10.0947i 0.341459i
\(875\) 0 0
\(876\) 27.9742 + 9.12545i 0.945161 + 0.308320i
\(877\) 11.3979 19.7417i 0.384878 0.666628i −0.606874 0.794798i \(-0.707577\pi\)
0.991752 + 0.128170i \(0.0409102\pi\)
\(878\) −7.88482 + 13.6569i −0.266100 + 0.460898i
\(879\) 12.2687 37.6099i 0.413813 1.26855i
\(880\) −0.0387648 + 0.0223809i −0.00130676 + 0.000754460i
\(881\) −43.4050 −1.46235 −0.731175 0.682190i \(-0.761028\pi\)
−0.731175 + 0.682190i \(0.761028\pi\)
\(882\) 0 0
\(883\) −29.9309 −1.00725 −0.503627 0.863921i \(-0.668001\pi\)
−0.503627 + 0.863921i \(0.668001\pi\)
\(884\) −43.1820 + 24.9312i −1.45237 + 0.838526i
\(885\) 0.197293 + 0.219631i 0.00663193 + 0.00738281i
\(886\) 3.73682 6.47236i 0.125541 0.217443i
\(887\) 19.4788 33.7382i 0.654033 1.13282i −0.328102 0.944642i \(-0.606409\pi\)
0.982135 0.188176i \(-0.0602576\pi\)
\(888\) −2.09347 9.90579i −0.0702522 0.332417i
\(889\) 0 0
\(890\) 0.226597i 0.00759556i
\(891\) −1.95486 + 8.99048i −0.0654904 + 0.301192i
\(892\) 4.65757i 0.155947i
\(893\) −19.7185 + 11.3845i −0.659853 + 0.380966i
\(894\) −17.9131 + 3.78572i −0.599105 + 0.126614i
\(895\) 0.00496721 + 0.00286782i 0.000166035 + 9.58606e-5i
\(896\) 0 0
\(897\) −47.3451 52.7055i −1.58081 1.75979i
\(898\) 4.78138 + 8.28160i 0.159557 + 0.276361i
\(899\) 13.5091 0.450553
\(900\) −21.3780 + 9.45840i −0.712599 + 0.315280i
\(901\) 65.8711i 2.19448i
\(902\) −2.39632 4.15054i −0.0797886 0.138198i
\(903\) 0 0
\(904\) 11.2071 19.4113i 0.372743 0.645611i
\(905\) −0.153512 0.0886299i −0.00510290 0.00294616i
\(906\) −3.78496 1.23469i −0.125747 0.0410198i
\(907\) 14.0526 + 24.3399i 0.466610 + 0.808192i 0.999273 0.0381355i \(-0.0121419\pi\)
−0.532663 + 0.846328i \(0.678809\pi\)
\(908\) −44.8493 −1.48837
\(909\) 1.09964 + 0.802861i 0.0364728 + 0.0266292i
\(910\) 0 0
\(911\) 32.3883 18.6994i 1.07307 0.619538i 0.144052 0.989570i \(-0.453987\pi\)
0.929019 + 0.370032i \(0.120653\pi\)
\(912\) −4.17152 + 3.74726i −0.138133 + 0.124084i
\(913\) 5.44307 + 3.14256i 0.180139 + 0.104003i
\(914\) 11.8666 + 6.85121i 0.392513 + 0.226618i
\(915\) −0.0240207 0.113660i −0.000794100 0.00375749i
\(916\) −11.9616 + 6.90601i −0.395221 + 0.228181i
\(917\) 0 0
\(918\) 8.03546 17.8793i 0.265210 0.590105i
\(919\) −25.8230 −0.851822 −0.425911 0.904765i \(-0.640046\pi\)
−0.425911 + 0.904765i \(0.640046\pi\)
\(920\) 0.242933 + 0.420773i 0.00800928 + 0.0138725i
\(921\) −6.67300 31.5750i −0.219883 1.04043i
\(922\) −0.957884 0.553034i −0.0315462 0.0182132i
\(923\) 22.3471 38.7063i 0.735563 1.27403i
\(924\) 0 0
\(925\) −6.18063 10.7052i −0.203218 0.351983i
\(926\) 0.802704i 0.0263785i
\(927\) −15.7856 1.69637i −0.518469 0.0557162i
\(928\) 23.4328 0.769220
\(929\) 7.97094 + 13.8061i 0.261518 + 0.452963i 0.966646 0.256118i \(-0.0824435\pi\)
−0.705127 + 0.709081i \(0.749110\pi\)
\(930\) 0.0335127 0.102734i 0.00109893 0.00336877i
\(931\) 0 0
\(932\) −17.4246 10.0601i −0.570762 0.329529i
\(933\) −11.0382 + 33.8379i −0.361376 + 1.10780i
\(934\) −5.31568 + 3.06901i −0.173934 + 0.100421i
\(935\) 0.164314i 0.00537364i
\(936\) −4.26867 + 39.7222i −0.139526 + 1.29836i
\(937\) 15.0698i 0.492308i 0.969231 + 0.246154i \(0.0791668\pi\)
−0.969231 + 0.246154i \(0.920833\pi\)
\(938\) 0 0
\(939\) −0.929112 + 0.834616i −0.0303204 + 0.0272367i
\(940\) −0.239999 + 0.415690i −0.00782789 + 0.0135583i
\(941\) 5.76861 9.99152i 0.188051 0.325714i −0.756549 0.653937i \(-0.773116\pi\)
0.944600 + 0.328222i \(0.106450\pi\)
\(942\) 18.4044 3.88955i 0.599648 0.126728i
\(943\) 44.3800 25.6228i 1.44521 0.834393i
\(944\) −9.31636 −0.303222
\(945\) 0 0
\(946\) 1.57543 0.0512218
\(947\) −24.5364 + 14.1661i −0.797325 + 0.460336i −0.842535 0.538642i \(-0.818938\pi\)
0.0452102 + 0.998977i \(0.485604\pi\)
\(948\) −41.2071 + 8.70862i −1.33834 + 0.282843i
\(949\) 30.6981 53.1706i 0.996501 1.72599i
\(950\) 3.47495 6.01879i 0.112742 0.195275i
\(951\) −28.2565 + 25.3826i −0.916278 + 0.823088i
\(952\) 0 0
\(953\) 29.8498i 0.966931i 0.875364 + 0.483465i \(0.160622\pi\)
−0.875364 + 0.483465i \(0.839378\pi\)
\(954\) −18.6699 13.6311i −0.604459 0.441323i
\(955\) 0.390689i 0.0126424i
\(956\) 7.57084 4.37102i 0.244858 0.141369i
\(957\) 2.23559 6.85325i 0.0722665 0.221534i
\(958\) −10.0935 5.82748i −0.326106 0.188277i
\(959\) 0 0
\(960\) 0.0110914 0.0340009i 0.000357974 0.00109737i
\(961\) −9.99478 17.3115i −0.322412 0.558434i
\(962\) −9.25283 −0.298323
\(963\) 11.0063 + 24.8766i 0.354674 + 0.801637i
\(964\) 17.1252i 0.551564i
\(965\) 0.298287 + 0.516648i 0.00960219 + 0.0166315i
\(966\) 0 0
\(967\) 8.17864 14.1658i 0.263007 0.455542i −0.704032 0.710168i \(-0.748619\pi\)
0.967040 + 0.254626i \(0.0819523\pi\)
\(968\) −20.3809 11.7669i −0.655068 0.378203i
\(969\) −4.25620 20.1393i −0.136729 0.646968i
\(970\) −0.0735528 0.127397i −0.00236164 0.00409048i
\(971\) 21.4630 0.688779 0.344390 0.938827i \(-0.388086\pi\)
0.344390 + 0.938827i \(0.388086\pi\)
\(972\) 12.0260 + 21.1131i 0.385735 + 0.677202i
\(973\) 0 0
\(974\) −24.8470 + 14.3454i −0.796148 + 0.459657i
\(975\) 10.0856 + 47.7225i 0.322997 + 1.52834i
\(976\) 3.17475 + 1.83294i 0.101621 + 0.0586710i
\(977\) −18.6219 10.7513i −0.595766 0.343966i 0.171608 0.985165i \(-0.445104\pi\)
−0.767374 + 0.641199i \(0.778437\pi\)
\(978\) 8.86397 7.96246i 0.283439 0.254611i
\(979\) −10.6696 + 6.16010i −0.341002 + 0.196878i
\(980\) 0 0
\(981\) 12.9774 5.74167i 0.414336 0.183318i
\(982\) 17.6460 0.563107
\(983\) −12.7097 22.0138i −0.405376 0.702131i 0.588989 0.808141i \(-0.299526\pi\)
−0.994365 + 0.106009i \(0.966193\pi\)
\(984\) −27.4725 8.96178i −0.875790 0.285691i
\(985\) −0.371794 0.214656i −0.0118464 0.00683949i
\(986\) −7.67912 + 13.3006i −0.244553 + 0.423578i
\(987\) 0 0
\(988\) 9.18759 + 15.9134i 0.292296 + 0.506272i
\(989\) 16.8455i 0.535654i
\(990\) −0.0465716 0.0340025i −0.00148014 0.00108067i
\(991\) 23.7537 0.754560 0.377280 0.926099i \(-0.376859\pi\)
0.377280 + 0.926099i \(0.376859\pi\)
\(992\) 9.54935 + 16.5400i 0.303192 + 0.525144i
\(993\) −25.0795 27.9191i −0.795875 0.885985i
\(994\) 0 0
\(995\) 0.237453 + 0.137093i 0.00752776 + 0.00434615i
\(996\) 16.2398 3.43207i 0.514576 0.108749i
\(997\) 10.5366 6.08329i 0.333697 0.192660i −0.323785 0.946131i \(-0.604955\pi\)
0.657481 + 0.753471i \(0.271622\pi\)
\(998\) 3.53086i 0.111767i
\(999\) −10.4208 + 7.51560i −0.329700 + 0.237783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.o.e.293.16 yes 48
3.2 odd 2 1323.2.o.e.881.10 48
7.2 even 3 441.2.s.d.374.9 48
7.3 odd 6 441.2.i.d.68.16 48
7.4 even 3 441.2.i.d.68.15 48
7.5 odd 6 441.2.s.d.374.10 48
7.6 odd 2 inner 441.2.o.e.293.15 yes 48
9.2 odd 6 inner 441.2.o.e.146.15 48
9.7 even 3 1323.2.o.e.440.9 48
21.2 odd 6 1323.2.s.d.962.16 48
21.5 even 6 1323.2.s.d.962.15 48
21.11 odd 6 1323.2.i.d.1097.10 48
21.17 even 6 1323.2.i.d.1097.9 48
21.20 even 2 1323.2.o.e.881.9 48
63.2 odd 6 441.2.i.d.227.10 48
63.11 odd 6 441.2.s.d.362.10 48
63.16 even 3 1323.2.i.d.521.9 48
63.20 even 6 inner 441.2.o.e.146.16 yes 48
63.25 even 3 1323.2.s.d.656.15 48
63.34 odd 6 1323.2.o.e.440.10 48
63.38 even 6 441.2.s.d.362.9 48
63.47 even 6 441.2.i.d.227.9 48
63.52 odd 6 1323.2.s.d.656.16 48
63.61 odd 6 1323.2.i.d.521.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.15 48 7.4 even 3
441.2.i.d.68.16 48 7.3 odd 6
441.2.i.d.227.9 48 63.47 even 6
441.2.i.d.227.10 48 63.2 odd 6
441.2.o.e.146.15 48 9.2 odd 6 inner
441.2.o.e.146.16 yes 48 63.20 even 6 inner
441.2.o.e.293.15 yes 48 7.6 odd 2 inner
441.2.o.e.293.16 yes 48 1.1 even 1 trivial
441.2.s.d.362.9 48 63.38 even 6
441.2.s.d.362.10 48 63.11 odd 6
441.2.s.d.374.9 48 7.2 even 3
441.2.s.d.374.10 48 7.5 odd 6
1323.2.i.d.521.9 48 63.16 even 3
1323.2.i.d.521.10 48 63.61 odd 6
1323.2.i.d.1097.9 48 21.17 even 6
1323.2.i.d.1097.10 48 21.11 odd 6
1323.2.o.e.440.9 48 9.7 even 3
1323.2.o.e.440.10 48 63.34 odd 6
1323.2.o.e.881.9 48 21.20 even 2
1323.2.o.e.881.10 48 3.2 odd 2
1323.2.s.d.656.15 48 63.25 even 3
1323.2.s.d.656.16 48 63.52 odd 6
1323.2.s.d.962.15 48 21.5 even 6
1323.2.s.d.962.16 48 21.2 odd 6