Properties

Label 440.2.y.b.361.2
Level $440$
Weight $2$
Character 440.361
Analytic conductor $3.513$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(81,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-1,0,3,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 15 x^{10} - 22 x^{9} + 89 x^{8} - 118 x^{7} + 205 x^{6} - 68 x^{5} + 1061 x^{4} + \cdots + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 361.2
Root \(0.359793 + 0.261405i\) of defining polynomial
Character \(\chi\) \(=\) 440.361
Dual form 440.2.y.b.401.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.582157 + 0.422962i) q^{3} +(-0.309017 - 0.951057i) q^{5} +(-3.38507 - 2.45940i) q^{7} +(-0.767041 + 2.36071i) q^{9} +(2.41269 + 2.27573i) q^{11} +(-1.86973 + 5.75443i) q^{13} +(0.582157 + 0.422962i) q^{15} +(2.01535 + 6.20260i) q^{17} +(-0.598231 + 0.434640i) q^{19} +3.01088 q^{21} -5.13093 q^{23} +(-0.809017 + 0.587785i) q^{25} +(-1.21904 - 3.75183i) q^{27} +(-1.68305 - 1.22281i) q^{29} +(-0.348255 + 1.07182i) q^{31} +(-2.36711 - 0.304357i) q^{33} +(-1.29298 + 3.97939i) q^{35} +(-5.75758 - 4.18313i) q^{37} +(-1.34543 - 4.14080i) q^{39} +(3.25363 - 2.36390i) q^{41} +6.29891 q^{43} +2.48220 q^{45} +(-7.47651 + 5.43200i) q^{47} +(3.24696 + 9.99312i) q^{49} +(-3.79671 - 2.75847i) q^{51} +(2.40111 - 7.38985i) q^{53} +(1.41879 - 2.99784i) q^{55} +(0.164428 - 0.506058i) q^{57} +(-4.98691 - 3.62320i) q^{59} +(4.53849 + 13.9680i) q^{61} +(8.40242 - 6.10472i) q^{63} +6.05056 q^{65} -5.53268 q^{67} +(2.98700 - 2.17019i) q^{69} +(2.74176 + 8.43827i) q^{71} +(6.54779 + 4.75724i) q^{73} +(0.222364 - 0.684366i) q^{75} +(-2.57020 - 13.6373i) q^{77} +(-0.176289 + 0.542560i) q^{79} +(-3.72786 - 2.70845i) q^{81} +(-4.70399 - 14.4774i) q^{83} +(5.27625 - 3.83342i) q^{85} +1.49700 q^{87} -1.33867 q^{89} +(20.4816 - 14.8808i) q^{91} +(-0.250599 - 0.771266i) q^{93} +(0.598231 + 0.434640i) q^{95} +(3.07980 - 9.47864i) q^{97} +(-7.22296 + 3.95008i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - q^{3} + 3 q^{5} - 8 q^{7} + 10 q^{9} - 4 q^{11} - 7 q^{13} + q^{15} + 7 q^{17} + 3 q^{19} + 4 q^{21} + 36 q^{23} - 3 q^{25} + 8 q^{27} + 13 q^{29} + 2 q^{31} - 19 q^{33} - 2 q^{35} - 22 q^{37}+ \cdots - 79 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.582157 + 0.422962i −0.336108 + 0.244197i −0.743018 0.669271i \(-0.766606\pi\)
0.406910 + 0.913468i \(0.366606\pi\)
\(4\) 0 0
\(5\) −0.309017 0.951057i −0.138197 0.425325i
\(6\) 0 0
\(7\) −3.38507 2.45940i −1.27944 0.929566i −0.279902 0.960029i \(-0.590302\pi\)
−0.999536 + 0.0304624i \(0.990302\pi\)
\(8\) 0 0
\(9\) −0.767041 + 2.36071i −0.255680 + 0.786903i
\(10\) 0 0
\(11\) 2.41269 + 2.27573i 0.727452 + 0.686158i
\(12\) 0 0
\(13\) −1.86973 + 5.75443i −0.518569 + 1.59599i 0.258124 + 0.966112i \(0.416896\pi\)
−0.776693 + 0.629880i \(0.783104\pi\)
\(14\) 0 0
\(15\) 0.582157 + 0.422962i 0.150312 + 0.109208i
\(16\) 0 0
\(17\) 2.01535 + 6.20260i 0.488794 + 1.50435i 0.826410 + 0.563068i \(0.190379\pi\)
−0.337617 + 0.941284i \(0.609621\pi\)
\(18\) 0 0
\(19\) −0.598231 + 0.434640i −0.137244 + 0.0997134i −0.654289 0.756245i \(-0.727032\pi\)
0.517045 + 0.855958i \(0.327032\pi\)
\(20\) 0 0
\(21\) 3.01088 0.657027
\(22\) 0 0
\(23\) −5.13093 −1.06987 −0.534936 0.844893i \(-0.679664\pi\)
−0.534936 + 0.844893i \(0.679664\pi\)
\(24\) 0 0
\(25\) −0.809017 + 0.587785i −0.161803 + 0.117557i
\(26\) 0 0
\(27\) −1.21904 3.75183i −0.234605 0.722040i
\(28\) 0 0
\(29\) −1.68305 1.22281i −0.312534 0.227069i 0.420449 0.907316i \(-0.361873\pi\)
−0.732983 + 0.680247i \(0.761873\pi\)
\(30\) 0 0
\(31\) −0.348255 + 1.07182i −0.0625485 + 0.192504i −0.977448 0.211178i \(-0.932270\pi\)
0.914899 + 0.403683i \(0.132270\pi\)
\(32\) 0 0
\(33\) −2.36711 0.304357i −0.412061 0.0529818i
\(34\) 0 0
\(35\) −1.29298 + 3.97939i −0.218554 + 0.672640i
\(36\) 0 0
\(37\) −5.75758 4.18313i −0.946540 0.687702i 0.00344564 0.999994i \(-0.498903\pi\)
−0.949986 + 0.312292i \(0.898903\pi\)
\(38\) 0 0
\(39\) −1.34543 4.14080i −0.215441 0.663059i
\(40\) 0 0
\(41\) 3.25363 2.36390i 0.508131 0.369179i −0.303983 0.952677i \(-0.598317\pi\)
0.812114 + 0.583499i \(0.198317\pi\)
\(42\) 0 0
\(43\) 6.29891 0.960575 0.480288 0.877111i \(-0.340532\pi\)
0.480288 + 0.877111i \(0.340532\pi\)
\(44\) 0 0
\(45\) 2.48220 0.370024
\(46\) 0 0
\(47\) −7.47651 + 5.43200i −1.09056 + 0.792339i −0.979494 0.201474i \(-0.935427\pi\)
−0.111067 + 0.993813i \(0.535427\pi\)
\(48\) 0 0
\(49\) 3.24696 + 9.99312i 0.463852 + 1.42759i
\(50\) 0 0
\(51\) −3.79671 2.75847i −0.531646 0.386263i
\(52\) 0 0
\(53\) 2.40111 7.38985i 0.329818 1.01507i −0.639401 0.768873i \(-0.720818\pi\)
0.969219 0.246201i \(-0.0791823\pi\)
\(54\) 0 0
\(55\) 1.41879 2.99784i 0.191309 0.404229i
\(56\) 0 0
\(57\) 0.164428 0.506058i 0.0217790 0.0670290i
\(58\) 0 0
\(59\) −4.98691 3.62320i −0.649240 0.471701i 0.213772 0.976884i \(-0.431425\pi\)
−0.863012 + 0.505183i \(0.831425\pi\)
\(60\) 0 0
\(61\) 4.53849 + 13.9680i 0.581094 + 1.78842i 0.614420 + 0.788979i \(0.289390\pi\)
−0.0333265 + 0.999445i \(0.510610\pi\)
\(62\) 0 0
\(63\) 8.40242 6.10472i 1.05861 0.769122i
\(64\) 0 0
\(65\) 6.05056 0.750480
\(66\) 0 0
\(67\) −5.53268 −0.675924 −0.337962 0.941160i \(-0.609738\pi\)
−0.337962 + 0.941160i \(0.609738\pi\)
\(68\) 0 0
\(69\) 2.98700 2.17019i 0.359593 0.261260i
\(70\) 0 0
\(71\) 2.74176 + 8.43827i 0.325387 + 1.00144i 0.971266 + 0.237998i \(0.0764911\pi\)
−0.645879 + 0.763440i \(0.723509\pi\)
\(72\) 0 0
\(73\) 6.54779 + 4.75724i 0.766360 + 0.556793i 0.900855 0.434121i \(-0.142941\pi\)
−0.134494 + 0.990914i \(0.542941\pi\)
\(74\) 0 0
\(75\) 0.222364 0.684366i 0.0256764 0.0790238i
\(76\) 0 0
\(77\) −2.57020 13.6373i −0.292901 1.55411i
\(78\) 0 0
\(79\) −0.176289 + 0.542560i −0.0198340 + 0.0610428i −0.960484 0.278336i \(-0.910217\pi\)
0.940650 + 0.339379i \(0.110217\pi\)
\(80\) 0 0
\(81\) −3.72786 2.70845i −0.414207 0.300939i
\(82\) 0 0
\(83\) −4.70399 14.4774i −0.516329 1.58910i −0.780850 0.624719i \(-0.785214\pi\)
0.264520 0.964380i \(-0.414786\pi\)
\(84\) 0 0
\(85\) 5.27625 3.83342i 0.572290 0.415793i
\(86\) 0 0
\(87\) 1.49700 0.160495
\(88\) 0 0
\(89\) −1.33867 −0.141899 −0.0709495 0.997480i \(-0.522603\pi\)
−0.0709495 + 0.997480i \(0.522603\pi\)
\(90\) 0 0
\(91\) 20.4816 14.8808i 2.14706 1.55993i
\(92\) 0 0
\(93\) −0.250599 0.771266i −0.0259860 0.0799765i
\(94\) 0 0
\(95\) 0.598231 + 0.434640i 0.0613772 + 0.0445932i
\(96\) 0 0
\(97\) 3.07980 9.47864i 0.312706 0.962410i −0.663982 0.747748i \(-0.731135\pi\)
0.976688 0.214662i \(-0.0688650\pi\)
\(98\) 0 0
\(99\) −7.22296 + 3.95008i −0.725935 + 0.396997i
\(100\) 0 0
\(101\) 3.66808 11.2892i 0.364987 1.12332i −0.585002 0.811032i \(-0.698906\pi\)
0.949989 0.312283i \(-0.101094\pi\)
\(102\) 0 0
\(103\) 8.40851 + 6.10914i 0.828515 + 0.601951i 0.919139 0.393934i \(-0.128886\pi\)
−0.0906238 + 0.995885i \(0.528886\pi\)
\(104\) 0 0
\(105\) −0.930412 2.86351i −0.0907989 0.279450i
\(106\) 0 0
\(107\) −6.75373 + 4.90687i −0.652908 + 0.474365i −0.864261 0.503044i \(-0.832213\pi\)
0.211352 + 0.977410i \(0.432213\pi\)
\(108\) 0 0
\(109\) −6.25046 −0.598686 −0.299343 0.954146i \(-0.596767\pi\)
−0.299343 + 0.954146i \(0.596767\pi\)
\(110\) 0 0
\(111\) 5.12112 0.486075
\(112\) 0 0
\(113\) −13.3437 + 9.69474i −1.25527 + 0.912005i −0.998515 0.0544726i \(-0.982652\pi\)
−0.256752 + 0.966477i \(0.582652\pi\)
\(114\) 0 0
\(115\) 1.58554 + 4.87980i 0.147853 + 0.455044i
\(116\) 0 0
\(117\) −12.1504 8.82777i −1.12330 0.816127i
\(118\) 0 0
\(119\) 8.43258 25.9528i 0.773014 2.37909i
\(120\) 0 0
\(121\) 0.642115 + 10.9812i 0.0583741 + 0.998295i
\(122\) 0 0
\(123\) −0.894283 + 2.75232i −0.0806347 + 0.248168i
\(124\) 0 0
\(125\) 0.809017 + 0.587785i 0.0723607 + 0.0525731i
\(126\) 0 0
\(127\) 5.10132 + 15.7003i 0.452669 + 1.39317i 0.873850 + 0.486196i \(0.161616\pi\)
−0.421180 + 0.906977i \(0.638384\pi\)
\(128\) 0 0
\(129\) −3.66695 + 2.66420i −0.322857 + 0.234570i
\(130\) 0 0
\(131\) 12.1354 1.06027 0.530137 0.847912i \(-0.322141\pi\)
0.530137 + 0.847912i \(0.322141\pi\)
\(132\) 0 0
\(133\) 3.09401 0.268285
\(134\) 0 0
\(135\) −3.19150 + 2.31876i −0.274680 + 0.199567i
\(136\) 0 0
\(137\) 1.91081 + 5.88088i 0.163252 + 0.502437i 0.998903 0.0468228i \(-0.0149096\pi\)
−0.835651 + 0.549260i \(0.814910\pi\)
\(138\) 0 0
\(139\) 4.20887 + 3.05792i 0.356992 + 0.259370i 0.751796 0.659395i \(-0.229188\pi\)
−0.394804 + 0.918765i \(0.629188\pi\)
\(140\) 0 0
\(141\) 2.05497 6.32455i 0.173060 0.532623i
\(142\) 0 0
\(143\) −17.6066 + 9.62864i −1.47234 + 0.805187i
\(144\) 0 0
\(145\) −0.642867 + 1.97854i −0.0533872 + 0.164309i
\(146\) 0 0
\(147\) −6.11695 4.44422i −0.504517 0.366553i
\(148\) 0 0
\(149\) −3.48918 10.7386i −0.285845 0.879739i −0.986144 0.165890i \(-0.946950\pi\)
0.700300 0.713849i \(-0.253050\pi\)
\(150\) 0 0
\(151\) 0.126708 0.0920586i 0.0103113 0.00749162i −0.582618 0.812746i \(-0.697971\pi\)
0.592929 + 0.805255i \(0.297971\pi\)
\(152\) 0 0
\(153\) −16.1884 −1.30875
\(154\) 0 0
\(155\) 1.12698 0.0905210
\(156\) 0 0
\(157\) 11.0827 8.05207i 0.884498 0.642625i −0.0499396 0.998752i \(-0.515903\pi\)
0.934438 + 0.356127i \(0.115903\pi\)
\(158\) 0 0
\(159\) 1.72780 + 5.31763i 0.137024 + 0.421715i
\(160\) 0 0
\(161\) 17.3686 + 12.6190i 1.36884 + 0.994517i
\(162\) 0 0
\(163\) 1.80874 5.56673i 0.141671 0.436020i −0.854897 0.518799i \(-0.826379\pi\)
0.996568 + 0.0827788i \(0.0263795\pi\)
\(164\) 0 0
\(165\) 0.442016 + 2.34531i 0.0344109 + 0.182582i
\(166\) 0 0
\(167\) −3.79756 + 11.6877i −0.293864 + 0.904422i 0.689736 + 0.724061i \(0.257727\pi\)
−0.983601 + 0.180361i \(0.942273\pi\)
\(168\) 0 0
\(169\) −19.1003 13.8772i −1.46926 1.06748i
\(170\) 0 0
\(171\) −0.567192 1.74564i −0.0433743 0.133492i
\(172\) 0 0
\(173\) 15.3840 11.1771i 1.16962 0.849782i 0.178660 0.983911i \(-0.442824\pi\)
0.990964 + 0.134129i \(0.0428236\pi\)
\(174\) 0 0
\(175\) 4.18418 0.316294
\(176\) 0 0
\(177\) 4.43564 0.333403
\(178\) 0 0
\(179\) 0.134643 0.0978237i 0.0100637 0.00731169i −0.582742 0.812657i \(-0.698020\pi\)
0.592806 + 0.805346i \(0.298020\pi\)
\(180\) 0 0
\(181\) 1.26224 + 3.88478i 0.0938216 + 0.288753i 0.986945 0.161059i \(-0.0514909\pi\)
−0.893123 + 0.449812i \(0.851491\pi\)
\(182\) 0 0
\(183\) −8.55006 6.21198i −0.632038 0.459203i
\(184\) 0 0
\(185\) −2.19920 + 6.76844i −0.161688 + 0.497626i
\(186\) 0 0
\(187\) −9.25304 + 19.5513i −0.676649 + 1.42973i
\(188\) 0 0
\(189\) −5.10070 + 15.6983i −0.371022 + 1.14189i
\(190\) 0 0
\(191\) −11.9198 8.66026i −0.862488 0.626634i 0.0660726 0.997815i \(-0.478953\pi\)
−0.928561 + 0.371180i \(0.878953\pi\)
\(192\) 0 0
\(193\) 0.0973330 + 0.299560i 0.00700618 + 0.0215628i 0.954498 0.298216i \(-0.0963915\pi\)
−0.947492 + 0.319779i \(0.896391\pi\)
\(194\) 0 0
\(195\) −3.52238 + 2.55916i −0.252243 + 0.183265i
\(196\) 0 0
\(197\) 1.41533 0.100838 0.0504191 0.998728i \(-0.483944\pi\)
0.0504191 + 0.998728i \(0.483944\pi\)
\(198\) 0 0
\(199\) 22.3049 1.58115 0.790575 0.612365i \(-0.209782\pi\)
0.790575 + 0.612365i \(0.209782\pi\)
\(200\) 0 0
\(201\) 3.22089 2.34011i 0.227184 0.165059i
\(202\) 0 0
\(203\) 2.68987 + 8.27858i 0.188792 + 0.581042i
\(204\) 0 0
\(205\) −3.25363 2.36390i −0.227243 0.165102i
\(206\) 0 0
\(207\) 3.93563 12.1126i 0.273545 0.841886i
\(208\) 0 0
\(209\) −2.43247 0.312761i −0.168257 0.0216341i
\(210\) 0 0
\(211\) −7.52419 + 23.1571i −0.517986 + 1.59420i 0.259795 + 0.965664i \(0.416345\pi\)
−0.777782 + 0.628535i \(0.783655\pi\)
\(212\) 0 0
\(213\) −5.16520 3.75274i −0.353913 0.257133i
\(214\) 0 0
\(215\) −1.94647 5.99062i −0.132748 0.408557i
\(216\) 0 0
\(217\) 3.81490 2.77169i 0.258973 0.188155i
\(218\) 0 0
\(219\) −5.82397 −0.393547
\(220\) 0 0
\(221\) −39.4606 −2.65441
\(222\) 0 0
\(223\) −5.03326 + 3.65688i −0.337052 + 0.244883i −0.743417 0.668828i \(-0.766796\pi\)
0.406365 + 0.913711i \(0.366796\pi\)
\(224\) 0 0
\(225\) −0.767041 2.36071i −0.0511361 0.157381i
\(226\) 0 0
\(227\) 12.9975 + 9.44323i 0.862674 + 0.626769i 0.928611 0.371054i \(-0.121004\pi\)
−0.0659370 + 0.997824i \(0.521004\pi\)
\(228\) 0 0
\(229\) −4.84639 + 14.9157i −0.320258 + 0.985654i 0.653277 + 0.757119i \(0.273394\pi\)
−0.973536 + 0.228535i \(0.926606\pi\)
\(230\) 0 0
\(231\) 7.26430 + 6.85194i 0.477956 + 0.450825i
\(232\) 0 0
\(233\) −4.33354 + 13.3373i −0.283899 + 0.873752i 0.702827 + 0.711361i \(0.251921\pi\)
−0.986726 + 0.162392i \(0.948079\pi\)
\(234\) 0 0
\(235\) 7.47651 + 5.43200i 0.487713 + 0.354345i
\(236\) 0 0
\(237\) −0.126855 0.390419i −0.00824010 0.0253604i
\(238\) 0 0
\(239\) −8.74496 + 6.35359i −0.565665 + 0.410979i −0.833528 0.552478i \(-0.813683\pi\)
0.267863 + 0.963457i \(0.413683\pi\)
\(240\) 0 0
\(241\) 19.7912 1.27486 0.637431 0.770507i \(-0.279997\pi\)
0.637431 + 0.770507i \(0.279997\pi\)
\(242\) 0 0
\(243\) 15.1505 0.971905
\(244\) 0 0
\(245\) 8.50065 6.17609i 0.543087 0.394576i
\(246\) 0 0
\(247\) −1.38258 4.25514i −0.0879713 0.270748i
\(248\) 0 0
\(249\) 8.86183 + 6.43850i 0.561596 + 0.408023i
\(250\) 0 0
\(251\) 1.18337 3.64204i 0.0746937 0.229884i −0.906738 0.421694i \(-0.861436\pi\)
0.981432 + 0.191810i \(0.0614358\pi\)
\(252\) 0 0
\(253\) −12.3793 11.6766i −0.778281 0.734101i
\(254\) 0 0
\(255\) −1.45021 + 4.46330i −0.0908160 + 0.279503i
\(256\) 0 0
\(257\) −15.3959 11.1858i −0.960372 0.697751i −0.00713517 0.999975i \(-0.502271\pi\)
−0.953237 + 0.302223i \(0.902271\pi\)
\(258\) 0 0
\(259\) 9.20186 + 28.3204i 0.571775 + 1.75974i
\(260\) 0 0
\(261\) 4.17766 3.03524i 0.258590 0.187877i
\(262\) 0 0
\(263\) 26.6567 1.64372 0.821862 0.569686i \(-0.192935\pi\)
0.821862 + 0.569686i \(0.192935\pi\)
\(264\) 0 0
\(265\) −7.77015 −0.477317
\(266\) 0 0
\(267\) 0.779318 0.566208i 0.0476935 0.0346513i
\(268\) 0 0
\(269\) 0.140462 + 0.432297i 0.00856412 + 0.0263576i 0.955247 0.295809i \(-0.0955890\pi\)
−0.946683 + 0.322166i \(0.895589\pi\)
\(270\) 0 0
\(271\) −13.1552 9.55784i −0.799123 0.580597i 0.111533 0.993761i \(-0.464424\pi\)
−0.910657 + 0.413164i \(0.864424\pi\)
\(272\) 0 0
\(273\) −5.62952 + 17.3259i −0.340714 + 1.04861i
\(274\) 0 0
\(275\) −3.28954 0.422962i −0.198367 0.0255056i
\(276\) 0 0
\(277\) −3.53323 + 10.8742i −0.212291 + 0.653366i 0.787043 + 0.616898i \(0.211611\pi\)
−0.999335 + 0.0364680i \(0.988389\pi\)
\(278\) 0 0
\(279\) −2.26313 1.64426i −0.135490 0.0984392i
\(280\) 0 0
\(281\) −1.75898 5.41357i −0.104932 0.322947i 0.884783 0.466004i \(-0.154307\pi\)
−0.989714 + 0.143057i \(0.954307\pi\)
\(282\) 0 0
\(283\) 0.469970 0.341453i 0.0279368 0.0202973i −0.573729 0.819045i \(-0.694504\pi\)
0.601666 + 0.798748i \(0.294504\pi\)
\(284\) 0 0
\(285\) −0.532101 −0.0315189
\(286\) 0 0
\(287\) −16.8275 −0.993298
\(288\) 0 0
\(289\) −20.6574 + 15.0085i −1.21514 + 0.882850i
\(290\) 0 0
\(291\) 2.21618 + 6.82069i 0.129915 + 0.399836i
\(292\) 0 0
\(293\) 0.952544 + 0.692064i 0.0556482 + 0.0404308i 0.615262 0.788323i \(-0.289050\pi\)
−0.559613 + 0.828754i \(0.689050\pi\)
\(294\) 0 0
\(295\) −1.90483 + 5.86246i −0.110903 + 0.341326i
\(296\) 0 0
\(297\) 5.59698 11.8262i 0.324770 0.686226i
\(298\) 0 0
\(299\) 9.59343 29.5255i 0.554803 1.70751i
\(300\) 0 0
\(301\) −21.3223 15.4916i −1.22900 0.892918i
\(302\) 0 0
\(303\) 2.63949 + 8.12353i 0.151635 + 0.466684i
\(304\) 0 0
\(305\) 11.8819 8.63272i 0.680357 0.494308i
\(306\) 0 0
\(307\) −19.1615 −1.09360 −0.546802 0.837262i \(-0.684155\pi\)
−0.546802 + 0.837262i \(0.684155\pi\)
\(308\) 0 0
\(309\) −7.47900 −0.425466
\(310\) 0 0
\(311\) −15.1066 + 10.9756i −0.856618 + 0.622369i −0.926963 0.375154i \(-0.877590\pi\)
0.0703451 + 0.997523i \(0.477590\pi\)
\(312\) 0 0
\(313\) −1.10929 3.41404i −0.0627008 0.192973i 0.914799 0.403909i \(-0.132349\pi\)
−0.977500 + 0.210936i \(0.932349\pi\)
\(314\) 0 0
\(315\) −8.40242 6.10472i −0.473423 0.343962i
\(316\) 0 0
\(317\) 0.772626 2.37790i 0.0433950 0.133556i −0.927012 0.375032i \(-0.877632\pi\)
0.970407 + 0.241476i \(0.0776316\pi\)
\(318\) 0 0
\(319\) −1.27789 6.78041i −0.0715483 0.379630i
\(320\) 0 0
\(321\) 1.85631 5.71314i 0.103609 0.318876i
\(322\) 0 0
\(323\) −3.90155 2.83464i −0.217088 0.157724i
\(324\) 0 0
\(325\) −1.86973 5.75443i −0.103714 0.319198i
\(326\) 0 0
\(327\) 3.63875 2.64371i 0.201223 0.146197i
\(328\) 0 0
\(329\) 38.6680 2.13184
\(330\) 0 0
\(331\) −6.58629 −0.362015 −0.181008 0.983482i \(-0.557936\pi\)
−0.181008 + 0.983482i \(0.557936\pi\)
\(332\) 0 0
\(333\) 14.2914 10.3833i 0.783167 0.569004i
\(334\) 0 0
\(335\) 1.70969 + 5.26189i 0.0934104 + 0.287488i
\(336\) 0 0
\(337\) 12.3093 + 8.94323i 0.670530 + 0.487169i 0.870203 0.492694i \(-0.163988\pi\)
−0.199672 + 0.979863i \(0.563988\pi\)
\(338\) 0 0
\(339\) 3.66760 11.2877i 0.199197 0.613065i
\(340\) 0 0
\(341\) −3.27940 + 1.79343i −0.177590 + 0.0971197i
\(342\) 0 0
\(343\) 4.53499 13.9573i 0.244867 0.753622i
\(344\) 0 0
\(345\) −2.98700 2.17019i −0.160815 0.116839i
\(346\) 0 0
\(347\) 2.36749 + 7.28638i 0.127093 + 0.391153i 0.994277 0.106836i \(-0.0340719\pi\)
−0.867183 + 0.497989i \(0.834072\pi\)
\(348\) 0 0
\(349\) 7.27630 5.28654i 0.389492 0.282982i −0.375755 0.926719i \(-0.622617\pi\)
0.765247 + 0.643737i \(0.222617\pi\)
\(350\) 0 0
\(351\) 23.8689 1.27403
\(352\) 0 0
\(353\) 10.3310 0.549862 0.274931 0.961464i \(-0.411345\pi\)
0.274931 + 0.961464i \(0.411345\pi\)
\(354\) 0 0
\(355\) 7.17802 5.21514i 0.380970 0.276791i
\(356\) 0 0
\(357\) 6.06796 + 18.6753i 0.321151 + 0.988400i
\(358\) 0 0
\(359\) −13.1568 9.55895i −0.694387 0.504502i 0.183712 0.982980i \(-0.441189\pi\)
−0.878099 + 0.478478i \(0.841189\pi\)
\(360\) 0 0
\(361\) −5.70235 + 17.5500i −0.300124 + 0.923686i
\(362\) 0 0
\(363\) −5.01846 6.12122i −0.263401 0.321280i
\(364\) 0 0
\(365\) 2.50103 7.69738i 0.130910 0.402899i
\(366\) 0 0
\(367\) 27.9456 + 20.3037i 1.45875 + 1.05984i 0.983686 + 0.179893i \(0.0575751\pi\)
0.475064 + 0.879951i \(0.342425\pi\)
\(368\) 0 0
\(369\) 3.08481 + 9.49407i 0.160589 + 0.494242i
\(370\) 0 0
\(371\) −26.3025 + 19.1099i −1.36556 + 0.992137i
\(372\) 0 0
\(373\) 31.2168 1.61634 0.808172 0.588946i \(-0.200457\pi\)
0.808172 + 0.588946i \(0.200457\pi\)
\(374\) 0 0
\(375\) −0.719585 −0.0371592
\(376\) 0 0
\(377\) 10.1834 7.39867i 0.524471 0.381051i
\(378\) 0 0
\(379\) −10.3417 31.8284i −0.531216 1.63491i −0.751687 0.659520i \(-0.770759\pi\)
0.220471 0.975394i \(-0.429241\pi\)
\(380\) 0 0
\(381\) −9.61038 6.98235i −0.492355 0.357717i
\(382\) 0 0
\(383\) −0.0414972 + 0.127715i −0.00212041 + 0.00652594i −0.952111 0.305752i \(-0.901092\pi\)
0.949991 + 0.312278i \(0.101092\pi\)
\(384\) 0 0
\(385\) −12.1756 + 6.65855i −0.620525 + 0.339351i
\(386\) 0 0
\(387\) −4.83152 + 14.8699i −0.245600 + 0.755880i
\(388\) 0 0
\(389\) 6.90744 + 5.01855i 0.350221 + 0.254451i 0.748962 0.662613i \(-0.230553\pi\)
−0.398741 + 0.917064i \(0.630553\pi\)
\(390\) 0 0
\(391\) −10.3406 31.8251i −0.522947 1.60946i
\(392\) 0 0
\(393\) −7.06470 + 5.13280i −0.356367 + 0.258916i
\(394\) 0 0
\(395\) 0.570482 0.0287040
\(396\) 0 0
\(397\) 38.0250 1.90842 0.954211 0.299135i \(-0.0966982\pi\)
0.954211 + 0.299135i \(0.0966982\pi\)
\(398\) 0 0
\(399\) −1.80120 + 1.30865i −0.0901728 + 0.0655144i
\(400\) 0 0
\(401\) −3.62609 11.1600i −0.181078 0.557302i 0.818780 0.574107i \(-0.194651\pi\)
−0.999859 + 0.0168049i \(0.994651\pi\)
\(402\) 0 0
\(403\) −5.51657 4.00802i −0.274800 0.199654i
\(404\) 0 0
\(405\) −1.42392 + 4.38236i −0.0707550 + 0.217761i
\(406\) 0 0
\(407\) −4.37158 23.1953i −0.216691 1.14975i
\(408\) 0 0
\(409\) −8.95644 + 27.5651i −0.442868 + 1.36301i 0.441938 + 0.897046i \(0.354291\pi\)
−0.884805 + 0.465961i \(0.845709\pi\)
\(410\) 0 0
\(411\) −3.59978 2.61539i −0.177564 0.129008i
\(412\) 0 0
\(413\) 7.97016 + 24.5296i 0.392186 + 1.20702i
\(414\) 0 0
\(415\) −12.3152 + 8.94751i −0.604529 + 0.439216i
\(416\) 0 0
\(417\) −3.74361 −0.183325
\(418\) 0 0
\(419\) 12.5318 0.612221 0.306110 0.951996i \(-0.400972\pi\)
0.306110 + 0.951996i \(0.400972\pi\)
\(420\) 0 0
\(421\) 9.24554 6.71728i 0.450600 0.327380i −0.339232 0.940703i \(-0.610167\pi\)
0.789833 + 0.613322i \(0.210167\pi\)
\(422\) 0 0
\(423\) −7.08859 21.8164i −0.344659 1.06075i
\(424\) 0 0
\(425\) −5.27625 3.83342i −0.255936 0.185948i
\(426\) 0 0
\(427\) 18.9899 58.4448i 0.918984 2.82834i
\(428\) 0 0
\(429\) 6.17725 13.0523i 0.298240 0.630171i
\(430\) 0 0
\(431\) 1.17039 3.60210i 0.0563759 0.173507i −0.918904 0.394482i \(-0.870924\pi\)
0.975279 + 0.220975i \(0.0709240\pi\)
\(432\) 0 0
\(433\) −20.7794 15.0971i −0.998596 0.725522i −0.0368093 0.999322i \(-0.511719\pi\)
−0.961787 + 0.273800i \(0.911719\pi\)
\(434\) 0 0
\(435\) −0.462598 1.42373i −0.0221799 0.0682626i
\(436\) 0 0
\(437\) 3.06948 2.23011i 0.146833 0.106681i
\(438\) 0 0
\(439\) 29.1218 1.38991 0.694955 0.719054i \(-0.255424\pi\)
0.694955 + 0.719054i \(0.255424\pi\)
\(440\) 0 0
\(441\) −26.0814 −1.24197
\(442\) 0 0
\(443\) −9.79844 + 7.11898i −0.465538 + 0.338233i −0.795700 0.605691i \(-0.792897\pi\)
0.330162 + 0.943924i \(0.392897\pi\)
\(444\) 0 0
\(445\) 0.413673 + 1.27315i 0.0196100 + 0.0603533i
\(446\) 0 0
\(447\) 6.57326 + 4.77575i 0.310905 + 0.225885i
\(448\) 0 0
\(449\) 9.17428 28.2355i 0.432961 1.33252i −0.462200 0.886776i \(-0.652940\pi\)
0.895161 0.445742i \(-0.147060\pi\)
\(450\) 0 0
\(451\) 13.2296 + 1.70103i 0.622956 + 0.0800982i
\(452\) 0 0
\(453\) −0.0348265 + 0.107185i −0.00163629 + 0.00503599i
\(454\) 0 0
\(455\) −20.4816 14.8808i −0.960193 0.697621i
\(456\) 0 0
\(457\) 0.232225 + 0.714716i 0.0108630 + 0.0334330i 0.956341 0.292253i \(-0.0944049\pi\)
−0.945478 + 0.325686i \(0.894405\pi\)
\(458\) 0 0
\(459\) 20.8143 15.1225i 0.971529 0.705857i
\(460\) 0 0
\(461\) −9.62920 −0.448477 −0.224238 0.974534i \(-0.571989\pi\)
−0.224238 + 0.974534i \(0.571989\pi\)
\(462\) 0 0
\(463\) −3.33661 −0.155065 −0.0775327 0.996990i \(-0.524704\pi\)
−0.0775327 + 0.996990i \(0.524704\pi\)
\(464\) 0 0
\(465\) −0.656078 + 0.476669i −0.0304249 + 0.0221050i
\(466\) 0 0
\(467\) 0.524324 + 1.61370i 0.0242628 + 0.0746733i 0.962455 0.271442i \(-0.0875006\pi\)
−0.938192 + 0.346115i \(0.887501\pi\)
\(468\) 0 0
\(469\) 18.7285 + 13.6071i 0.864803 + 0.628316i
\(470\) 0 0
\(471\) −3.04617 + 9.37514i −0.140360 + 0.431984i
\(472\) 0 0
\(473\) 15.1973 + 14.3346i 0.698773 + 0.659106i
\(474\) 0 0
\(475\) 0.228504 0.703263i 0.0104845 0.0322679i
\(476\) 0 0
\(477\) 15.6035 + 11.3366i 0.714437 + 0.519069i
\(478\) 0 0
\(479\) 6.83901 + 21.0483i 0.312482 + 0.961721i 0.976778 + 0.214252i \(0.0687313\pi\)
−0.664296 + 0.747469i \(0.731269\pi\)
\(480\) 0 0
\(481\) 34.8366 25.3103i 1.58841 1.15405i
\(482\) 0 0
\(483\) −15.4486 −0.702935
\(484\) 0 0
\(485\) −9.96643 −0.452552
\(486\) 0 0
\(487\) 16.1329 11.7213i 0.731053 0.531141i −0.158844 0.987304i \(-0.550777\pi\)
0.889896 + 0.456163i \(0.150777\pi\)
\(488\) 0 0
\(489\) 1.30154 + 4.00574i 0.0588578 + 0.181146i
\(490\) 0 0
\(491\) −21.2327 15.4265i −0.958220 0.696188i −0.00548370 0.999985i \(-0.501746\pi\)
−0.952737 + 0.303797i \(0.901746\pi\)
\(492\) 0 0
\(493\) 4.19265 12.9037i 0.188828 0.581151i
\(494\) 0 0
\(495\) 5.98876 + 5.64881i 0.269175 + 0.253895i
\(496\) 0 0
\(497\) 11.4720 35.3072i 0.514590 1.58375i
\(498\) 0 0
\(499\) 6.75109 + 4.90495i 0.302220 + 0.219576i 0.728551 0.684991i \(-0.240194\pi\)
−0.426331 + 0.904567i \(0.640194\pi\)
\(500\) 0 0
\(501\) −2.73267 8.41030i −0.122087 0.375745i
\(502\) 0 0
\(503\) −24.5799 + 17.8583i −1.09596 + 0.796264i −0.980396 0.197035i \(-0.936869\pi\)
−0.115567 + 0.993300i \(0.536869\pi\)
\(504\) 0 0
\(505\) −11.8701 −0.528214
\(506\) 0 0
\(507\) 16.9889 0.754505
\(508\) 0 0
\(509\) −13.9310 + 10.1215i −0.617480 + 0.448626i −0.852040 0.523476i \(-0.824635\pi\)
0.234560 + 0.972102i \(0.424635\pi\)
\(510\) 0 0
\(511\) −10.4648 32.2073i −0.462934 1.42477i
\(512\) 0 0
\(513\) 2.35997 + 1.71462i 0.104195 + 0.0757022i
\(514\) 0 0
\(515\) 3.21176 9.88480i 0.141527 0.435576i
\(516\) 0 0
\(517\) −30.4002 3.90879i −1.33700 0.171908i
\(518\) 0 0
\(519\) −4.22840 + 13.0137i −0.185606 + 0.571238i
\(520\) 0 0
\(521\) 17.3918 + 12.6359i 0.761950 + 0.553589i 0.899508 0.436905i \(-0.143925\pi\)
−0.137558 + 0.990494i \(0.543925\pi\)
\(522\) 0 0
\(523\) −0.00430372 0.0132455i −0.000188189 0.000579185i 0.950962 0.309307i \(-0.100097\pi\)
−0.951151 + 0.308727i \(0.900097\pi\)
\(524\) 0 0
\(525\) −2.43585 + 1.76975i −0.106309 + 0.0772382i
\(526\) 0 0
\(527\) −7.34993 −0.320168
\(528\) 0 0
\(529\) 3.32640 0.144626
\(530\) 0 0
\(531\) 12.3785 8.99350i 0.537181 0.390285i
\(532\) 0 0
\(533\) 7.51949 + 23.1426i 0.325705 + 1.00242i
\(534\) 0 0
\(535\) 6.75373 + 4.90687i 0.291989 + 0.212143i
\(536\) 0 0
\(537\) −0.0370075 + 0.113898i −0.00159699 + 0.00491504i
\(538\) 0 0
\(539\) −14.9077 + 31.4995i −0.642121 + 1.35678i
\(540\) 0 0
\(541\) −13.2033 + 40.6356i −0.567654 + 1.74706i 0.0922772 + 0.995733i \(0.470585\pi\)
−0.659931 + 0.751326i \(0.729415\pi\)
\(542\) 0 0
\(543\) −2.37793 1.72767i −0.102047 0.0741414i
\(544\) 0 0
\(545\) 1.93150 + 5.94454i 0.0827363 + 0.254636i
\(546\) 0 0
\(547\) −14.4263 + 10.4813i −0.616825 + 0.448150i −0.851811 0.523849i \(-0.824496\pi\)
0.234986 + 0.971999i \(0.424496\pi\)
\(548\) 0 0
\(549\) −36.4557 −1.55589
\(550\) 0 0
\(551\) 1.53833 0.0655352
\(552\) 0 0
\(553\) 1.93112 1.40304i 0.0821197 0.0596635i
\(554\) 0 0
\(555\) −1.58251 4.87047i −0.0671739 0.206740i
\(556\) 0 0
\(557\) 14.4641 + 10.5088i 0.612864 + 0.445272i 0.850422 0.526102i \(-0.176347\pi\)
−0.237558 + 0.971373i \(0.576347\pi\)
\(558\) 0 0
\(559\) −11.7772 + 36.2466i −0.498125 + 1.53307i
\(560\) 0 0
\(561\) −2.88274 15.2956i −0.121709 0.645781i
\(562\) 0 0
\(563\) −3.27590 + 10.0822i −0.138063 + 0.424914i −0.996054 0.0887508i \(-0.971713\pi\)
0.857991 + 0.513665i \(0.171713\pi\)
\(564\) 0 0
\(565\) 13.3437 + 9.69474i 0.561372 + 0.407861i
\(566\) 0 0
\(567\) 5.95793 + 18.3366i 0.250209 + 0.770065i
\(568\) 0 0
\(569\) 18.5037 13.4437i 0.775715 0.563590i −0.127975 0.991777i \(-0.540848\pi\)
0.903690 + 0.428187i \(0.140848\pi\)
\(570\) 0 0
\(571\) −20.5139 −0.858480 −0.429240 0.903191i \(-0.641218\pi\)
−0.429240 + 0.903191i \(0.641218\pi\)
\(572\) 0 0
\(573\) 10.6022 0.442912
\(574\) 0 0
\(575\) 4.15101 3.01588i 0.173109 0.125771i
\(576\) 0 0
\(577\) 7.48360 + 23.0322i 0.311546 + 0.958841i 0.977153 + 0.212538i \(0.0681730\pi\)
−0.665606 + 0.746303i \(0.731827\pi\)
\(578\) 0 0
\(579\) −0.183366 0.133223i −0.00762042 0.00553656i
\(580\) 0 0
\(581\) −19.6823 + 60.5760i −0.816561 + 2.51312i
\(582\) 0 0
\(583\) 22.6104 12.3651i 0.936428 0.512111i
\(584\) 0 0
\(585\) −4.64103 + 14.2836i −0.191883 + 0.590555i
\(586\) 0 0
\(587\) 25.8808 + 18.8035i 1.06822 + 0.776104i 0.975591 0.219597i \(-0.0704742\pi\)
0.0926250 + 0.995701i \(0.470474\pi\)
\(588\) 0 0
\(589\) −0.257519 0.792562i −0.0106109 0.0326569i
\(590\) 0 0
\(591\) −0.823944 + 0.598631i −0.0338925 + 0.0246244i
\(592\) 0 0
\(593\) −42.5206 −1.74611 −0.873056 0.487620i \(-0.837865\pi\)
−0.873056 + 0.487620i \(0.837865\pi\)
\(594\) 0 0
\(595\) −27.2884 −1.11872
\(596\) 0 0
\(597\) −12.9849 + 9.43411i −0.531438 + 0.386112i
\(598\) 0 0
\(599\) −1.32580 4.08040i −0.0541708 0.166721i 0.920311 0.391188i \(-0.127936\pi\)
−0.974482 + 0.224467i \(0.927936\pi\)
\(600\) 0 0
\(601\) −16.1781 11.7541i −0.659919 0.479459i 0.206717 0.978401i \(-0.433722\pi\)
−0.866635 + 0.498942i \(0.833722\pi\)
\(602\) 0 0
\(603\) 4.24379 13.0610i 0.172821 0.531887i
\(604\) 0 0
\(605\) 10.2454 4.00408i 0.416533 0.162789i
\(606\) 0 0
\(607\) −7.17271 + 22.0753i −0.291131 + 0.896010i 0.693362 + 0.720589i \(0.256129\pi\)
−0.984494 + 0.175421i \(0.943871\pi\)
\(608\) 0 0
\(609\) −5.06745 3.68172i −0.205343 0.149191i
\(610\) 0 0
\(611\) −17.2790 53.1794i −0.699035 2.15141i
\(612\) 0 0
\(613\) 4.81297 3.49683i 0.194394 0.141236i −0.486331 0.873775i \(-0.661665\pi\)
0.680725 + 0.732539i \(0.261665\pi\)
\(614\) 0 0
\(615\) 2.89396 0.116696
\(616\) 0 0
\(617\) 39.7576 1.60058 0.800291 0.599612i \(-0.204678\pi\)
0.800291 + 0.599612i \(0.204678\pi\)
\(618\) 0 0
\(619\) 9.56962 6.95274i 0.384636 0.279454i −0.378618 0.925553i \(-0.623601\pi\)
0.763254 + 0.646099i \(0.223601\pi\)
\(620\) 0 0
\(621\) 6.25482 + 19.2504i 0.250997 + 0.772491i
\(622\) 0 0
\(623\) 4.53151 + 3.29233i 0.181551 + 0.131905i
\(624\) 0 0
\(625\) 0.309017 0.951057i 0.0123607 0.0380423i
\(626\) 0 0
\(627\) 1.54836 0.846765i 0.0618357 0.0338165i
\(628\) 0 0
\(629\) 14.3427 44.1424i 0.571883 1.76007i
\(630\) 0 0
\(631\) −11.9825 8.70578i −0.477015 0.346572i 0.323154 0.946346i \(-0.395257\pi\)
−0.800169 + 0.599775i \(0.795257\pi\)
\(632\) 0 0
\(633\) −5.41430 16.6635i −0.215199 0.662314i
\(634\) 0 0
\(635\) 13.3554 9.70330i 0.529995 0.385064i
\(636\) 0 0
\(637\) −63.5756 −2.51896
\(638\) 0 0
\(639\) −22.0233 −0.871230
\(640\) 0 0
\(641\) 6.88502 5.00226i 0.271942 0.197577i −0.443453 0.896298i \(-0.646247\pi\)
0.715395 + 0.698720i \(0.246247\pi\)
\(642\) 0 0
\(643\) 10.6407 + 32.7486i 0.419627 + 1.29148i 0.908046 + 0.418871i \(0.137574\pi\)
−0.488418 + 0.872610i \(0.662426\pi\)
\(644\) 0 0
\(645\) 3.66695 + 2.66420i 0.144386 + 0.104903i
\(646\) 0 0
\(647\) 1.64549 5.06429i 0.0646908 0.199098i −0.913487 0.406868i \(-0.866621\pi\)
0.978178 + 0.207771i \(0.0666208\pi\)
\(648\) 0 0
\(649\) −3.78642 20.0905i −0.148630 0.788621i
\(650\) 0 0
\(651\) −1.04855 + 3.22712i −0.0410961 + 0.126481i
\(652\) 0 0
\(653\) −22.8223 16.5814i −0.893106 0.648880i 0.0435800 0.999050i \(-0.486124\pi\)
−0.936686 + 0.350170i \(0.886124\pi\)
\(654\) 0 0
\(655\) −3.75004 11.5414i −0.146526 0.450961i
\(656\) 0 0
\(657\) −16.2529 + 11.8084i −0.634086 + 0.460690i
\(658\) 0 0
\(659\) −19.9228 −0.776082 −0.388041 0.921642i \(-0.626848\pi\)
−0.388041 + 0.921642i \(0.626848\pi\)
\(660\) 0 0
\(661\) −16.6144 −0.646225 −0.323112 0.946361i \(-0.604729\pi\)
−0.323112 + 0.946361i \(0.604729\pi\)
\(662\) 0 0
\(663\) 22.9723 16.6903i 0.892168 0.648198i
\(664\) 0 0
\(665\) −0.956103 2.94258i −0.0370761 0.114108i
\(666\) 0 0
\(667\) 8.63559 + 6.27413i 0.334372 + 0.242935i
\(668\) 0 0
\(669\) 1.38343 4.25775i 0.0534864 0.164614i
\(670\) 0 0
\(671\) −20.8375 + 44.0289i −0.804423 + 1.69972i
\(672\) 0 0
\(673\) 10.1125 31.1229i 0.389807 1.19970i −0.543126 0.839651i \(-0.682760\pi\)
0.932933 0.360050i \(-0.117240\pi\)
\(674\) 0 0
\(675\) 3.19150 + 2.31876i 0.122841 + 0.0892491i
\(676\) 0 0
\(677\) 12.6792 + 39.0227i 0.487302 + 1.49976i 0.828618 + 0.559814i \(0.189127\pi\)
−0.341316 + 0.939949i \(0.610873\pi\)
\(678\) 0 0
\(679\) −33.7371 + 24.5115i −1.29471 + 0.940663i
\(680\) 0 0
\(681\) −11.5607 −0.443007
\(682\) 0 0
\(683\) 5.71534 0.218691 0.109346 0.994004i \(-0.465124\pi\)
0.109346 + 0.994004i \(0.465124\pi\)
\(684\) 0 0
\(685\) 5.00257 3.63458i 0.191139 0.138870i
\(686\) 0 0
\(687\) −3.48739 10.7331i −0.133052 0.409493i
\(688\) 0 0
\(689\) 38.0350 + 27.6340i 1.44902 + 1.05277i
\(690\) 0 0
\(691\) −12.0118 + 36.9684i −0.456949 + 1.40634i 0.411883 + 0.911237i \(0.364871\pi\)
−0.868832 + 0.495107i \(0.835129\pi\)
\(692\) 0 0
\(693\) 34.1651 + 4.39287i 1.29782 + 0.166871i
\(694\) 0 0
\(695\) 1.60765 4.94783i 0.0609815 0.187682i
\(696\) 0 0
\(697\) 21.2195 + 15.4169i 0.803746 + 0.583956i
\(698\) 0 0
\(699\) −3.11835 9.59729i −0.117947 0.363003i
\(700\) 0 0
\(701\) −2.72643 + 1.98087i −0.102976 + 0.0748163i −0.638082 0.769969i \(-0.720272\pi\)
0.535106 + 0.844785i \(0.320272\pi\)
\(702\) 0 0
\(703\) 5.26252 0.198480
\(704\) 0 0
\(705\) −6.65003 −0.250455
\(706\) 0 0
\(707\) −40.1813 + 29.1934i −1.51117 + 1.09793i
\(708\) 0 0
\(709\) −6.98822 21.5075i −0.262448 0.807732i −0.992270 0.124095i \(-0.960397\pi\)
0.729822 0.683637i \(-0.239603\pi\)
\(710\) 0 0
\(711\) −1.14561 0.832332i −0.0429636 0.0312149i
\(712\) 0 0
\(713\) 1.78687 5.49943i 0.0669189 0.205955i
\(714\) 0 0
\(715\) 14.5981 + 13.7694i 0.545939 + 0.514948i
\(716\) 0 0
\(717\) 2.40362 7.39757i 0.0897647 0.276267i
\(718\) 0 0
\(719\) 15.1343 + 10.9957i 0.564415 + 0.410072i 0.833072 0.553164i \(-0.186580\pi\)
−0.268657 + 0.963236i \(0.586580\pi\)
\(720\) 0 0
\(721\) −13.4386 41.3598i −0.500480 1.54032i
\(722\) 0 0
\(723\) −11.5216 + 8.37092i −0.428492 + 0.311318i
\(724\) 0 0
\(725\) 2.08036 0.0772627
\(726\) 0 0
\(727\) −2.98028 −0.110532 −0.0552662 0.998472i \(-0.517601\pi\)
−0.0552662 + 0.998472i \(0.517601\pi\)
\(728\) 0 0
\(729\) 2.36362 1.71727i 0.0875415 0.0636026i
\(730\) 0 0
\(731\) 12.6945 + 39.0696i 0.469523 + 1.44504i
\(732\) 0 0
\(733\) 16.2972 + 11.8406i 0.601949 + 0.437342i 0.846570 0.532277i \(-0.178664\pi\)
−0.244621 + 0.969619i \(0.578664\pi\)
\(734\) 0 0
\(735\) −2.33647 + 7.19090i −0.0861818 + 0.265240i
\(736\) 0 0
\(737\) −13.3486 12.5909i −0.491703 0.463791i
\(738\) 0 0
\(739\) 7.17525 22.0831i 0.263946 0.812341i −0.727989 0.685589i \(-0.759545\pi\)
0.991934 0.126752i \(-0.0404553\pi\)
\(740\) 0 0
\(741\) 2.60464 + 1.89238i 0.0956838 + 0.0695183i
\(742\) 0 0
\(743\) 9.71585 + 29.9023i 0.356440 + 1.09701i 0.955170 + 0.296058i \(0.0956723\pi\)
−0.598730 + 0.800951i \(0.704328\pi\)
\(744\) 0 0
\(745\) −9.13479 + 6.63681i −0.334673 + 0.243154i
\(746\) 0 0
\(747\) 37.7850 1.38248
\(748\) 0 0
\(749\) 34.9299 1.27631
\(750\) 0 0
\(751\) −32.8274 + 23.8505i −1.19789 + 0.870318i −0.994076 0.108692i \(-0.965334\pi\)
−0.203814 + 0.979010i \(0.565334\pi\)
\(752\) 0 0
\(753\) 0.851536 + 2.62076i 0.0310317 + 0.0955058i
\(754\) 0 0
\(755\) −0.126708 0.0920586i −0.00461137 0.00335036i
\(756\) 0 0
\(757\) −6.97501 + 21.4669i −0.253511 + 0.780226i 0.740609 + 0.671937i \(0.234537\pi\)
−0.994119 + 0.108289i \(0.965463\pi\)
\(758\) 0 0
\(759\) 12.1455 + 1.56163i 0.440852 + 0.0566837i
\(760\) 0 0
\(761\) 6.79531 20.9138i 0.246330 0.758125i −0.749085 0.662474i \(-0.769507\pi\)
0.995415 0.0956511i \(-0.0304933\pi\)
\(762\) 0 0
\(763\) 21.1583 + 15.3724i 0.765981 + 0.556518i
\(764\) 0 0
\(765\) 5.00249 + 15.3961i 0.180865 + 0.556646i
\(766\) 0 0
\(767\) 30.1736 21.9224i 1.08951 0.791572i
\(768\) 0 0
\(769\) −41.1834 −1.48511 −0.742556 0.669784i \(-0.766387\pi\)
−0.742556 + 0.669784i \(0.766387\pi\)
\(770\) 0 0
\(771\) 13.6940 0.493178
\(772\) 0 0
\(773\) 8.76589 6.36879i 0.315287 0.229070i −0.418875 0.908044i \(-0.637575\pi\)
0.734162 + 0.678975i \(0.237575\pi\)
\(774\) 0 0
\(775\) −0.348255 1.07182i −0.0125097 0.0385009i
\(776\) 0 0
\(777\) −17.3354 12.5949i −0.621903 0.451839i
\(778\) 0 0
\(779\) −0.918975 + 2.82832i −0.0329257 + 0.101335i
\(780\) 0 0
\(781\) −12.5882 + 26.5984i −0.450441 + 0.951765i
\(782\) 0 0
\(783\) −2.53605 + 7.80517i −0.0906311 + 0.278934i
\(784\) 0 0
\(785\) −11.0827 8.05207i −0.395560 0.287391i
\(786\) 0 0
\(787\) −9.68298 29.8011i −0.345161 1.06230i −0.961498 0.274813i \(-0.911384\pi\)
0.616337 0.787483i \(-0.288616\pi\)
\(788\) 0 0
\(789\) −15.5184 + 11.2748i −0.552470 + 0.401393i
\(790\) 0 0
\(791\) 69.0126 2.45381
\(792\) 0 0
\(793\) −88.8638 −3.15565
\(794\) 0 0
\(795\) 4.52345 3.28648i 0.160430 0.116559i
\(796\) 0 0
\(797\) −2.94208 9.05479i −0.104214 0.320737i 0.885331 0.464961i \(-0.153932\pi\)
−0.989545 + 0.144224i \(0.953932\pi\)
\(798\) 0 0
\(799\) −48.7603 35.4264i −1.72502 1.25330i
\(800\) 0 0
\(801\) 1.02682 3.16022i 0.0362808 0.111661i
\(802\) 0 0
\(803\) 4.97156 + 26.3787i 0.175442 + 0.930885i
\(804\) 0 0
\(805\) 6.63420 20.4180i 0.233825 0.719639i
\(806\) 0 0
\(807\) −0.264616 0.192255i −0.00931493 0.00676769i
\(808\) 0 0
\(809\) −8.98937 27.6664i −0.316049 0.972700i −0.975320 0.220795i \(-0.929135\pi\)
0.659271 0.751906i \(-0.270865\pi\)
\(810\) 0 0
\(811\) 35.2897 25.6395i 1.23919 0.900324i 0.241646 0.970364i \(-0.422313\pi\)
0.997544 + 0.0700400i \(0.0223127\pi\)
\(812\) 0 0
\(813\) 11.7010 0.410372
\(814\) 0 0
\(815\) −5.85320 −0.205029
\(816\) 0 0
\(817\) −3.76821 + 2.73776i −0.131833 + 0.0957822i
\(818\) 0 0
\(819\) 19.4189 + 59.7653i 0.678552 + 2.08837i
\(820\) 0 0
\(821\) −21.5502 15.6571i −0.752108 0.546438i 0.144372 0.989524i \(-0.453884\pi\)
−0.896479 + 0.443085i \(0.853884\pi\)
\(822\) 0 0
\(823\) 6.16748 18.9816i 0.214985 0.661656i −0.784170 0.620546i \(-0.786911\pi\)
0.999155 0.0411092i \(-0.0130892\pi\)
\(824\) 0 0
\(825\) 2.09393 1.14512i 0.0729012 0.0398680i
\(826\) 0 0
\(827\) 8.24515 25.3760i 0.286712 0.882408i −0.699168 0.714957i \(-0.746446\pi\)
0.985880 0.167451i \(-0.0535537\pi\)
\(828\) 0 0
\(829\) 41.0234 + 29.8052i 1.42480 + 1.03518i 0.990955 + 0.134192i \(0.0428439\pi\)
0.433846 + 0.900987i \(0.357156\pi\)
\(830\) 0 0
\(831\) −2.54246 7.82489i −0.0881970 0.271443i
\(832\) 0 0
\(833\) −55.4396 + 40.2792i −1.92087 + 1.39559i
\(834\) 0 0
\(835\) 12.2892 0.425285
\(836\) 0 0
\(837\) 4.44583 0.153670
\(838\) 0 0
\(839\) 2.18338 1.58632i 0.0753788 0.0547659i −0.549458 0.835522i \(-0.685166\pi\)
0.624836 + 0.780756i \(0.285166\pi\)
\(840\) 0 0
\(841\) −7.62410 23.4646i −0.262900 0.809123i
\(842\) 0 0
\(843\) 3.31374 + 2.40757i 0.114131 + 0.0829211i
\(844\) 0 0
\(845\) −7.29568 + 22.4538i −0.250979 + 0.772434i
\(846\) 0 0
\(847\) 24.8337 38.7515i 0.853295 1.33152i
\(848\) 0 0
\(849\) −0.129174 + 0.397558i −0.00443326 + 0.0136442i
\(850\) 0 0
\(851\) 29.5417 + 21.4633i 1.01268 + 0.735753i
\(852\) 0 0
\(853\) −5.45078 16.7758i −0.186631 0.574392i 0.813341 0.581787i \(-0.197646\pi\)
−0.999973 + 0.00739490i \(0.997646\pi\)
\(854\) 0 0
\(855\) −1.48493 + 1.07886i −0.0507835 + 0.0368963i
\(856\) 0 0
\(857\) −8.72254 −0.297956 −0.148978 0.988840i \(-0.547598\pi\)
−0.148978 + 0.988840i \(0.547598\pi\)
\(858\) 0 0
\(859\) −34.2322 −1.16799 −0.583993 0.811759i \(-0.698510\pi\)
−0.583993 + 0.811759i \(0.698510\pi\)
\(860\) 0 0
\(861\) 9.79627 7.11741i 0.333856 0.242561i
\(862\) 0 0
\(863\) −12.6167 38.8303i −0.429478 1.32180i −0.898640 0.438686i \(-0.855444\pi\)
0.469162 0.883112i \(-0.344556\pi\)
\(864\) 0 0
\(865\) −15.3840 11.1771i −0.523072 0.380034i
\(866\) 0 0
\(867\) 5.67782 17.4745i 0.192829 0.593467i
\(868\) 0 0
\(869\) −1.66005 + 0.907843i −0.0563133 + 0.0307965i
\(870\) 0 0
\(871\) 10.3446 31.8374i 0.350513 1.07877i
\(872\) 0 0
\(873\) 20.0140 + 14.5410i 0.677371 + 0.492139i
\(874\) 0 0
\(875\) −1.29298 3.97939i −0.0437108 0.134528i
\(876\) 0 0
\(877\) 3.24735 2.35934i 0.109655 0.0796692i −0.531606 0.846992i \(-0.678411\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(878\) 0 0
\(879\) −0.847247 −0.0285769
\(880\) 0 0
\(881\) 21.1713 0.713278 0.356639 0.934242i \(-0.383923\pi\)
0.356639 + 0.934242i \(0.383923\pi\)
\(882\) 0 0
\(883\) −5.39607 + 3.92047i −0.181592 + 0.131934i −0.674868 0.737939i \(-0.735799\pi\)
0.493276 + 0.869873i \(0.335799\pi\)
\(884\) 0 0
\(885\) −1.37069 4.21854i −0.0460752 0.141805i
\(886\) 0 0
\(887\) −2.05125 1.49032i −0.0688742 0.0500400i 0.552815 0.833304i \(-0.313553\pi\)
−0.621690 + 0.783264i \(0.713553\pi\)
\(888\) 0 0
\(889\) 21.3449 65.6928i 0.715884 2.20326i
\(890\) 0 0
\(891\) −2.83046 15.0182i −0.0948241 0.503130i
\(892\) 0 0
\(893\) 2.11171 6.49918i 0.0706658 0.217487i
\(894\) 0 0
\(895\) −0.134643 0.0978237i −0.00450061 0.00326989i
\(896\) 0 0
\(897\) 6.90329 + 21.2462i 0.230494 + 0.709388i
\(898\) 0 0
\(899\) 1.89676 1.37808i 0.0632604 0.0459614i
\(900\) 0 0
\(901\) 50.6754 1.68824
\(902\) 0 0
\(903\) 18.9653 0.631124
\(904\) 0 0
\(905\) 3.30459 2.40092i 0.109848 0.0798094i
\(906\) 0 0
\(907\) −11.2423 34.6002i −0.373294 1.14888i −0.944622 0.328160i \(-0.893572\pi\)
0.571328 0.820722i \(-0.306428\pi\)
\(908\) 0 0
\(909\) 23.8369 + 17.3185i 0.790620 + 0.574419i
\(910\) 0 0
\(911\) −18.0238 + 55.4717i −0.597157 + 1.83786i −0.0534731 + 0.998569i \(0.517029\pi\)
−0.543684 + 0.839290i \(0.682971\pi\)
\(912\) 0 0
\(913\) 21.5973 45.6344i 0.714768 1.51028i
\(914\) 0 0
\(915\) −3.26583 + 10.0512i −0.107965 + 0.332282i
\(916\) 0 0
\(917\) −41.0792 29.8458i −1.35655 0.985594i
\(918\) 0 0
\(919\) 9.19511 + 28.2997i 0.303319 + 0.933519i 0.980299 + 0.197518i \(0.0632882\pi\)
−0.676980 + 0.736001i \(0.736712\pi\)
\(920\) 0 0
\(921\) 11.1550 8.10458i 0.367570 0.267055i
\(922\) 0 0
\(923\) −53.6837 −1.76702
\(924\) 0 0
\(925\) 7.11676 0.233998
\(926\) 0 0
\(927\) −20.8716 + 15.1641i −0.685512 + 0.498054i
\(928\) 0 0
\(929\) −8.03546 24.7306i −0.263635 0.811384i −0.992005 0.126200i \(-0.959722\pi\)
0.728370 0.685184i \(-0.240278\pi\)
\(930\) 0 0
\(931\) −6.28585 4.56693i −0.206010 0.149675i
\(932\) 0 0
\(933\) 4.15216 12.7790i 0.135936 0.418367i
\(934\) 0 0
\(935\) 21.4538 + 2.75847i 0.701613 + 0.0902117i
\(936\) 0 0
\(937\) −1.99643 + 6.14437i −0.0652205 + 0.200728i −0.978356 0.206928i \(-0.933654\pi\)
0.913136 + 0.407655i \(0.133654\pi\)
\(938\) 0 0
\(939\) 2.08979 + 1.51832i 0.0681977 + 0.0495485i
\(940\) 0 0
\(941\) −9.22366 28.3875i −0.300683 0.925406i −0.981253 0.192724i \(-0.938268\pi\)
0.680570 0.732683i \(-0.261732\pi\)
\(942\) 0 0
\(943\) −16.6941 + 12.1290i −0.543635 + 0.394974i
\(944\) 0 0
\(945\) 16.5062 0.536947
\(946\) 0 0
\(947\) 36.1069 1.17332 0.586658 0.809834i \(-0.300443\pi\)
0.586658 + 0.809834i \(0.300443\pi\)
\(948\) 0 0
\(949\) −39.6178 + 28.7840i −1.28605 + 0.934369i
\(950\) 0 0
\(951\) 0.555971 + 1.71110i 0.0180286 + 0.0554863i
\(952\) 0 0
\(953\) 27.9265 + 20.2898i 0.904628 + 0.657250i 0.939650 0.342136i \(-0.111150\pi\)
−0.0350228 + 0.999387i \(0.511150\pi\)
\(954\) 0 0
\(955\) −4.55297 + 14.0126i −0.147331 + 0.453437i
\(956\) 0 0
\(957\) 3.61179 + 3.40676i 0.116753 + 0.110125i
\(958\) 0 0
\(959\) 7.99519 24.6067i 0.258178 0.794591i
\(960\) 0 0
\(961\) 24.0520 + 17.4748i 0.775871 + 0.563704i
\(962\) 0 0
\(963\) −6.40331 19.7074i −0.206344 0.635061i
\(964\) 0 0
\(965\) 0.254821 0.185138i 0.00820298 0.00595982i
\(966\) 0 0
\(967\) −28.4086 −0.913559 −0.456780 0.889580i \(-0.650997\pi\)
−0.456780 + 0.889580i \(0.650997\pi\)
\(968\) 0 0
\(969\) 3.47026 0.111481
\(970\) 0 0
\(971\) 25.0567 18.2048i 0.804108 0.584219i −0.108008 0.994150i \(-0.534447\pi\)
0.912116 + 0.409931i \(0.134447\pi\)
\(972\) 0 0
\(973\) −6.72668 20.7026i −0.215648 0.663695i
\(974\) 0 0
\(975\) 3.52238 + 2.55916i 0.112806 + 0.0819586i
\(976\) 0 0
\(977\) −11.9662 + 36.8282i −0.382833 + 1.17824i 0.555207 + 0.831712i \(0.312639\pi\)
−0.938040 + 0.346527i \(0.887361\pi\)
\(978\) 0 0
\(979\) −3.22980 3.04646i −0.103225 0.0973652i
\(980\) 0 0
\(981\) 4.79436 14.7555i 0.153072 0.471108i
\(982\) 0 0
\(983\) −8.99601 6.53598i −0.286928 0.208465i 0.435006 0.900428i \(-0.356746\pi\)
−0.721934 + 0.691962i \(0.756746\pi\)
\(984\) 0 0
\(985\) −0.437361 1.34606i −0.0139355 0.0428890i
\(986\) 0 0
\(987\) −22.5108 + 16.3551i −0.716528 + 0.520588i
\(988\) 0 0
\(989\) −32.3193 −1.02769
\(990\) 0 0
\(991\) −11.5682 −0.367475 −0.183737 0.982975i \(-0.558820\pi\)
−0.183737 + 0.982975i \(0.558820\pi\)
\(992\) 0 0
\(993\) 3.83426 2.78575i 0.121676 0.0884031i
\(994\) 0 0
\(995\) −6.89259 21.2132i −0.218510 0.672504i
\(996\) 0 0
\(997\) −22.7886 16.5569i −0.721722 0.524362i 0.165212 0.986258i \(-0.447169\pi\)
−0.886934 + 0.461896i \(0.847169\pi\)
\(998\) 0 0
\(999\) −8.67564 + 26.7009i −0.274485 + 0.844779i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.y.b.361.2 12
4.3 odd 2 880.2.bo.j.801.2 12
11.4 even 5 4840.2.a.bf.1.3 6
11.5 even 5 inner 440.2.y.b.401.2 yes 12
11.7 odd 10 4840.2.a.be.1.3 6
44.7 even 10 9680.2.a.cy.1.4 6
44.15 odd 10 9680.2.a.cx.1.4 6
44.27 odd 10 880.2.bo.j.401.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.b.361.2 12 1.1 even 1 trivial
440.2.y.b.401.2 yes 12 11.5 even 5 inner
880.2.bo.j.401.2 12 44.27 odd 10
880.2.bo.j.801.2 12 4.3 odd 2
4840.2.a.be.1.3 6 11.7 odd 10
4840.2.a.bf.1.3 6 11.4 even 5
9680.2.a.cx.1.4 6 44.15 odd 10
9680.2.a.cy.1.4 6 44.7 even 10