Defining parameters
Level: | \( N \) | \(=\) | \( 440 = 2^{3} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 440.y (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(440, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 320 | 48 | 272 |
Cusp forms | 256 | 48 | 208 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(440, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
440.2.y.a | $8$ | $3.513$ | 8.0.13140625.1 | None | \(0\) | \(1\) | \(-2\) | \(1\) | \(q+(\beta _{1}-\beta _{5})q^{3}+\beta _{7}q^{5}+(-1-\beta _{2}+\cdots)q^{7}+\cdots\) |
440.2.y.b | $12$ | $3.513$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-1\) | \(3\) | \(-8\) | \(q+(\beta _{1}+\beta _{4})q^{3}+(1-\beta _{6}+\beta _{7}-\beta _{8}+\cdots)q^{5}+\cdots\) |
440.2.y.c | $12$ | $3.513$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-1\) | \(3\) | \(-1\) | \(q+(\beta _{3}+\beta _{8})q^{3}-\beta _{6}q^{5}+(1+\beta _{2}+\beta _{5}+\cdots)q^{7}+\cdots\) |
440.2.y.d | $16$ | $3.513$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-3\) | \(-4\) | \(8\) | \(q-\beta _{1}q^{3}+(-1+\beta _{4}-\beta _{10}+\beta _{12}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(440, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(440, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(110, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(220, [\chi])\)\(^{\oplus 2}\)