Properties

Label 440.2
Level 440
Weight 2
Dimension 2812
Nonzero newspaces 18
Newform subspaces 50
Sturm bound 23040
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Newform subspaces: \( 50 \)
Sturm bound: \(23040\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(440))\).

Total New Old
Modular forms 6240 3028 3212
Cusp forms 5281 2812 2469
Eisenstein series 959 216 743

Trace form

\( 2812 q - 12 q^{2} - 12 q^{3} - 12 q^{4} + 2 q^{5} - 44 q^{6} - 4 q^{7} - 12 q^{8} - 14 q^{9} - 22 q^{10} - 48 q^{11} - 56 q^{12} + 4 q^{13} - 36 q^{14} - 28 q^{15} - 76 q^{16} - 8 q^{17} - 68 q^{18} - 14 q^{19}+ \cdots - 316 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(440))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
440.2.a \(\chi_{440}(1, \cdot)\) 440.2.a.a 1 1
440.2.a.b 1
440.2.a.c 1
440.2.a.d 1
440.2.a.e 2
440.2.a.f 2
440.2.a.g 2
440.2.b \(\chi_{440}(89, \cdot)\) 440.2.b.a 2 1
440.2.b.b 2
440.2.b.c 2
440.2.b.d 8
440.2.c \(\chi_{440}(219, \cdot)\) 440.2.c.a 4 1
440.2.c.b 8
440.2.c.c 56
440.2.f \(\chi_{440}(351, \cdot)\) None 0 1
440.2.g \(\chi_{440}(221, \cdot)\) 440.2.g.a 4 1
440.2.g.b 12
440.2.g.c 24
440.2.l \(\chi_{440}(309, \cdot)\) 440.2.l.a 2 1
440.2.l.b 2
440.2.l.c 56
440.2.m \(\chi_{440}(439, \cdot)\) None 0 1
440.2.p \(\chi_{440}(131, \cdot)\) 440.2.p.a 48 1
440.2.r \(\chi_{440}(67, \cdot)\) 440.2.r.a 2 2
440.2.r.b 2
440.2.r.c 2
440.2.r.d 2
440.2.r.e 4
440.2.r.f 4
440.2.r.g 48
440.2.r.h 56
440.2.t \(\chi_{440}(197, \cdot)\) 440.2.t.a 4 2
440.2.t.b 4
440.2.t.c 128
440.2.v \(\chi_{440}(153, \cdot)\) 440.2.v.a 4 2
440.2.v.b 32
440.2.x \(\chi_{440}(23, \cdot)\) None 0 2
440.2.y \(\chi_{440}(81, \cdot)\) 440.2.y.a 8 4
440.2.y.b 12
440.2.y.c 12
440.2.y.d 16
440.2.z \(\chi_{440}(51, \cdot)\) 440.2.z.a 192 4
440.2.bc \(\chi_{440}(39, \cdot)\) None 0 4
440.2.bd \(\chi_{440}(69, \cdot)\) 440.2.bd.a 272 4
440.2.bi \(\chi_{440}(141, \cdot)\) 440.2.bi.a 8 4
440.2.bi.b 8
440.2.bi.c 176
440.2.bj \(\chi_{440}(151, \cdot)\) None 0 4
440.2.bm \(\chi_{440}(19, \cdot)\) 440.2.bm.a 8 4
440.2.bm.b 8
440.2.bm.c 256
440.2.bn \(\chi_{440}(9, \cdot)\) 440.2.bn.a 72 4
440.2.bo \(\chi_{440}(17, \cdot)\) 440.2.bo.a 144 8
440.2.bq \(\chi_{440}(47, \cdot)\) None 0 8
440.2.bs \(\chi_{440}(3, \cdot)\) 440.2.bs.a 544 8
440.2.bu \(\chi_{440}(13, \cdot)\) 440.2.bu.a 544 8

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(440))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(440)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(220))\)\(^{\oplus 2}\)