Properties

Label 440.2.l.a.309.1
Level $440$
Weight $2$
Character 440.309
Analytic conductor $3.513$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [440,2,Mod(309,440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("440.309"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 440 = 2^{3} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 440.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.51341768894\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 309.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 440.309
Dual form 440.2.l.a.309.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} -2.00000 q^{3} +2.00000i q^{4} +(-1.00000 + 2.00000i) q^{5} +(2.00000 + 2.00000i) q^{6} +4.00000i q^{7} +(2.00000 - 2.00000i) q^{8} +1.00000 q^{9} +(3.00000 - 1.00000i) q^{10} -1.00000i q^{11} -4.00000i q^{12} -2.00000 q^{13} +(4.00000 - 4.00000i) q^{14} +(2.00000 - 4.00000i) q^{15} -4.00000 q^{16} -6.00000i q^{17} +(-1.00000 - 1.00000i) q^{18} +(-4.00000 - 2.00000i) q^{20} -8.00000i q^{21} +(-1.00000 + 1.00000i) q^{22} +8.00000i q^{23} +(-4.00000 + 4.00000i) q^{24} +(-3.00000 - 4.00000i) q^{25} +(2.00000 + 2.00000i) q^{26} +4.00000 q^{27} -8.00000 q^{28} -6.00000i q^{29} +(-6.00000 + 2.00000i) q^{30} -10.0000 q^{31} +(4.00000 + 4.00000i) q^{32} +2.00000i q^{33} +(-6.00000 + 6.00000i) q^{34} +(-8.00000 - 4.00000i) q^{35} +2.00000i q^{36} +6.00000 q^{37} +4.00000 q^{39} +(2.00000 + 6.00000i) q^{40} +6.00000 q^{41} +(-8.00000 + 8.00000i) q^{42} -8.00000 q^{43} +2.00000 q^{44} +(-1.00000 + 2.00000i) q^{45} +(8.00000 - 8.00000i) q^{46} -8.00000i q^{47} +8.00000 q^{48} -9.00000 q^{49} +(-1.00000 + 7.00000i) q^{50} +12.0000i q^{51} -4.00000i q^{52} -10.0000 q^{53} +(-4.00000 - 4.00000i) q^{54} +(2.00000 + 1.00000i) q^{55} +(8.00000 + 8.00000i) q^{56} +(-6.00000 + 6.00000i) q^{58} -4.00000i q^{59} +(8.00000 + 4.00000i) q^{60} -6.00000i q^{61} +(10.0000 + 10.0000i) q^{62} +4.00000i q^{63} -8.00000i q^{64} +(2.00000 - 4.00000i) q^{65} +(2.00000 - 2.00000i) q^{66} -2.00000 q^{67} +12.0000 q^{68} -16.0000i q^{69} +(4.00000 + 12.0000i) q^{70} +6.00000 q^{71} +(2.00000 - 2.00000i) q^{72} -2.00000i q^{73} +(-6.00000 - 6.00000i) q^{74} +(6.00000 + 8.00000i) q^{75} +4.00000 q^{77} +(-4.00000 - 4.00000i) q^{78} +4.00000 q^{79} +(4.00000 - 8.00000i) q^{80} -11.0000 q^{81} +(-6.00000 - 6.00000i) q^{82} -4.00000 q^{83} +16.0000 q^{84} +(12.0000 + 6.00000i) q^{85} +(8.00000 + 8.00000i) q^{86} +12.0000i q^{87} +(-2.00000 - 2.00000i) q^{88} -10.0000 q^{89} +(3.00000 - 1.00000i) q^{90} -8.00000i q^{91} -16.0000 q^{92} +20.0000 q^{93} +(-8.00000 + 8.00000i) q^{94} +(-8.00000 - 8.00000i) q^{96} -4.00000i q^{97} +(9.00000 + 9.00000i) q^{98} -1.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{3} - 2 q^{5} + 4 q^{6} + 4 q^{8} + 2 q^{9} + 6 q^{10} - 4 q^{13} + 8 q^{14} + 4 q^{15} - 8 q^{16} - 2 q^{18} - 8 q^{20} - 2 q^{22} - 8 q^{24} - 6 q^{25} + 4 q^{26} + 8 q^{27} - 16 q^{28}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/440\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(177\) \(221\) \(321\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 2.00000i 1.00000i
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) 2.00000 + 2.00000i 0.816497 + 0.816497i
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 1.00000 0.333333
\(10\) 3.00000 1.00000i 0.948683 0.316228i
\(11\) 1.00000i 0.301511i
\(12\) 4.00000i 1.15470i
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 4.00000 4.00000i 1.06904 1.06904i
\(15\) 2.00000 4.00000i 0.516398 1.03280i
\(16\) −4.00000 −1.00000
\(17\) 6.00000i 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) −1.00000 1.00000i −0.235702 0.235702i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −4.00000 2.00000i −0.894427 0.447214i
\(21\) 8.00000i 1.74574i
\(22\) −1.00000 + 1.00000i −0.213201 + 0.213201i
\(23\) 8.00000i 1.66812i 0.551677 + 0.834058i \(0.313988\pi\)
−0.551677 + 0.834058i \(0.686012\pi\)
\(24\) −4.00000 + 4.00000i −0.816497 + 0.816497i
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 2.00000 + 2.00000i 0.392232 + 0.392232i
\(27\) 4.00000 0.769800
\(28\) −8.00000 −1.51186
\(29\) 6.00000i 1.11417i −0.830455 0.557086i \(-0.811919\pi\)
0.830455 0.557086i \(-0.188081\pi\)
\(30\) −6.00000 + 2.00000i −1.09545 + 0.365148i
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 2.00000i 0.348155i
\(34\) −6.00000 + 6.00000i −1.02899 + 1.02899i
\(35\) −8.00000 4.00000i −1.35225 0.676123i
\(36\) 2.00000i 0.333333i
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 2.00000 + 6.00000i 0.316228 + 0.948683i
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) −8.00000 + 8.00000i −1.23443 + 1.23443i
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 2.00000 0.301511
\(45\) −1.00000 + 2.00000i −0.149071 + 0.298142i
\(46\) 8.00000 8.00000i 1.17954 1.17954i
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 8.00000 1.15470
\(49\) −9.00000 −1.28571
\(50\) −1.00000 + 7.00000i −0.141421 + 0.989949i
\(51\) 12.0000i 1.68034i
\(52\) 4.00000i 0.554700i
\(53\) −10.0000 −1.37361 −0.686803 0.726844i \(-0.740986\pi\)
−0.686803 + 0.726844i \(0.740986\pi\)
\(54\) −4.00000 4.00000i −0.544331 0.544331i
\(55\) 2.00000 + 1.00000i 0.269680 + 0.134840i
\(56\) 8.00000 + 8.00000i 1.06904 + 1.06904i
\(57\) 0 0
\(58\) −6.00000 + 6.00000i −0.787839 + 0.787839i
\(59\) 4.00000i 0.520756i −0.965507 0.260378i \(-0.916153\pi\)
0.965507 0.260378i \(-0.0838471\pi\)
\(60\) 8.00000 + 4.00000i 1.03280 + 0.516398i
\(61\) 6.00000i 0.768221i −0.923287 0.384111i \(-0.874508\pi\)
0.923287 0.384111i \(-0.125492\pi\)
\(62\) 10.0000 + 10.0000i 1.27000 + 1.27000i
\(63\) 4.00000i 0.503953i
\(64\) 8.00000i 1.00000i
\(65\) 2.00000 4.00000i 0.248069 0.496139i
\(66\) 2.00000 2.00000i 0.246183 0.246183i
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 12.0000 1.45521
\(69\) 16.0000i 1.92617i
\(70\) 4.00000 + 12.0000i 0.478091 + 1.43427i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 2.00000 2.00000i 0.235702 0.235702i
\(73\) 2.00000i 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) −6.00000 6.00000i −0.697486 0.697486i
\(75\) 6.00000 + 8.00000i 0.692820 + 0.923760i
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) −4.00000 4.00000i −0.452911 0.452911i
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 4.00000 8.00000i 0.447214 0.894427i
\(81\) −11.0000 −1.22222
\(82\) −6.00000 6.00000i −0.662589 0.662589i
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 16.0000 1.74574
\(85\) 12.0000 + 6.00000i 1.30158 + 0.650791i
\(86\) 8.00000 + 8.00000i 0.862662 + 0.862662i
\(87\) 12.0000i 1.28654i
\(88\) −2.00000 2.00000i −0.213201 0.213201i
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 3.00000 1.00000i 0.316228 0.105409i
\(91\) 8.00000i 0.838628i
\(92\) −16.0000 −1.66812
\(93\) 20.0000 2.07390
\(94\) −8.00000 + 8.00000i −0.825137 + 0.825137i
\(95\) 0 0
\(96\) −8.00000 8.00000i −0.816497 0.816497i
\(97\) 4.00000i 0.406138i −0.979164 0.203069i \(-0.934908\pi\)
0.979164 0.203069i \(-0.0650917\pi\)
\(98\) 9.00000 + 9.00000i 0.909137 + 0.909137i
\(99\) 1.00000i 0.100504i
\(100\) 8.00000 6.00000i 0.800000 0.600000i
\(101\) 6.00000i 0.597022i 0.954406 + 0.298511i \(0.0964900\pi\)
−0.954406 + 0.298511i \(0.903510\pi\)
\(102\) 12.0000 12.0000i 1.18818 1.18818i
\(103\) 8.00000i 0.788263i −0.919054 0.394132i \(-0.871045\pi\)
0.919054 0.394132i \(-0.128955\pi\)
\(104\) −4.00000 + 4.00000i −0.392232 + 0.392232i
\(105\) 16.0000 + 8.00000i 1.56144 + 0.780720i
\(106\) 10.0000 + 10.0000i 0.971286 + 0.971286i
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 8.00000i 0.769800i
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) −1.00000 3.00000i −0.0953463 0.286039i
\(111\) −12.0000 −1.13899
\(112\) 16.0000i 1.51186i
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) 0 0
\(115\) −16.0000 8.00000i −1.49201 0.746004i
\(116\) 12.0000 1.11417
\(117\) −2.00000 −0.184900
\(118\) −4.00000 + 4.00000i −0.368230 + 0.368230i
\(119\) 24.0000 2.20008
\(120\) −4.00000 12.0000i −0.365148 1.09545i
\(121\) −1.00000 −0.0909091
\(122\) −6.00000 + 6.00000i −0.543214 + 0.543214i
\(123\) −12.0000 −1.08200
\(124\) 20.0000i 1.79605i
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) 4.00000 4.00000i 0.356348 0.356348i
\(127\) 16.0000i 1.41977i 0.704317 + 0.709885i \(0.251253\pi\)
−0.704317 + 0.709885i \(0.748747\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 16.0000 1.40872
\(130\) −6.00000 + 2.00000i −0.526235 + 0.175412i
\(131\) 8.00000i 0.698963i −0.936943 0.349482i \(-0.886358\pi\)
0.936943 0.349482i \(-0.113642\pi\)
\(132\) −4.00000 −0.348155
\(133\) 0 0
\(134\) 2.00000 + 2.00000i 0.172774 + 0.172774i
\(135\) −4.00000 + 8.00000i −0.344265 + 0.688530i
\(136\) −12.0000 12.0000i −1.02899 1.02899i
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) −16.0000 + 16.0000i −1.36201 + 1.36201i
\(139\) 16.0000i 1.35710i 0.734553 + 0.678551i \(0.237392\pi\)
−0.734553 + 0.678551i \(0.762608\pi\)
\(140\) 8.00000 16.0000i 0.676123 1.35225i
\(141\) 16.0000i 1.34744i
\(142\) −6.00000 6.00000i −0.503509 0.503509i
\(143\) 2.00000i 0.167248i
\(144\) −4.00000 −0.333333
\(145\) 12.0000 + 6.00000i 0.996546 + 0.498273i
\(146\) −2.00000 + 2.00000i −0.165521 + 0.165521i
\(147\) 18.0000 1.48461
\(148\) 12.0000i 0.986394i
\(149\) 6.00000i 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) 2.00000 14.0000i 0.163299 1.14310i
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 6.00000i 0.485071i
\(154\) −4.00000 4.00000i −0.322329 0.322329i
\(155\) 10.0000 20.0000i 0.803219 1.60644i
\(156\) 8.00000i 0.640513i
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) −4.00000 4.00000i −0.318223 0.318223i
\(159\) 20.0000 1.58610
\(160\) −12.0000 + 4.00000i −0.948683 + 0.316228i
\(161\) −32.0000 −2.52195
\(162\) 11.0000 + 11.0000i 0.864242 + 0.864242i
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) 12.0000i 0.937043i
\(165\) −4.00000 2.00000i −0.311400 0.155700i
\(166\) 4.00000 + 4.00000i 0.310460 + 0.310460i
\(167\) 8.00000i 0.619059i −0.950890 0.309529i \(-0.899829\pi\)
0.950890 0.309529i \(-0.100171\pi\)
\(168\) −16.0000 16.0000i −1.23443 1.23443i
\(169\) −9.00000 −0.692308
\(170\) −6.00000 18.0000i −0.460179 1.38054i
\(171\) 0 0
\(172\) 16.0000i 1.21999i
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 12.0000 12.0000i 0.909718 0.909718i
\(175\) 16.0000 12.0000i 1.20949 0.907115i
\(176\) 4.00000i 0.301511i
\(177\) 8.00000i 0.601317i
\(178\) 10.0000 + 10.0000i 0.749532 + 0.749532i
\(179\) 20.0000i 1.49487i 0.664335 + 0.747435i \(0.268715\pi\)
−0.664335 + 0.747435i \(0.731285\pi\)
\(180\) −4.00000 2.00000i −0.298142 0.149071i
\(181\) 16.0000i 1.18927i 0.803996 + 0.594635i \(0.202704\pi\)
−0.803996 + 0.594635i \(0.797296\pi\)
\(182\) −8.00000 + 8.00000i −0.592999 + 0.592999i
\(183\) 12.0000i 0.887066i
\(184\) 16.0000 + 16.0000i 1.17954 + 1.17954i
\(185\) −6.00000 + 12.0000i −0.441129 + 0.882258i
\(186\) −20.0000 20.0000i −1.46647 1.46647i
\(187\) −6.00000 −0.438763
\(188\) 16.0000 1.16692
\(189\) 16.0000i 1.16383i
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 16.0000i 1.15470i
\(193\) 6.00000i 0.431889i 0.976406 + 0.215945i \(0.0692831\pi\)
−0.976406 + 0.215945i \(0.930717\pi\)
\(194\) −4.00000 + 4.00000i −0.287183 + 0.287183i
\(195\) −4.00000 + 8.00000i −0.286446 + 0.572892i
\(196\) 18.0000i 1.28571i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) −1.00000 + 1.00000i −0.0710669 + 0.0710669i
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) −14.0000 2.00000i −0.989949 0.141421i
\(201\) 4.00000 0.282138
\(202\) 6.00000 6.00000i 0.422159 0.422159i
\(203\) 24.0000 1.68447
\(204\) −24.0000 −1.68034
\(205\) −6.00000 + 12.0000i −0.419058 + 0.838116i
\(206\) −8.00000 + 8.00000i −0.557386 + 0.557386i
\(207\) 8.00000i 0.556038i
\(208\) 8.00000 0.554700
\(209\) 0 0
\(210\) −8.00000 24.0000i −0.552052 1.65616i
\(211\) 12.0000i 0.826114i 0.910705 + 0.413057i \(0.135539\pi\)
−0.910705 + 0.413057i \(0.864461\pi\)
\(212\) 20.0000i 1.37361i
\(213\) −12.0000 −0.822226
\(214\) −8.00000 8.00000i −0.546869 0.546869i
\(215\) 8.00000 16.0000i 0.545595 1.09119i
\(216\) 8.00000 8.00000i 0.544331 0.544331i
\(217\) 40.0000i 2.71538i
\(218\) 10.0000 10.0000i 0.677285 0.677285i
\(219\) 4.00000i 0.270295i
\(220\) −2.00000 + 4.00000i −0.134840 + 0.269680i
\(221\) 12.0000i 0.807207i
\(222\) 12.0000 + 12.0000i 0.805387 + 0.805387i
\(223\) 16.0000i 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) −16.0000 + 16.0000i −1.06904 + 1.06904i
\(225\) −3.00000 4.00000i −0.200000 0.266667i
\(226\) 4.00000 4.00000i 0.266076 0.266076i
\(227\) −16.0000 −1.06196 −0.530979 0.847385i \(-0.678176\pi\)
−0.530979 + 0.847385i \(0.678176\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 8.00000 + 24.0000i 0.527504 + 1.58251i
\(231\) −8.00000 −0.526361
\(232\) −12.0000 12.0000i −0.787839 0.787839i
\(233\) 18.0000i 1.17922i 0.807688 + 0.589610i \(0.200718\pi\)
−0.807688 + 0.589610i \(0.799282\pi\)
\(234\) 2.00000 + 2.00000i 0.130744 + 0.130744i
\(235\) 16.0000 + 8.00000i 1.04372 + 0.521862i
\(236\) 8.00000 0.520756
\(237\) −8.00000 −0.519656
\(238\) −24.0000 24.0000i −1.55569 1.55569i
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) −8.00000 + 16.0000i −0.516398 + 1.03280i
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 1.00000 + 1.00000i 0.0642824 + 0.0642824i
\(243\) 10.0000 0.641500
\(244\) 12.0000 0.768221
\(245\) 9.00000 18.0000i 0.574989 1.14998i
\(246\) 12.0000 + 12.0000i 0.765092 + 0.765092i
\(247\) 0 0
\(248\) −20.0000 + 20.0000i −1.27000 + 1.27000i
\(249\) 8.00000 0.506979
\(250\) −13.0000 9.00000i −0.822192 0.569210i
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) −8.00000 −0.503953
\(253\) 8.00000 0.502956
\(254\) 16.0000 16.0000i 1.00393 1.00393i
\(255\) −24.0000 12.0000i −1.50294 0.751469i
\(256\) 16.0000 1.00000
\(257\) 8.00000i 0.499026i 0.968371 + 0.249513i \(0.0802706\pi\)
−0.968371 + 0.249513i \(0.919729\pi\)
\(258\) −16.0000 16.0000i −0.996116 0.996116i
\(259\) 24.0000i 1.49129i
\(260\) 8.00000 + 4.00000i 0.496139 + 0.248069i
\(261\) 6.00000i 0.371391i
\(262\) −8.00000 + 8.00000i −0.494242 + 0.494242i
\(263\) 12.0000i 0.739952i −0.929041 0.369976i \(-0.879366\pi\)
0.929041 0.369976i \(-0.120634\pi\)
\(264\) 4.00000 + 4.00000i 0.246183 + 0.246183i
\(265\) 10.0000 20.0000i 0.614295 1.22859i
\(266\) 0 0
\(267\) 20.0000 1.22398
\(268\) 4.00000i 0.244339i
\(269\) 24.0000i 1.46331i −0.681677 0.731653i \(-0.738749\pi\)
0.681677 0.731653i \(-0.261251\pi\)
\(270\) 12.0000 4.00000i 0.730297 0.243432i
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 24.0000i 1.45521i
\(273\) 16.0000i 0.968364i
\(274\) −12.0000 + 12.0000i −0.724947 + 0.724947i
\(275\) −4.00000 + 3.00000i −0.241209 + 0.180907i
\(276\) 32.0000 1.92617
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 16.0000 16.0000i 0.959616 0.959616i
\(279\) −10.0000 −0.598684
\(280\) −24.0000 + 8.00000i −1.43427 + 0.478091i
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 16.0000 16.0000i 0.952786 0.952786i
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 12.0000i 0.712069i
\(285\) 0 0
\(286\) 2.00000 2.00000i 0.118262 0.118262i
\(287\) 24.0000i 1.41668i
\(288\) 4.00000 + 4.00000i 0.235702 + 0.235702i
\(289\) −19.0000 −1.11765
\(290\) −6.00000 18.0000i −0.352332 1.05700i
\(291\) 8.00000i 0.468968i
\(292\) 4.00000 0.234082
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) −18.0000 18.0000i −1.04978 1.04978i
\(295\) 8.00000 + 4.00000i 0.465778 + 0.232889i
\(296\) 12.0000 12.0000i 0.697486 0.697486i
\(297\) 4.00000i 0.232104i
\(298\) −6.00000 + 6.00000i −0.347571 + 0.347571i
\(299\) 16.0000i 0.925304i
\(300\) −16.0000 + 12.0000i −0.923760 + 0.692820i
\(301\) 32.0000i 1.84445i
\(302\) 16.0000 + 16.0000i 0.920697 + 0.920697i
\(303\) 12.0000i 0.689382i
\(304\) 0 0
\(305\) 12.0000 + 6.00000i 0.687118 + 0.343559i
\(306\) −6.00000 + 6.00000i −0.342997 + 0.342997i
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 8.00000i 0.455842i
\(309\) 16.0000i 0.910208i
\(310\) −30.0000 + 10.0000i −1.70389 + 0.567962i
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 8.00000 8.00000i 0.452911 0.452911i
\(313\) 16.0000i 0.904373i −0.891923 0.452187i \(-0.850644\pi\)
0.891923 0.452187i \(-0.149356\pi\)
\(314\) −2.00000 2.00000i −0.112867 0.112867i
\(315\) −8.00000 4.00000i −0.450749 0.225374i
\(316\) 8.00000i 0.450035i
\(317\) −34.0000 −1.90963 −0.954815 0.297200i \(-0.903947\pi\)
−0.954815 + 0.297200i \(0.903947\pi\)
\(318\) −20.0000 20.0000i −1.12154 1.12154i
\(319\) −6.00000 −0.335936
\(320\) 16.0000 + 8.00000i 0.894427 + 0.447214i
\(321\) −16.0000 −0.893033
\(322\) 32.0000 + 32.0000i 1.78329 + 1.78329i
\(323\) 0 0
\(324\) 22.0000i 1.22222i
\(325\) 6.00000 + 8.00000i 0.332820 + 0.443760i
\(326\) 14.0000 + 14.0000i 0.775388 + 0.775388i
\(327\) 20.0000i 1.10600i
\(328\) 12.0000 12.0000i 0.662589 0.662589i
\(329\) 32.0000 1.76422
\(330\) 2.00000 + 6.00000i 0.110096 + 0.330289i
\(331\) 4.00000i 0.219860i −0.993939 0.109930i \(-0.964937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(332\) 8.00000i 0.439057i
\(333\) 6.00000 0.328798
\(334\) −8.00000 + 8.00000i −0.437741 + 0.437741i
\(335\) 2.00000 4.00000i 0.109272 0.218543i
\(336\) 32.0000i 1.74574i
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 9.00000 + 9.00000i 0.489535 + 0.489535i
\(339\) 8.00000i 0.434500i
\(340\) −12.0000 + 24.0000i −0.650791 + 1.30158i
\(341\) 10.0000i 0.541530i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) −16.0000 + 16.0000i −0.862662 + 0.862662i
\(345\) 32.0000 + 16.0000i 1.72282 + 0.861411i
\(346\) −2.00000 2.00000i −0.107521 0.107521i
\(347\) 16.0000 0.858925 0.429463 0.903085i \(-0.358703\pi\)
0.429463 + 0.903085i \(0.358703\pi\)
\(348\) −24.0000 −1.28654
\(349\) 10.0000i 0.535288i 0.963518 + 0.267644i \(0.0862451\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(350\) −28.0000 4.00000i −1.49666 0.213809i
\(351\) −8.00000 −0.427008
\(352\) 4.00000 4.00000i 0.213201 0.213201i
\(353\) 8.00000i 0.425797i −0.977074 0.212899i \(-0.931710\pi\)
0.977074 0.212899i \(-0.0682904\pi\)
\(354\) 8.00000 8.00000i 0.425195 0.425195i
\(355\) −6.00000 + 12.0000i −0.318447 + 0.636894i
\(356\) 20.0000i 1.06000i
\(357\) −48.0000 −2.54043
\(358\) 20.0000 20.0000i 1.05703 1.05703i
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 2.00000 + 6.00000i 0.105409 + 0.316228i
\(361\) 19.0000 1.00000
\(362\) 16.0000 16.0000i 0.840941 0.840941i
\(363\) 2.00000 0.104973
\(364\) 16.0000 0.838628
\(365\) 4.00000 + 2.00000i 0.209370 + 0.104685i
\(366\) 12.0000 12.0000i 0.627250 0.627250i
\(367\) 8.00000i 0.417597i 0.977959 + 0.208798i \(0.0669552\pi\)
−0.977959 + 0.208798i \(0.933045\pi\)
\(368\) 32.0000i 1.66812i
\(369\) 6.00000 0.312348
\(370\) 18.0000 6.00000i 0.935775 0.311925i
\(371\) 40.0000i 2.07670i
\(372\) 40.0000i 2.07390i
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 6.00000 + 6.00000i 0.310253 + 0.310253i
\(375\) −22.0000 + 4.00000i −1.13608 + 0.206559i
\(376\) −16.0000 16.0000i −0.825137 0.825137i
\(377\) 12.0000i 0.618031i
\(378\) 16.0000 16.0000i 0.822951 0.822951i
\(379\) 4.00000i 0.205466i −0.994709 0.102733i \(-0.967241\pi\)
0.994709 0.102733i \(-0.0327588\pi\)
\(380\) 0 0
\(381\) 32.0000i 1.63941i
\(382\) −6.00000 6.00000i −0.306987 0.306987i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 16.0000 16.0000i 0.816497 0.816497i
\(385\) −4.00000 + 8.00000i −0.203859 + 0.407718i
\(386\) 6.00000 6.00000i 0.305392 0.305392i
\(387\) −8.00000 −0.406663
\(388\) 8.00000 0.406138
\(389\) 12.0000i 0.608424i 0.952604 + 0.304212i \(0.0983931\pi\)
−0.952604 + 0.304212i \(0.901607\pi\)
\(390\) 12.0000 4.00000i 0.607644 0.202548i
\(391\) 48.0000 2.42746
\(392\) −18.0000 + 18.0000i −0.909137 + 0.909137i
\(393\) 16.0000i 0.807093i
\(394\) 18.0000 + 18.0000i 0.906827 + 0.906827i
\(395\) −4.00000 + 8.00000i −0.201262 + 0.402524i
\(396\) 2.00000 0.100504
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 18.0000 + 18.0000i 0.902258 + 0.902258i
\(399\) 0 0
\(400\) 12.0000 + 16.0000i 0.600000 + 0.800000i
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) −4.00000 4.00000i −0.199502 0.199502i
\(403\) 20.0000 0.996271
\(404\) −12.0000 −0.597022
\(405\) 11.0000 22.0000i 0.546594 1.09319i
\(406\) −24.0000 24.0000i −1.19110 1.19110i
\(407\) 6.00000i 0.297409i
\(408\) 24.0000 + 24.0000i 1.18818 + 1.18818i
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 18.0000 6.00000i 0.888957 0.296319i
\(411\) 24.0000i 1.18383i
\(412\) 16.0000 0.788263
\(413\) 16.0000 0.787309
\(414\) 8.00000 8.00000i 0.393179 0.393179i
\(415\) 4.00000 8.00000i 0.196352 0.392705i
\(416\) −8.00000 8.00000i −0.392232 0.392232i
\(417\) 32.0000i 1.56705i
\(418\) 0 0
\(419\) 36.0000i 1.75872i −0.476162 0.879358i \(-0.657972\pi\)
0.476162 0.879358i \(-0.342028\pi\)
\(420\) −16.0000 + 32.0000i −0.780720 + 1.56144i
\(421\) 20.0000i 0.974740i 0.873195 + 0.487370i \(0.162044\pi\)
−0.873195 + 0.487370i \(0.837956\pi\)
\(422\) 12.0000 12.0000i 0.584151 0.584151i
\(423\) 8.00000i 0.388973i
\(424\) −20.0000 + 20.0000i −0.971286 + 0.971286i
\(425\) −24.0000 + 18.0000i −1.16417 + 0.873128i
\(426\) 12.0000 + 12.0000i 0.581402 + 0.581402i
\(427\) 24.0000 1.16144
\(428\) 16.0000i 0.773389i
\(429\) 4.00000i 0.193122i
\(430\) −24.0000 + 8.00000i −1.15738 + 0.385794i
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) −16.0000 −0.769800
\(433\) 4.00000i 0.192228i −0.995370 0.0961139i \(-0.969359\pi\)
0.995370 0.0961139i \(-0.0306413\pi\)
\(434\) −40.0000 + 40.0000i −1.92006 + 1.92006i
\(435\) −24.0000 12.0000i −1.15071 0.575356i
\(436\) −20.0000 −0.957826
\(437\) 0 0
\(438\) 4.00000 4.00000i 0.191127 0.191127i
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 6.00000 2.00000i 0.286039 0.0953463i
\(441\) −9.00000 −0.428571
\(442\) 12.0000 12.0000i 0.570782 0.570782i
\(443\) −22.0000 −1.04525 −0.522626 0.852562i \(-0.675047\pi\)
−0.522626 + 0.852562i \(0.675047\pi\)
\(444\) 24.0000i 1.13899i
\(445\) 10.0000 20.0000i 0.474045 0.948091i
\(446\) −16.0000 + 16.0000i −0.757622 + 0.757622i
\(447\) 12.0000i 0.567581i
\(448\) 32.0000 1.51186
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) −1.00000 + 7.00000i −0.0471405 + 0.329983i
\(451\) 6.00000i 0.282529i
\(452\) −8.00000 −0.376288
\(453\) 32.0000 1.50349
\(454\) 16.0000 + 16.0000i 0.750917 + 0.750917i
\(455\) 16.0000 + 8.00000i 0.750092 + 0.375046i
\(456\) 0 0
\(457\) 26.0000i 1.21623i 0.793849 + 0.608114i \(0.208074\pi\)
−0.793849 + 0.608114i \(0.791926\pi\)
\(458\) 0 0
\(459\) 24.0000i 1.12022i
\(460\) 16.0000 32.0000i 0.746004 1.49201i
\(461\) 18.0000i 0.838344i 0.907907 + 0.419172i \(0.137680\pi\)
−0.907907 + 0.419172i \(0.862320\pi\)
\(462\) 8.00000 + 8.00000i 0.372194 + 0.372194i
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 24.0000i 1.11417i
\(465\) −20.0000 + 40.0000i −0.927478 + 1.85496i
\(466\) 18.0000 18.0000i 0.833834 0.833834i
\(467\) 6.00000 0.277647 0.138823 0.990317i \(-0.455668\pi\)
0.138823 + 0.990317i \(0.455668\pi\)
\(468\) 4.00000i 0.184900i
\(469\) 8.00000i 0.369406i
\(470\) −8.00000 24.0000i −0.369012 1.10704i
\(471\) −4.00000 −0.184310
\(472\) −8.00000 8.00000i −0.368230 0.368230i
\(473\) 8.00000i 0.367840i
\(474\) 8.00000 + 8.00000i 0.367452 + 0.367452i
\(475\) 0 0
\(476\) 48.0000i 2.20008i
\(477\) −10.0000 −0.457869
\(478\) 8.00000 + 8.00000i 0.365911 + 0.365911i
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 24.0000 8.00000i 1.09545 0.365148i
\(481\) −12.0000 −0.547153
\(482\) 14.0000 + 14.0000i 0.637683 + 0.637683i
\(483\) 64.0000 2.91210
\(484\) 2.00000i 0.0909091i
\(485\) 8.00000 + 4.00000i 0.363261 + 0.181631i
\(486\) −10.0000 10.0000i −0.453609 0.453609i
\(487\) 8.00000i 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) −12.0000 12.0000i −0.543214 0.543214i
\(489\) 28.0000 1.26620
\(490\) −27.0000 + 9.00000i −1.21974 + 0.406579i
\(491\) 24.0000i 1.08310i −0.840667 0.541552i \(-0.817837\pi\)
0.840667 0.541552i \(-0.182163\pi\)
\(492\) 24.0000i 1.08200i
\(493\) −36.0000 −1.62136
\(494\) 0 0
\(495\) 2.00000 + 1.00000i 0.0898933 + 0.0449467i
\(496\) 40.0000 1.79605
\(497\) 24.0000i 1.07655i
\(498\) −8.00000 8.00000i −0.358489 0.358489i
\(499\) 20.0000i 0.895323i −0.894203 0.447661i \(-0.852257\pi\)
0.894203 0.447661i \(-0.147743\pi\)
\(500\) 4.00000 + 22.0000i 0.178885 + 0.983870i
\(501\) 16.0000i 0.714827i
\(502\) −12.0000 + 12.0000i −0.535586 + 0.535586i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 8.00000 + 8.00000i 0.356348 + 0.356348i
\(505\) −12.0000 6.00000i −0.533993 0.266996i
\(506\) −8.00000 8.00000i −0.355643 0.355643i
\(507\) 18.0000 0.799408
\(508\) −32.0000 −1.41977
\(509\) 8.00000i 0.354594i 0.984157 + 0.177297i \(0.0567353\pi\)
−0.984157 + 0.177297i \(0.943265\pi\)
\(510\) 12.0000 + 36.0000i 0.531369 + 1.59411i
\(511\) 8.00000 0.353899
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) 8.00000 8.00000i 0.352865 0.352865i
\(515\) 16.0000 + 8.00000i 0.705044 + 0.352522i
\(516\) 32.0000i 1.40872i
\(517\) −8.00000 −0.351840
\(518\) 24.0000 24.0000i 1.05450 1.05450i
\(519\) −4.00000 −0.175581
\(520\) −4.00000 12.0000i −0.175412 0.526235i
\(521\) −26.0000 −1.13908 −0.569540 0.821963i \(-0.692879\pi\)
−0.569540 + 0.821963i \(0.692879\pi\)
\(522\) −6.00000 + 6.00000i −0.262613 + 0.262613i
\(523\) −36.0000 −1.57417 −0.787085 0.616844i \(-0.788411\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(524\) 16.0000 0.698963
\(525\) −32.0000 + 24.0000i −1.39659 + 1.04745i
\(526\) −12.0000 + 12.0000i −0.523225 + 0.523225i
\(527\) 60.0000i 2.61364i
\(528\) 8.00000i 0.348155i
\(529\) −41.0000 −1.78261
\(530\) −30.0000 + 10.0000i −1.30312 + 0.434372i
\(531\) 4.00000i 0.173585i
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) −20.0000 20.0000i −0.865485 0.865485i
\(535\) −8.00000 + 16.0000i −0.345870 + 0.691740i
\(536\) −4.00000 + 4.00000i −0.172774 + 0.172774i
\(537\) 40.0000i 1.72613i
\(538\) −24.0000 + 24.0000i −1.03471 + 1.03471i
\(539\) 9.00000i 0.387657i
\(540\) −16.0000 8.00000i −0.688530 0.344265i
\(541\) 34.0000i 1.46177i −0.682498 0.730887i \(-0.739107\pi\)
0.682498 0.730887i \(-0.260893\pi\)
\(542\) −8.00000 8.00000i −0.343629 0.343629i
\(543\) 32.0000i 1.37325i
\(544\) 24.0000 24.0000i 1.02899 1.02899i
\(545\) −20.0000 10.0000i −0.856706 0.428353i
\(546\) 16.0000 16.0000i 0.684737 0.684737i
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 24.0000 1.02523
\(549\) 6.00000i 0.256074i
\(550\) 7.00000 + 1.00000i 0.298481 + 0.0426401i
\(551\) 0 0
\(552\) −32.0000 32.0000i −1.36201 1.36201i
\(553\) 16.0000i 0.680389i
\(554\) −10.0000 10.0000i −0.424859 0.424859i
\(555\) 12.0000 24.0000i 0.509372 1.01874i
\(556\) −32.0000 −1.35710
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 10.0000 + 10.0000i 0.423334 + 0.423334i
\(559\) 16.0000 0.676728
\(560\) 32.0000 + 16.0000i 1.35225 + 0.676123i
\(561\) 12.0000 0.506640
\(562\) −18.0000 18.0000i −0.759284 0.759284i
\(563\) −12.0000 −0.505740 −0.252870 0.967500i \(-0.581374\pi\)
−0.252870 + 0.967500i \(0.581374\pi\)
\(564\) −32.0000 −1.34744
\(565\) −8.00000 4.00000i −0.336563 0.168281i
\(566\) 4.00000 + 4.00000i 0.168133 + 0.168133i
\(567\) 44.0000i 1.84783i
\(568\) 12.0000 12.0000i 0.503509 0.503509i
\(569\) 22.0000 0.922288 0.461144 0.887325i \(-0.347439\pi\)
0.461144 + 0.887325i \(0.347439\pi\)
\(570\) 0 0
\(571\) 28.0000i 1.17176i −0.810397 0.585882i \(-0.800748\pi\)
0.810397 0.585882i \(-0.199252\pi\)
\(572\) −4.00000 −0.167248
\(573\) −12.0000 −0.501307
\(574\) 24.0000 24.0000i 1.00174 1.00174i
\(575\) 32.0000 24.0000i 1.33449 1.00087i
\(576\) 8.00000i 0.333333i
\(577\) 20.0000i 0.832611i −0.909225 0.416305i \(-0.863325\pi\)
0.909225 0.416305i \(-0.136675\pi\)
\(578\) 19.0000 + 19.0000i 0.790296 + 0.790296i
\(579\) 12.0000i 0.498703i
\(580\) −12.0000 + 24.0000i −0.498273 + 0.996546i
\(581\) 16.0000i 0.663792i
\(582\) 8.00000 8.00000i 0.331611 0.331611i
\(583\) 10.0000i 0.414158i
\(584\) −4.00000 4.00000i −0.165521 0.165521i
\(585\) 2.00000 4.00000i 0.0826898 0.165380i
\(586\) 6.00000 + 6.00000i 0.247858 + 0.247858i
\(587\) −30.0000 −1.23823 −0.619116 0.785299i \(-0.712509\pi\)
−0.619116 + 0.785299i \(0.712509\pi\)
\(588\) 36.0000i 1.48461i
\(589\) 0 0
\(590\) −4.00000 12.0000i −0.164677 0.494032i
\(591\) 36.0000 1.48084
\(592\) −24.0000 −0.986394
\(593\) 6.00000i 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) −4.00000 + 4.00000i −0.164122 + 0.164122i
\(595\) −24.0000 + 48.0000i −0.983904 + 1.96781i
\(596\) 12.0000 0.491539
\(597\) 36.0000 1.47338
\(598\) −16.0000 + 16.0000i −0.654289 + 0.654289i
\(599\) −46.0000 −1.87951 −0.939755 0.341850i \(-0.888947\pi\)
−0.939755 + 0.341850i \(0.888947\pi\)
\(600\) 28.0000 + 4.00000i 1.14310 + 0.163299i
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) −32.0000 + 32.0000i −1.30422 + 1.30422i
\(603\) −2.00000 −0.0814463
\(604\) 32.0000i 1.30206i
\(605\) 1.00000 2.00000i 0.0406558 0.0813116i
\(606\) −12.0000 + 12.0000i −0.487467 + 0.487467i
\(607\) 16.0000i 0.649420i 0.945814 + 0.324710i \(0.105267\pi\)
−0.945814 + 0.324710i \(0.894733\pi\)
\(608\) 0 0
\(609\) −48.0000 −1.94506
\(610\) −6.00000 18.0000i −0.242933 0.728799i
\(611\) 16.0000i 0.647291i
\(612\) 12.0000 0.485071
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) −4.00000 4.00000i −0.161427 0.161427i
\(615\) 12.0000 24.0000i 0.483887 0.967773i
\(616\) 8.00000 8.00000i 0.322329 0.322329i
\(617\) 12.0000i 0.483102i 0.970388 + 0.241551i \(0.0776561\pi\)
−0.970388 + 0.241551i \(0.922344\pi\)
\(618\) 16.0000 16.0000i 0.643614 0.643614i
\(619\) 4.00000i 0.160774i 0.996764 + 0.0803868i \(0.0256155\pi\)
−0.996764 + 0.0803868i \(0.974384\pi\)
\(620\) 40.0000 + 20.0000i 1.60644 + 0.803219i
\(621\) 32.0000i 1.28412i
\(622\) 30.0000 + 30.0000i 1.20289 + 1.20289i
\(623\) 40.0000i 1.60257i
\(624\) −16.0000 −0.640513
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −16.0000 + 16.0000i −0.639489 + 0.639489i
\(627\) 0 0
\(628\) 4.00000i 0.159617i
\(629\) 36.0000i 1.43541i
\(630\) 4.00000 + 12.0000i 0.159364 + 0.478091i
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 8.00000 8.00000i 0.318223 0.318223i
\(633\) 24.0000i 0.953914i
\(634\) 34.0000 + 34.0000i 1.35031 + 1.35031i
\(635\) −32.0000 16.0000i −1.26988 0.634941i
\(636\) 40.0000i 1.58610i
\(637\) 18.0000 0.713186
\(638\) 6.00000 + 6.00000i 0.237542 + 0.237542i
\(639\) 6.00000 0.237356
\(640\) −8.00000 24.0000i −0.316228 0.948683i
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 16.0000 + 16.0000i 0.631470 + 0.631470i
\(643\) −10.0000 −0.394362 −0.197181 0.980367i \(-0.563179\pi\)
−0.197181 + 0.980367i \(0.563179\pi\)
\(644\) 64.0000i 2.52195i
\(645\) −16.0000 + 32.0000i −0.629999 + 1.26000i
\(646\) 0 0
\(647\) 32.0000i 1.25805i −0.777385 0.629025i \(-0.783454\pi\)
0.777385 0.629025i \(-0.216546\pi\)
\(648\) −22.0000 + 22.0000i −0.864242 + 0.864242i
\(649\) −4.00000 −0.157014
\(650\) 2.00000 14.0000i 0.0784465 0.549125i
\(651\) 80.0000i 3.13545i
\(652\) 28.0000i 1.09656i
\(653\) −34.0000 −1.33052 −0.665261 0.746611i \(-0.731680\pi\)
−0.665261 + 0.746611i \(0.731680\pi\)
\(654\) −20.0000 + 20.0000i −0.782062 + 0.782062i
\(655\) 16.0000 + 8.00000i 0.625172 + 0.312586i
\(656\) −24.0000 −0.937043
\(657\) 2.00000i 0.0780274i
\(658\) −32.0000 32.0000i −1.24749 1.24749i
\(659\) 12.0000i 0.467454i 0.972302 + 0.233727i \(0.0750921\pi\)
−0.972302 + 0.233727i \(0.924908\pi\)
\(660\) 4.00000 8.00000i 0.155700 0.311400i
\(661\) 4.00000i 0.155582i 0.996970 + 0.0777910i \(0.0247867\pi\)
−0.996970 + 0.0777910i \(0.975213\pi\)
\(662\) −4.00000 + 4.00000i −0.155464 + 0.155464i
\(663\) 24.0000i 0.932083i
\(664\) −8.00000 + 8.00000i −0.310460 + 0.310460i
\(665\) 0 0
\(666\) −6.00000 6.00000i −0.232495 0.232495i
\(667\) 48.0000 1.85857
\(668\) 16.0000 0.619059
\(669\) 32.0000i 1.23719i
\(670\) −6.00000 + 2.00000i −0.231800 + 0.0772667i
\(671\) −6.00000 −0.231627
\(672\) 32.0000 32.0000i 1.23443 1.23443i
\(673\) 10.0000i 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) 22.0000 22.0000i 0.847408 0.847408i
\(675\) −12.0000 16.0000i −0.461880 0.615840i
\(676\) 18.0000i 0.692308i
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) −8.00000 + 8.00000i −0.307238 + 0.307238i
\(679\) 16.0000 0.614024
\(680\) 36.0000 12.0000i 1.38054 0.460179i
\(681\) 32.0000 1.22624
\(682\) 10.0000 10.0000i 0.382920 0.382920i
\(683\) 6.00000 0.229584 0.114792 0.993390i \(-0.463380\pi\)
0.114792 + 0.993390i \(0.463380\pi\)
\(684\) 0 0
\(685\) 24.0000 + 12.0000i 0.916993 + 0.458496i
\(686\) −8.00000 + 8.00000i −0.305441 + 0.305441i
\(687\) 0 0
\(688\) 32.0000 1.21999
\(689\) 20.0000 0.761939
\(690\) −16.0000 48.0000i −0.609110 1.82733i
\(691\) 20.0000i 0.760836i 0.924815 + 0.380418i \(0.124220\pi\)
−0.924815 + 0.380418i \(0.875780\pi\)
\(692\) 4.00000i 0.152057i
\(693\) 4.00000 0.151947
\(694\) −16.0000 16.0000i −0.607352 0.607352i
\(695\) −32.0000 16.0000i −1.21383 0.606915i
\(696\) 24.0000 + 24.0000i 0.909718 + 0.909718i
\(697\) 36.0000i 1.36360i
\(698\) 10.0000 10.0000i 0.378506 0.378506i
\(699\) 36.0000i 1.36165i
\(700\) 24.0000 + 32.0000i 0.907115 + 1.20949i
\(701\) 30.0000i 1.13308i −0.824033 0.566542i \(-0.808281\pi\)
0.824033 0.566542i \(-0.191719\pi\)
\(702\) 8.00000 + 8.00000i 0.301941 + 0.301941i
\(703\) 0 0
\(704\) −8.00000 −0.301511
\(705\) −32.0000 16.0000i −1.20519 0.602595i
\(706\) −8.00000 + 8.00000i −0.301084 + 0.301084i
\(707\) −24.0000 −0.902613
\(708\) −16.0000 −0.601317
\(709\) 8.00000i 0.300446i 0.988652 + 0.150223i \(0.0479992\pi\)
−0.988652 + 0.150223i \(0.952001\pi\)
\(710\) 18.0000 6.00000i 0.675528 0.225176i
\(711\) 4.00000 0.150012
\(712\) −20.0000 + 20.0000i −0.749532 + 0.749532i
\(713\) 80.0000i 2.99602i
\(714\) 48.0000 + 48.0000i 1.79635 + 1.79635i
\(715\) −4.00000 2.00000i −0.149592 0.0747958i
\(716\) −40.0000 −1.49487
\(717\) 16.0000 0.597531
\(718\) 12.0000 + 12.0000i 0.447836 + 0.447836i
\(719\) 6.00000 0.223762 0.111881 0.993722i \(-0.464312\pi\)
0.111881 + 0.993722i \(0.464312\pi\)
\(720\) 4.00000 8.00000i 0.149071 0.298142i
\(721\) 32.0000 1.19174
\(722\) −19.0000 19.0000i −0.707107 0.707107i
\(723\) 28.0000 1.04133
\(724\) −32.0000 −1.18927
\(725\) −24.0000 + 18.0000i −0.891338 + 0.668503i
\(726\) −2.00000 2.00000i −0.0742270 0.0742270i
\(727\) 48.0000i 1.78022i 0.455744 + 0.890111i \(0.349373\pi\)
−0.455744 + 0.890111i \(0.650627\pi\)
\(728\) −16.0000 16.0000i −0.592999 0.592999i
\(729\) 13.0000 0.481481
\(730\) −2.00000 6.00000i −0.0740233 0.222070i
\(731\) 48.0000i 1.77534i
\(732\) −24.0000 −0.887066
\(733\) 50.0000 1.84679 0.923396 0.383849i \(-0.125402\pi\)
0.923396 + 0.383849i \(0.125402\pi\)
\(734\) 8.00000 8.00000i 0.295285 0.295285i
\(735\) −18.0000 + 36.0000i −0.663940 + 1.32788i
\(736\) −32.0000 + 32.0000i −1.17954 + 1.17954i
\(737\) 2.00000i 0.0736709i
\(738\) −6.00000 6.00000i −0.220863 0.220863i
\(739\) 20.0000i 0.735712i −0.929883 0.367856i \(-0.880092\pi\)
0.929883 0.367856i \(-0.119908\pi\)
\(740\) −24.0000 12.0000i −0.882258 0.441129i
\(741\) 0 0
\(742\) −40.0000 + 40.0000i −1.46845 + 1.46845i
\(743\) 8.00000i 0.293492i −0.989174 0.146746i \(-0.953120\pi\)
0.989174 0.146746i \(-0.0468799\pi\)
\(744\) 40.0000 40.0000i 1.46647 1.46647i
\(745\) 12.0000 + 6.00000i 0.439646 + 0.219823i
\(746\) −10.0000 10.0000i −0.366126 0.366126i
\(747\) −4.00000 −0.146352
\(748\) 12.0000i 0.438763i
\(749\) 32.0000i 1.16925i
\(750\) 26.0000 + 18.0000i 0.949386 + 0.657267i
\(751\) −22.0000 −0.802791 −0.401396 0.915905i \(-0.631475\pi\)
−0.401396 + 0.915905i \(0.631475\pi\)
\(752\) 32.0000i 1.16692i
\(753\) 24.0000i 0.874609i
\(754\) 12.0000 12.0000i 0.437014 0.437014i
\(755\) 16.0000 32.0000i 0.582300 1.16460i
\(756\) −32.0000 −1.16383
\(757\) 46.0000 1.67190 0.835949 0.548807i \(-0.184918\pi\)
0.835949 + 0.548807i \(0.184918\pi\)
\(758\) −4.00000 + 4.00000i −0.145287 + 0.145287i
\(759\) −16.0000 −0.580763
\(760\) 0 0
\(761\) 50.0000 1.81250 0.906249 0.422744i \(-0.138933\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(762\) −32.0000 + 32.0000i −1.15924 + 1.15924i
\(763\) −40.0000 −1.44810
\(764\) 12.0000i 0.434145i
\(765\) 12.0000 + 6.00000i 0.433861 + 0.216930i
\(766\) 0 0
\(767\) 8.00000i 0.288863i
\(768\) −32.0000 −1.15470
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 12.0000 4.00000i 0.432450 0.144150i
\(771\) 16.0000i 0.576226i
\(772\) −12.0000 −0.431889
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 8.00000 + 8.00000i 0.287554 + 0.287554i
\(775\) 30.0000 + 40.0000i 1.07763 + 1.43684i
\(776\) −8.00000 8.00000i −0.287183 0.287183i
\(777\) 48.0000i 1.72199i
\(778\) 12.0000 12.0000i 0.430221 0.430221i
\(779\) 0 0
\(780\) −16.0000 8.00000i −0.572892 0.286446i
\(781\) 6.00000i 0.214697i
\(782\) −48.0000 48.0000i −1.71648 1.71648i
\(783\) 24.0000i 0.857690i
\(784\) 36.0000 1.28571
\(785\) −2.00000 + 4.00000i −0.0713831 + 0.142766i
\(786\) 16.0000 16.0000i 0.570701 0.570701i
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) 36.0000i 1.28245i
\(789\) 24.0000i 0.854423i
\(790\) 12.0000 4.00000i 0.426941 0.142314i
\(791\) −16.0000 −0.568895
\(792\) −2.00000 2.00000i −0.0710669 0.0710669i
\(793\) 12.0000i 0.426132i
\(794\) 22.0000 + 22.0000i 0.780751 + 0.780751i
\(795\) −20.0000 + 40.0000i −0.709327 + 1.41865i
\(796\) 36.0000i 1.27599i
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 4.00000 28.0000i 0.141421 0.989949i
\(801\) −10.0000 −0.353333
\(802\) −18.0000 18.0000i −0.635602 0.635602i
\(803\) −2.00000 −0.0705785
\(804\) 8.00000i 0.282138i
\(805\) 32.0000 64.0000i 1.12785 2.25570i
\(806\) −20.0000 20.0000i −0.704470 0.704470i
\(807\) 48.0000i 1.68968i
\(808\) 12.0000 + 12.0000i 0.422159 + 0.422159i
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) −33.0000 + 11.0000i −1.15950 + 0.386501i
\(811\) 28.0000i 0.983213i 0.870817 + 0.491606i \(0.163590\pi\)
−0.870817 + 0.491606i \(0.836410\pi\)
\(812\) 48.0000i 1.68447i
\(813\) −16.0000 −0.561144
\(814\) −6.00000 + 6.00000i −0.210300 + 0.210300i
\(815\) 14.0000 28.0000i 0.490399 0.980797i
\(816\) 48.0000i 1.68034i
\(817\) 0 0
\(818\) −30.0000 30.0000i −1.04893 1.04893i
\(819\) 8.00000i 0.279543i
\(820\) −24.0000 12.0000i −0.838116 0.419058i
\(821\) 6.00000i 0.209401i −0.994504 0.104701i \(-0.966612\pi\)
0.994504 0.104701i \(-0.0333885\pi\)
\(822\) 24.0000 24.0000i 0.837096 0.837096i
\(823\) 48.0000i 1.67317i 0.547833 + 0.836587i \(0.315453\pi\)
−0.547833 + 0.836587i \(0.684547\pi\)
\(824\) −16.0000 16.0000i −0.557386 0.557386i
\(825\) 8.00000 6.00000i 0.278524 0.208893i
\(826\) −16.0000 16.0000i −0.556711 0.556711i
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) −16.0000 −0.556038
\(829\) 12.0000i 0.416777i 0.978046 + 0.208389i \(0.0668219\pi\)
−0.978046 + 0.208389i \(0.933178\pi\)
\(830\) −12.0000 + 4.00000i −0.416526 + 0.138842i
\(831\) −20.0000 −0.693792
\(832\) 16.0000i 0.554700i
\(833\) 54.0000i 1.87099i
\(834\) −32.0000 + 32.0000i −1.10807 + 1.10807i
\(835\) 16.0000 + 8.00000i 0.553703 + 0.276851i
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) −36.0000 + 36.0000i −1.24360 + 1.24360i
\(839\) −6.00000 −0.207143 −0.103572 0.994622i \(-0.533027\pi\)
−0.103572 + 0.994622i \(0.533027\pi\)
\(840\) 48.0000 16.0000i 1.65616 0.552052i
\(841\) −7.00000 −0.241379
\(842\) 20.0000 20.0000i 0.689246 0.689246i
\(843\) −36.0000 −1.23991
\(844\) −24.0000 −0.826114
\(845\) 9.00000 18.0000i 0.309609 0.619219i
\(846\) −8.00000 + 8.00000i −0.275046 + 0.275046i
\(847\) 4.00000i 0.137442i
\(848\) 40.0000 1.37361
\(849\) 8.00000 0.274559
\(850\) 42.0000 + 6.00000i 1.44059 + 0.205798i
\(851\) 48.0000i 1.64542i
\(852\) 24.0000i 0.822226i
\(853\) −2.00000 −0.0684787 −0.0342393 0.999414i \(-0.510901\pi\)
−0.0342393 + 0.999414i \(0.510901\pi\)
\(854\) −24.0000 24.0000i −0.821263 0.821263i
\(855\) 0 0
\(856\) 16.0000 16.0000i 0.546869 0.546869i
\(857\) 54.0000i 1.84460i 0.386469 + 0.922302i \(0.373695\pi\)
−0.386469 + 0.922302i \(0.626305\pi\)
\(858\) −4.00000 + 4.00000i −0.136558 + 0.136558i
\(859\) 12.0000i 0.409435i 0.978821 + 0.204717i \(0.0656275\pi\)
−0.978821 + 0.204717i \(0.934372\pi\)
\(860\) 32.0000 + 16.0000i 1.09119 + 0.545595i
\(861\) 48.0000i 1.63584i
\(862\) 16.0000 + 16.0000i 0.544962 + 0.544962i
\(863\) 48.0000i 1.63394i 0.576681 + 0.816970i \(0.304348\pi\)
−0.576681 + 0.816970i \(0.695652\pi\)
\(864\) 16.0000 + 16.0000i 0.544331 + 0.544331i
\(865\) −2.00000 + 4.00000i −0.0680020 + 0.136004i
\(866\) −4.00000 + 4.00000i −0.135926 + 0.135926i
\(867\) 38.0000 1.29055
\(868\) 80.0000 2.71538
\(869\) 4.00000i 0.135691i
\(870\) 12.0000 + 36.0000i 0.406838 + 1.22051i
\(871\) 4.00000 0.135535
\(872\) 20.0000 + 20.0000i 0.677285 + 0.677285i
\(873\) 4.00000i 0.135379i
\(874\) 0 0
\(875\) 8.00000 + 44.0000i 0.270449 + 1.48747i
\(876\) −8.00000 −0.270295
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) −28.0000 28.0000i −0.944954 0.944954i
\(879\) 12.0000 0.404750
\(880\) −8.00000 4.00000i −0.269680 0.134840i
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 9.00000 + 9.00000i 0.303046 + 0.303046i
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) −24.0000 −0.807207
\(885\) −16.0000 8.00000i −0.537834 0.268917i
\(886\) 22.0000 + 22.0000i 0.739104 + 0.739104i
\(887\) 8.00000i 0.268614i 0.990940 + 0.134307i \(0.0428808\pi\)
−0.990940 + 0.134307i \(0.957119\pi\)
\(888\) −24.0000 + 24.0000i −0.805387 + 0.805387i
\(889\) −64.0000 −2.14649
\(890\) −30.0000 + 10.0000i −1.00560 + 0.335201i
\(891\) 11.0000i 0.368514i
\(892\) 32.0000 1.07144
\(893\) 0 0
\(894\) 12.0000 12.0000i 0.401340 0.401340i
\(895\) −40.0000 20.0000i −1.33705 0.668526i
\(896\) −32.0000 32.0000i −1.06904 1.06904i
\(897\) 32.0000i 1.06845i
\(898\) 10.0000 + 10.0000i 0.333704 + 0.333704i
\(899\) 60.0000i 2.00111i
\(900\) 8.00000 6.00000i 0.266667 0.200000i
\(901\) 60.0000i 1.99889i
\(902\) −6.00000 + 6.00000i −0.199778 + 0.199778i
\(903\) 64.0000i 2.12979i
\(904\) 8.00000 + 8.00000i 0.266076 + 0.266076i
\(905\) −32.0000 16.0000i −1.06372 0.531858i
\(906\) −32.0000 32.0000i −1.06313 1.06313i
\(907\) 46.0000 1.52740 0.763702 0.645568i \(-0.223379\pi\)
0.763702 + 0.645568i \(0.223379\pi\)
\(908\) 32.0000i 1.06196i
\(909\) 6.00000i 0.199007i
\(910\) −8.00000 24.0000i −0.265197 0.795592i
\(911\) 18.0000 0.596367 0.298183 0.954509i \(-0.403619\pi\)
0.298183 + 0.954509i \(0.403619\pi\)
\(912\) 0 0
\(913\) 4.00000i 0.132381i
\(914\) 26.0000 26.0000i 0.860004 0.860004i
\(915\) −24.0000 12.0000i −0.793416 0.396708i
\(916\) 0 0
\(917\) 32.0000 1.05673
\(918\) −24.0000 + 24.0000i −0.792118 + 0.792118i
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) −48.0000 + 16.0000i −1.58251 + 0.527504i
\(921\) −8.00000 −0.263609
\(922\) 18.0000 18.0000i 0.592798 0.592798i
\(923\) −12.0000 −0.394985
\(924\) 16.0000i 0.526361i
\(925\) −18.0000 24.0000i −0.591836 0.789115i
\(926\) 16.0000 16.0000i 0.525793 0.525793i
\(927\) 8.00000i 0.262754i
\(928\) 24.0000 24.0000i 0.787839 0.787839i
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 60.0000 20.0000i 1.96748 0.655826i
\(931\) 0 0
\(932\) −36.0000 −1.17922
\(933\) 60.0000 1.96431
\(934\) −6.00000 6.00000i −0.196326 0.196326i
\(935\) 6.00000 12.0000i 0.196221 0.392442i
\(936\) −4.00000 + 4.00000i −0.130744 + 0.130744i
\(937\) 14.0000i 0.457360i 0.973502 + 0.228680i \(0.0734410\pi\)
−0.973502 + 0.228680i \(0.926559\pi\)
\(938\) −8.00000 + 8.00000i −0.261209 + 0.261209i
\(939\) 32.0000i 1.04428i
\(940\) −16.0000 + 32.0000i −0.521862 + 1.04372i
\(941\) 50.0000i 1.62995i −0.579494 0.814977i \(-0.696750\pi\)
0.579494 0.814977i \(-0.303250\pi\)
\(942\) 4.00000 + 4.00000i 0.130327 + 0.130327i
\(943\) 48.0000i 1.56310i
\(944\) 16.0000i 0.520756i
\(945\) −32.0000 16.0000i −1.04096 0.520480i
\(946\) 8.00000 8.00000i 0.260102 0.260102i
\(947\) 50.0000 1.62478 0.812391 0.583113i \(-0.198166\pi\)
0.812391 + 0.583113i \(0.198166\pi\)
\(948\) 16.0000i 0.519656i
\(949\) 4.00000i 0.129845i
\(950\) 0 0
\(951\) 68.0000 2.20505
\(952\) 48.0000 48.0000i 1.55569 1.55569i
\(953\) 22.0000i 0.712650i 0.934362 + 0.356325i \(0.115970\pi\)
−0.934362 + 0.356325i \(0.884030\pi\)
\(954\) 10.0000 + 10.0000i 0.323762 + 0.323762i
\(955\) −6.00000 + 12.0000i −0.194155 + 0.388311i
\(956\) 16.0000i 0.517477i
\(957\) 12.0000 0.387905
\(958\) 24.0000 + 24.0000i 0.775405 + 0.775405i
\(959\) 48.0000 1.55000
\(960\) −32.0000 16.0000i −1.03280 0.516398i
\(961\) 69.0000 2.22581
\(962\) 12.0000 + 12.0000i 0.386896 + 0.386896i
\(963\) 8.00000 0.257796
\(964\) 28.0000i 0.901819i
\(965\) −12.0000 6.00000i −0.386294 0.193147i
\(966\) −64.0000 64.0000i −2.05917 2.05917i
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −2.00000 + 2.00000i −0.0642824 + 0.0642824i
\(969\) 0 0
\(970\) −4.00000 12.0000i −0.128432 0.385297i
\(971\) 60.0000i 1.92549i −0.270408 0.962746i \(-0.587159\pi\)
0.270408 0.962746i \(-0.412841\pi\)
\(972\) 20.0000i 0.641500i
\(973\) −64.0000 −2.05175
\(974\) −8.00000 + 8.00000i −0.256337 + 0.256337i
\(975\) −12.0000 16.0000i −0.384308 0.512410i
\(976\) 24.0000i 0.768221i
\(977\) 28.0000i 0.895799i −0.894084 0.447900i \(-0.852172\pi\)
0.894084 0.447900i \(-0.147828\pi\)
\(978\) −28.0000 28.0000i −0.895341 0.895341i
\(979\) 10.0000i 0.319601i
\(980\) 36.0000 + 18.0000i 1.14998 + 0.574989i
\(981\) 10.0000i 0.319275i
\(982\) −24.0000 + 24.0000i −0.765871 + 0.765871i
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) −24.0000 + 24.0000i −0.765092 + 0.765092i
\(985\) 18.0000 36.0000i 0.573528 1.14706i
\(986\) 36.0000 + 36.0000i 1.14647 + 1.14647i
\(987\) −64.0000 −2.03714
\(988\) 0 0
\(989\) 64.0000i 2.03508i
\(990\) −1.00000 3.00000i −0.0317821 0.0953463i
\(991\) 38.0000 1.20711 0.603555 0.797321i \(-0.293750\pi\)
0.603555 + 0.797321i \(0.293750\pi\)
\(992\) −40.0000 40.0000i −1.27000 1.27000i
\(993\) 8.00000i 0.253872i
\(994\) 24.0000 24.0000i 0.761234 0.761234i
\(995\) 18.0000 36.0000i 0.570638 1.14128i
\(996\) 16.0000i 0.506979i
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) −20.0000 + 20.0000i −0.633089 + 0.633089i
\(999\) 24.0000 0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 440.2.l.a.309.1 2
4.3 odd 2 1760.2.l.b.529.2 2
5.4 even 2 440.2.l.b.309.2 yes 2
8.3 odd 2 1760.2.l.a.529.1 2
8.5 even 2 440.2.l.b.309.1 yes 2
20.19 odd 2 1760.2.l.a.529.2 2
40.19 odd 2 1760.2.l.b.529.1 2
40.29 even 2 inner 440.2.l.a.309.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.l.a.309.1 2 1.1 even 1 trivial
440.2.l.a.309.2 yes 2 40.29 even 2 inner
440.2.l.b.309.1 yes 2 8.5 even 2
440.2.l.b.309.2 yes 2 5.4 even 2
1760.2.l.a.529.1 2 8.3 odd 2
1760.2.l.a.529.2 2 20.19 odd 2
1760.2.l.b.529.1 2 40.19 odd 2
1760.2.l.b.529.2 2 4.3 odd 2