Properties

Label 4356.3.f.h.1693.6
Level $4356$
Weight $3$
Character 4356.1693
Analytic conductor $118.692$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4356,3,Mod(1693,4356)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4356, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4356.1693"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4356 = 2^{2} \cdot 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 4356.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-20,0,68,0,0,0, 0,0,96,0,0,0,0,0,-24,0,0,0,0,0,0,0,0,0,-248,0,-24,0,0,0,-76,0,0,0,0,0, -28,0,0,0,0,0,0,0,44,0,0,0,372,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-152, 0,320] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(91)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(118.692403155\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 122x^{6} - 84x^{5} + 5617x^{4} + 5796x^{3} - 106140x^{2} - 56448x + 902232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1452)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1693.6
Root \(-5.29611 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 4356.1693
Dual form 4356.3.f.h.1693.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.29611 q^{5} +11.2666i q^{7} -8.53702i q^{13} +18.8227i q^{17} -19.4817i q^{19} -34.9216 q^{23} -6.54344 q^{25} -9.50332i q^{29} +24.6664 q^{31} +48.4024i q^{35} -27.0065 q^{37} -57.3980i q^{41} -41.2949i q^{43} -53.4744 q^{47} -77.9357 q^{49} -25.0337 q^{53} +101.668 q^{59} +114.718i q^{61} -36.6760i q^{65} -73.4602 q^{67} -105.706 q^{71} -41.3560i q^{73} -76.6876i q^{79} -129.542i q^{83} +80.8645i q^{85} -154.763 q^{89} +96.1830 q^{91} -83.6956i q^{95} +106.580 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 20 q^{23} + 68 q^{25} + 96 q^{31} - 24 q^{37} - 248 q^{47} - 24 q^{49} - 76 q^{53} - 28 q^{59} + 44 q^{67} + 372 q^{71} - 152 q^{89} + 320 q^{91} + 244 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4356\mathbb{Z}\right)^\times\).

\(n\) \(1333\) \(1937\) \(2179\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 4.29611 0.859222 0.429611 0.903014i \(-0.358651\pi\)
0.429611 + 0.903014i \(0.358651\pi\)
\(6\) 0 0
\(7\) 11.2666i 1.60951i 0.593607 + 0.804755i \(0.297703\pi\)
−0.593607 + 0.804755i \(0.702297\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) − 8.53702i − 0.656694i −0.944557 0.328347i \(-0.893508\pi\)
0.944557 0.328347i \(-0.106492\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 18.8227i 1.10722i 0.832776 + 0.553609i \(0.186750\pi\)
−0.832776 + 0.553609i \(0.813250\pi\)
\(18\) 0 0
\(19\) − 19.4817i − 1.02535i −0.858582 0.512677i \(-0.828654\pi\)
0.858582 0.512677i \(-0.171346\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −34.9216 −1.51833 −0.759166 0.650897i \(-0.774393\pi\)
−0.759166 + 0.650897i \(0.774393\pi\)
\(24\) 0 0
\(25\) −6.54344 −0.261738
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 9.50332i − 0.327701i −0.986485 0.163850i \(-0.947609\pi\)
0.986485 0.163850i \(-0.0523914\pi\)
\(30\) 0 0
\(31\) 24.6664 0.795691 0.397846 0.917452i \(-0.369758\pi\)
0.397846 + 0.917452i \(0.369758\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 48.4024i 1.38293i
\(36\) 0 0
\(37\) −27.0065 −0.729906 −0.364953 0.931026i \(-0.618915\pi\)
−0.364953 + 0.931026i \(0.618915\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 57.3980i − 1.39995i −0.714166 0.699976i \(-0.753194\pi\)
0.714166 0.699976i \(-0.246806\pi\)
\(42\) 0 0
\(43\) − 41.2949i − 0.960347i −0.877174 0.480173i \(-0.840574\pi\)
0.877174 0.480173i \(-0.159426\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −53.4744 −1.13775 −0.568876 0.822423i \(-0.692622\pi\)
−0.568876 + 0.822423i \(0.692622\pi\)
\(48\) 0 0
\(49\) −77.9357 −1.59052
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −25.0337 −0.472335 −0.236167 0.971712i \(-0.575891\pi\)
−0.236167 + 0.971712i \(0.575891\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 101.668 1.72318 0.861591 0.507603i \(-0.169468\pi\)
0.861591 + 0.507603i \(0.169468\pi\)
\(60\) 0 0
\(61\) 114.718i 1.88063i 0.340306 + 0.940315i \(0.389469\pi\)
−0.340306 + 0.940315i \(0.610531\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 36.6760i − 0.564246i
\(66\) 0 0
\(67\) −73.4602 −1.09642 −0.548210 0.836340i \(-0.684691\pi\)
−0.548210 + 0.836340i \(0.684691\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −105.706 −1.48882 −0.744409 0.667724i \(-0.767269\pi\)
−0.744409 + 0.667724i \(0.767269\pi\)
\(72\) 0 0
\(73\) − 41.3560i − 0.566521i −0.959043 0.283260i \(-0.908584\pi\)
0.959043 0.283260i \(-0.0914160\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 76.6876i − 0.970729i −0.874312 0.485365i \(-0.838687\pi\)
0.874312 0.485365i \(-0.161313\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 129.542i − 1.56075i −0.625313 0.780374i \(-0.715029\pi\)
0.625313 0.780374i \(-0.284971\pi\)
\(84\) 0 0
\(85\) 80.8645i 0.951347i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −154.763 −1.73891 −0.869457 0.494009i \(-0.835531\pi\)
−0.869457 + 0.494009i \(0.835531\pi\)
\(90\) 0 0
\(91\) 96.1830 1.05696
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 83.6956i − 0.881006i
\(96\) 0 0
\(97\) 106.580 1.09877 0.549384 0.835570i \(-0.314863\pi\)
0.549384 + 0.835570i \(0.314863\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 21.4654i − 0.212529i −0.994338 0.106264i \(-0.966111\pi\)
0.994338 0.106264i \(-0.0338890\pi\)
\(102\) 0 0
\(103\) 9.44447 0.0916939 0.0458470 0.998948i \(-0.485401\pi\)
0.0458470 + 0.998948i \(0.485401\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 77.4125i − 0.723481i −0.932279 0.361741i \(-0.882183\pi\)
0.932279 0.361741i \(-0.117817\pi\)
\(108\) 0 0
\(109\) 64.5647i 0.592337i 0.955136 + 0.296168i \(0.0957090\pi\)
−0.955136 + 0.296168i \(0.904291\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −75.4226 −0.667457 −0.333728 0.942669i \(-0.608307\pi\)
−0.333728 + 0.942669i \(0.608307\pi\)
\(114\) 0 0
\(115\) −150.027 −1.30458
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −212.068 −1.78208
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −135.514 −1.08411
\(126\) 0 0
\(127\) 109.910i 0.865436i 0.901529 + 0.432718i \(0.142445\pi\)
−0.901529 + 0.432718i \(0.857555\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 45.8062i − 0.349666i −0.984598 0.174833i \(-0.944061\pi\)
0.984598 0.174833i \(-0.0559385\pi\)
\(132\) 0 0
\(133\) 219.492 1.65032
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 177.446 1.29523 0.647613 0.761969i \(-0.275767\pi\)
0.647613 + 0.761969i \(0.275767\pi\)
\(138\) 0 0
\(139\) 134.102i 0.964762i 0.875962 + 0.482381i \(0.160228\pi\)
−0.875962 + 0.482381i \(0.839772\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 40.8273i − 0.281568i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 28.1457i − 0.188897i −0.995530 0.0944487i \(-0.969891\pi\)
0.995530 0.0944487i \(-0.0301088\pi\)
\(150\) 0 0
\(151\) − 116.164i − 0.769301i −0.923062 0.384651i \(-0.874322\pi\)
0.923062 0.384651i \(-0.125678\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 105.970 0.683675
\(156\) 0 0
\(157\) 75.8469 0.483101 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 393.447i − 2.44377i
\(162\) 0 0
\(163\) 13.2014 0.0809901 0.0404951 0.999180i \(-0.487106\pi\)
0.0404951 + 0.999180i \(0.487106\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 196.988i − 1.17957i −0.807560 0.589785i \(-0.799212\pi\)
0.807560 0.589785i \(-0.200788\pi\)
\(168\) 0 0
\(169\) 96.1192 0.568753
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 133.409i 0.771149i 0.922677 + 0.385574i \(0.125997\pi\)
−0.922677 + 0.385574i \(0.874003\pi\)
\(174\) 0 0
\(175\) − 73.7222i − 0.421270i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −154.706 −0.864278 −0.432139 0.901807i \(-0.642241\pi\)
−0.432139 + 0.901807i \(0.642241\pi\)
\(180\) 0 0
\(181\) 4.92735 0.0272229 0.0136115 0.999907i \(-0.495667\pi\)
0.0136115 + 0.999907i \(0.495667\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −116.023 −0.627151
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 374.082 1.95854 0.979271 0.202554i \(-0.0649243\pi\)
0.979271 + 0.202554i \(0.0649243\pi\)
\(192\) 0 0
\(193\) 279.486i 1.44811i 0.689741 + 0.724056i \(0.257724\pi\)
−0.689741 + 0.724056i \(0.742276\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 102.226i 0.518914i 0.965755 + 0.259457i \(0.0835435\pi\)
−0.965755 + 0.259457i \(0.916456\pi\)
\(198\) 0 0
\(199\) 356.042 1.78915 0.894577 0.446913i \(-0.147477\pi\)
0.894577 + 0.446913i \(0.147477\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 107.070 0.527438
\(204\) 0 0
\(205\) − 246.588i − 1.20287i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 233.984i − 1.10893i −0.832208 0.554463i \(-0.812924\pi\)
0.832208 0.554463i \(-0.187076\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 177.407i − 0.825151i
\(216\) 0 0
\(217\) 277.906i 1.28067i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 160.690 0.727104
\(222\) 0 0
\(223\) −230.249 −1.03250 −0.516252 0.856436i \(-0.672673\pi\)
−0.516252 + 0.856436i \(0.672673\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 369.054i − 1.62579i −0.582412 0.812894i \(-0.697891\pi\)
0.582412 0.812894i \(-0.302109\pi\)
\(228\) 0 0
\(229\) −435.716 −1.90269 −0.951345 0.308129i \(-0.900297\pi\)
−0.951345 + 0.308129i \(0.900297\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 314.438i − 1.34952i −0.738038 0.674759i \(-0.764248\pi\)
0.738038 0.674759i \(-0.235752\pi\)
\(234\) 0 0
\(235\) −229.732 −0.977582
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 99.0828i − 0.414572i −0.978280 0.207286i \(-0.933537\pi\)
0.978280 0.207286i \(-0.0664631\pi\)
\(240\) 0 0
\(241\) − 163.646i − 0.679030i −0.940601 0.339515i \(-0.889737\pi\)
0.940601 0.339515i \(-0.110263\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −334.820 −1.36661
\(246\) 0 0
\(247\) −166.316 −0.673344
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.2866 0.0967594 0.0483797 0.998829i \(-0.484594\pi\)
0.0483797 + 0.998829i \(0.484594\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.21310 0.0163934 0.00819669 0.999966i \(-0.497391\pi\)
0.00819669 + 0.999966i \(0.497391\pi\)
\(258\) 0 0
\(259\) − 304.271i − 1.17479i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 81.9742i − 0.311689i −0.987782 0.155845i \(-0.950190\pi\)
0.987782 0.155845i \(-0.0498099\pi\)
\(264\) 0 0
\(265\) −107.548 −0.405840
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −475.097 −1.76616 −0.883079 0.469224i \(-0.844534\pi\)
−0.883079 + 0.469224i \(0.844534\pi\)
\(270\) 0 0
\(271\) − 356.841i − 1.31676i −0.752687 0.658379i \(-0.771242\pi\)
0.752687 0.658379i \(-0.228758\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 357.686i 1.29128i 0.763640 + 0.645642i \(0.223410\pi\)
−0.763640 + 0.645642i \(0.776590\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 101.725i 0.362012i 0.983482 + 0.181006i \(0.0579353\pi\)
−0.983482 + 0.181006i \(0.942065\pi\)
\(282\) 0 0
\(283\) 478.049i 1.68922i 0.535382 + 0.844610i \(0.320168\pi\)
−0.535382 + 0.844610i \(0.679832\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 646.679 2.25324
\(288\) 0 0
\(289\) −65.2949 −0.225934
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 281.330i − 0.960169i −0.877222 0.480085i \(-0.840606\pi\)
0.877222 0.480085i \(-0.159394\pi\)
\(294\) 0 0
\(295\) 436.776 1.48060
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 298.127i 0.997079i
\(300\) 0 0
\(301\) 465.252 1.54569
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 492.843i 1.61588i
\(306\) 0 0
\(307\) − 305.673i − 0.995678i −0.867269 0.497839i \(-0.834127\pi\)
0.867269 0.497839i \(-0.165873\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 146.798 0.472020 0.236010 0.971751i \(-0.424160\pi\)
0.236010 + 0.971751i \(0.424160\pi\)
\(312\) 0 0
\(313\) 401.538 1.28287 0.641435 0.767178i \(-0.278339\pi\)
0.641435 + 0.767178i \(0.278339\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −182.861 −0.576849 −0.288425 0.957503i \(-0.593131\pi\)
−0.288425 + 0.957503i \(0.593131\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 366.699 1.13529
\(324\) 0 0
\(325\) 55.8615i 0.171882i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 602.473i − 1.83123i
\(330\) 0 0
\(331\) 6.11805 0.0184835 0.00924177 0.999957i \(-0.497058\pi\)
0.00924177 + 0.999957i \(0.497058\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −315.593 −0.942069
\(336\) 0 0
\(337\) 330.000i 0.979227i 0.871939 + 0.489614i \(0.162862\pi\)
−0.871939 + 0.489614i \(0.837138\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 326.006i − 0.950455i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 611.432i 1.76205i 0.473069 + 0.881025i \(0.343146\pi\)
−0.473069 + 0.881025i \(0.656854\pi\)
\(348\) 0 0
\(349\) − 292.437i − 0.837929i −0.908003 0.418965i \(-0.862393\pi\)
0.908003 0.418965i \(-0.137607\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −483.474 −1.36962 −0.684808 0.728724i \(-0.740114\pi\)
−0.684808 + 0.728724i \(0.740114\pi\)
\(354\) 0 0
\(355\) −454.125 −1.27923
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 226.676i 0.631409i 0.948858 + 0.315704i \(0.102241\pi\)
−0.948858 + 0.315704i \(0.897759\pi\)
\(360\) 0 0
\(361\) −18.5374 −0.0513502
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 177.670i − 0.486767i
\(366\) 0 0
\(367\) 404.623 1.10252 0.551258 0.834335i \(-0.314148\pi\)
0.551258 + 0.834335i \(0.314148\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 282.044i − 0.760227i
\(372\) 0 0
\(373\) 466.702i 1.25121i 0.780140 + 0.625605i \(0.215148\pi\)
−0.780140 + 0.625605i \(0.784852\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −81.1301 −0.215199
\(378\) 0 0
\(379\) 19.4870 0.0514168 0.0257084 0.999669i \(-0.491816\pi\)
0.0257084 + 0.999669i \(0.491816\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −575.275 −1.50202 −0.751012 0.660288i \(-0.770434\pi\)
−0.751012 + 0.660288i \(0.770434\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.3772 0.0292474 0.0146237 0.999893i \(-0.495345\pi\)
0.0146237 + 0.999893i \(0.495345\pi\)
\(390\) 0 0
\(391\) − 657.320i − 1.68113i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 329.458i − 0.834072i
\(396\) 0 0
\(397\) −598.360 −1.50720 −0.753602 0.657331i \(-0.771685\pi\)
−0.753602 + 0.657331i \(0.771685\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −535.327 −1.33498 −0.667489 0.744619i \(-0.732631\pi\)
−0.667489 + 0.744619i \(0.732631\pi\)
\(402\) 0 0
\(403\) − 210.578i − 0.522526i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) − 69.4847i − 0.169889i −0.996386 0.0849447i \(-0.972929\pi\)
0.996386 0.0849447i \(-0.0270713\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1145.45i 2.77348i
\(414\) 0 0
\(415\) − 556.527i − 1.34103i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −166.637 −0.397701 −0.198851 0.980030i \(-0.563721\pi\)
−0.198851 + 0.980030i \(0.563721\pi\)
\(420\) 0 0
\(421\) −390.912 −0.928532 −0.464266 0.885696i \(-0.653682\pi\)
−0.464266 + 0.885696i \(0.653682\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 123.165i − 0.289801i
\(426\) 0 0
\(427\) −1292.48 −3.02689
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 23.6611i − 0.0548981i −0.999623 0.0274490i \(-0.991262\pi\)
0.999623 0.0274490i \(-0.00873840\pi\)
\(432\) 0 0
\(433\) 252.280 0.582633 0.291317 0.956627i \(-0.405907\pi\)
0.291317 + 0.956627i \(0.405907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 680.333i 1.55683i
\(438\) 0 0
\(439\) − 563.619i − 1.28387i −0.766759 0.641935i \(-0.778132\pi\)
0.766759 0.641935i \(-0.221868\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −444.572 −1.00355 −0.501775 0.864998i \(-0.667319\pi\)
−0.501775 + 0.864998i \(0.667319\pi\)
\(444\) 0 0
\(445\) −664.880 −1.49411
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 559.625 1.24638 0.623190 0.782070i \(-0.285836\pi\)
0.623190 + 0.782070i \(0.285836\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 413.213 0.908160
\(456\) 0 0
\(457\) 450.755i 0.986334i 0.869935 + 0.493167i \(0.164161\pi\)
−0.869935 + 0.493167i \(0.835839\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 499.755i − 1.08407i −0.840357 0.542034i \(-0.817654\pi\)
0.840357 0.542034i \(-0.182346\pi\)
\(462\) 0 0
\(463\) −513.790 −1.10970 −0.554849 0.831951i \(-0.687224\pi\)
−0.554849 + 0.831951i \(0.687224\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −659.459 −1.41212 −0.706059 0.708153i \(-0.749529\pi\)
−0.706059 + 0.708153i \(0.749529\pi\)
\(468\) 0 0
\(469\) − 827.645i − 1.76470i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 127.478i 0.268374i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 66.6672i 0.139180i 0.997576 + 0.0695900i \(0.0221691\pi\)
−0.997576 + 0.0695900i \(0.977831\pi\)
\(480\) 0 0
\(481\) 230.555i 0.479325i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 457.881 0.944085
\(486\) 0 0
\(487\) −739.168 −1.51780 −0.758899 0.651208i \(-0.774262\pi\)
−0.758899 + 0.651208i \(0.774262\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 234.675i − 0.477952i −0.971025 0.238976i \(-0.923188\pi\)
0.971025 0.238976i \(-0.0768118\pi\)
\(492\) 0 0
\(493\) 178.878 0.362836
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1190.95i − 2.39627i
\(498\) 0 0
\(499\) −336.958 −0.675267 −0.337634 0.941278i \(-0.609626\pi\)
−0.337634 + 0.941278i \(0.609626\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 77.9744i − 0.155019i −0.996992 0.0775093i \(-0.975303\pi\)
0.996992 0.0775093i \(-0.0246968\pi\)
\(504\) 0 0
\(505\) − 92.2177i − 0.182609i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −679.368 −1.33471 −0.667356 0.744739i \(-0.732574\pi\)
−0.667356 + 0.744739i \(0.732574\pi\)
\(510\) 0 0
\(511\) 465.940 0.911821
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 40.5745 0.0787854
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 507.183 0.973480 0.486740 0.873547i \(-0.338186\pi\)
0.486740 + 0.873547i \(0.338186\pi\)
\(522\) 0 0
\(523\) − 114.146i − 0.218253i −0.994028 0.109127i \(-0.965195\pi\)
0.994028 0.109127i \(-0.0348054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 464.289i 0.881004i
\(528\) 0 0
\(529\) 690.520 1.30533
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −490.008 −0.919340
\(534\) 0 0
\(535\) − 332.573i − 0.621631i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 720.619i 1.33201i 0.745946 + 0.666006i \(0.231998\pi\)
−0.745946 + 0.666006i \(0.768002\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 277.377i 0.508949i
\(546\) 0 0
\(547\) − 741.614i − 1.35578i −0.735161 0.677892i \(-0.762893\pi\)
0.735161 0.677892i \(-0.237107\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −185.141 −0.336009
\(552\) 0 0
\(553\) 864.007 1.56240
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 344.843i 0.619108i 0.950882 + 0.309554i \(0.100180\pi\)
−0.950882 + 0.309554i \(0.899820\pi\)
\(558\) 0 0
\(559\) −352.536 −0.630654
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 126.613i 0.224890i 0.993658 + 0.112445i \(0.0358683\pi\)
−0.993658 + 0.112445i \(0.964132\pi\)
\(564\) 0 0
\(565\) −324.024 −0.573493
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 559.627i − 0.983526i −0.870729 0.491763i \(-0.836353\pi\)
0.870729 0.491763i \(-0.163647\pi\)
\(570\) 0 0
\(571\) − 67.4557i − 0.118136i −0.998254 0.0590680i \(-0.981187\pi\)
0.998254 0.0590680i \(-0.0188129\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 228.508 0.397405
\(576\) 0 0
\(577\) −516.662 −0.895427 −0.447714 0.894177i \(-0.647762\pi\)
−0.447714 + 0.894177i \(0.647762\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1459.50 2.51204
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −355.032 −0.604825 −0.302413 0.953177i \(-0.597792\pi\)
−0.302413 + 0.953177i \(0.597792\pi\)
\(588\) 0 0
\(589\) − 480.544i − 0.815865i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 691.664i − 1.16638i −0.812335 0.583191i \(-0.801804\pi\)
0.812335 0.583191i \(-0.198196\pi\)
\(594\) 0 0
\(595\) −911.066 −1.53120
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −649.689 −1.08462 −0.542312 0.840177i \(-0.682451\pi\)
−0.542312 + 0.840177i \(0.682451\pi\)
\(600\) 0 0
\(601\) − 801.856i − 1.33420i −0.744967 0.667101i \(-0.767535\pi\)
0.744967 0.667101i \(-0.232465\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 512.192i − 0.843810i −0.906640 0.421905i \(-0.861362\pi\)
0.906640 0.421905i \(-0.138638\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 456.512i 0.747155i
\(612\) 0 0
\(613\) − 1015.96i − 1.65736i −0.559724 0.828679i \(-0.689093\pi\)
0.559724 0.828679i \(-0.310907\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 790.584 1.28133 0.640667 0.767819i \(-0.278658\pi\)
0.640667 + 0.767819i \(0.278658\pi\)
\(618\) 0 0
\(619\) 15.1503 0.0244754 0.0122377 0.999925i \(-0.496105\pi\)
0.0122377 + 0.999925i \(0.496105\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 1743.65i − 2.79880i
\(624\) 0 0
\(625\) −418.597 −0.669756
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 508.336i − 0.808166i
\(630\) 0 0
\(631\) 275.558 0.436701 0.218350 0.975870i \(-0.429932\pi\)
0.218350 + 0.975870i \(0.429932\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 472.187i 0.743602i
\(636\) 0 0
\(637\) 665.339i 1.04449i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 770.510 1.20204 0.601022 0.799232i \(-0.294760\pi\)
0.601022 + 0.799232i \(0.294760\pi\)
\(642\) 0 0
\(643\) 428.201 0.665943 0.332971 0.942937i \(-0.391949\pi\)
0.332971 + 0.942937i \(0.391949\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −844.252 −1.30487 −0.652436 0.757844i \(-0.726253\pi\)
−0.652436 + 0.757844i \(0.726253\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −538.685 −0.824939 −0.412470 0.910971i \(-0.635334\pi\)
−0.412470 + 0.910971i \(0.635334\pi\)
\(654\) 0 0
\(655\) − 196.789i − 0.300441i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 633.597i 0.961452i 0.876871 + 0.480726i \(0.159627\pi\)
−0.876871 + 0.480726i \(0.840373\pi\)
\(660\) 0 0
\(661\) 336.321 0.508806 0.254403 0.967098i \(-0.418121\pi\)
0.254403 + 0.967098i \(0.418121\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 942.963 1.41799
\(666\) 0 0
\(667\) 331.871i 0.497558i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.5303i 0.0394210i 0.999806 + 0.0197105i \(0.00627446\pi\)
−0.999806 + 0.0197105i \(0.993726\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 949.002i − 1.40178i −0.713271 0.700888i \(-0.752787\pi\)
0.713271 0.700888i \(-0.247213\pi\)
\(678\) 0 0
\(679\) 1200.80i 1.76848i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −212.285 −0.310813 −0.155406 0.987851i \(-0.549669\pi\)
−0.155406 + 0.987851i \(0.549669\pi\)
\(684\) 0 0
\(685\) 762.327 1.11289
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 213.714i 0.310179i
\(690\) 0 0
\(691\) 1237.95 1.79153 0.895767 0.444523i \(-0.146627\pi\)
0.895767 + 0.444523i \(0.146627\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 576.116i 0.828944i
\(696\) 0 0
\(697\) 1080.39 1.55005
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1131.57i 1.61423i 0.590397 + 0.807113i \(0.298971\pi\)
−0.590397 + 0.807113i \(0.701029\pi\)
\(702\) 0 0
\(703\) 526.133i 0.748412i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 241.842 0.342067
\(708\) 0 0
\(709\) −513.897 −0.724820 −0.362410 0.932019i \(-0.618046\pi\)
−0.362410 + 0.932019i \(0.618046\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −861.392 −1.20812
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −860.203 −1.19639 −0.598194 0.801351i \(-0.704115\pi\)
−0.598194 + 0.801351i \(0.704115\pi\)
\(720\) 0 0
\(721\) 106.407i 0.147582i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 62.1844i 0.0857717i
\(726\) 0 0
\(727\) −42.6664 −0.0586883 −0.0293442 0.999569i \(-0.509342\pi\)
−0.0293442 + 0.999569i \(0.509342\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 777.283 1.06331
\(732\) 0 0
\(733\) 421.301i 0.574762i 0.957816 + 0.287381i \(0.0927846\pi\)
−0.957816 + 0.287381i \(0.907215\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 593.597i − 0.803244i −0.915806 0.401622i \(-0.868447\pi\)
0.915806 0.401622i \(-0.131553\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 344.394i − 0.463518i −0.972773 0.231759i \(-0.925552\pi\)
0.972773 0.231759i \(-0.0744481\pi\)
\(744\) 0 0
\(745\) − 120.917i − 0.162305i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 872.174 1.16445
\(750\) 0 0
\(751\) −42.5009 −0.0565924 −0.0282962 0.999600i \(-0.509008\pi\)
−0.0282962 + 0.999600i \(0.509008\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 499.055i − 0.661000i
\(756\) 0 0
\(757\) 612.622 0.809276 0.404638 0.914477i \(-0.367398\pi\)
0.404638 + 0.914477i \(0.367398\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 971.925i − 1.27717i −0.769552 0.638584i \(-0.779521\pi\)
0.769552 0.638584i \(-0.220479\pi\)
\(762\) 0 0
\(763\) −727.423 −0.953372
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 867.940i − 1.13160i
\(768\) 0 0
\(769\) 97.6695i 0.127008i 0.997982 + 0.0635042i \(0.0202276\pi\)
−0.997982 + 0.0635042i \(0.979772\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −47.4526 −0.0613876 −0.0306938 0.999529i \(-0.509772\pi\)
−0.0306938 + 0.999529i \(0.509772\pi\)
\(774\) 0 0
\(775\) −161.403 −0.208262
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1118.21 −1.43545
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 325.846 0.415091
\(786\) 0 0
\(787\) − 19.1045i − 0.0242751i −0.999926 0.0121376i \(-0.996136\pi\)
0.999926 0.0121376i \(-0.00386360\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 849.754i − 1.07428i
\(792\) 0 0
\(793\) 979.354 1.23500
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −402.913 −0.505537 −0.252769 0.967527i \(-0.581341\pi\)
−0.252769 + 0.967527i \(0.581341\pi\)
\(798\) 0 0
\(799\) − 1006.53i − 1.25974i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 1690.29i − 2.09974i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 460.834i 0.569635i 0.958582 + 0.284817i \(0.0919329\pi\)
−0.958582 + 0.284817i \(0.908067\pi\)
\(810\) 0 0
\(811\) − 138.120i − 0.170308i −0.996368 0.0851542i \(-0.972862\pi\)
0.996368 0.0851542i \(-0.0271383\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 56.7146 0.0695885
\(816\) 0 0
\(817\) −804.496 −0.984695
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 253.642i 0.308943i 0.987997 + 0.154472i \(0.0493675\pi\)
−0.987997 + 0.154472i \(0.950632\pi\)
\(822\) 0 0
\(823\) −539.230 −0.655201 −0.327600 0.944816i \(-0.606240\pi\)
−0.327600 + 0.944816i \(0.606240\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 389.528i − 0.471013i −0.971873 0.235506i \(-0.924325\pi\)
0.971873 0.235506i \(-0.0756749\pi\)
\(828\) 0 0
\(829\) −535.197 −0.645594 −0.322797 0.946468i \(-0.604623\pi\)
−0.322797 + 0.946468i \(0.604623\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 1466.96i − 1.76106i
\(834\) 0 0
\(835\) − 846.283i − 1.01351i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −252.148 −0.300534 −0.150267 0.988645i \(-0.548013\pi\)
−0.150267 + 0.988645i \(0.548013\pi\)
\(840\) 0 0
\(841\) 750.687 0.892612
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 412.939 0.488685
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 943.111 1.10824
\(852\) 0 0
\(853\) 1191.72i 1.39709i 0.715566 + 0.698545i \(0.246169\pi\)
−0.715566 + 0.698545i \(0.753831\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1368.07i 1.59635i 0.602425 + 0.798176i \(0.294201\pi\)
−0.602425 + 0.798176i \(0.705799\pi\)
\(858\) 0 0
\(859\) 525.360 0.611595 0.305798 0.952097i \(-0.401077\pi\)
0.305798 + 0.952097i \(0.401077\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 773.424 0.896204 0.448102 0.893982i \(-0.352100\pi\)
0.448102 + 0.893982i \(0.352100\pi\)
\(864\) 0 0
\(865\) 573.138i 0.662588i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 627.131i 0.720013i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 1526.78i − 1.74489i
\(876\) 0 0
\(877\) 789.916i 0.900702i 0.892852 + 0.450351i \(0.148701\pi\)
−0.892852 + 0.450351i \(0.851299\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 147.871 0.167844 0.0839221 0.996472i \(-0.473255\pi\)
0.0839221 + 0.996472i \(0.473255\pi\)
\(882\) 0 0
\(883\) 307.458 0.348197 0.174098 0.984728i \(-0.444299\pi\)
0.174098 + 0.984728i \(0.444299\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 457.872i − 0.516203i −0.966118 0.258102i \(-0.916903\pi\)
0.966118 0.258102i \(-0.0830970\pi\)
\(888\) 0 0
\(889\) −1238.31 −1.39293
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1041.77i 1.16660i
\(894\) 0 0
\(895\) −664.633 −0.742606
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 234.413i − 0.260749i
\(900\) 0 0
\(901\) − 471.203i − 0.522978i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 21.1684 0.0233905
\(906\) 0 0
\(907\) 613.197 0.676071 0.338036 0.941133i \(-0.390238\pi\)
0.338036 + 0.941133i \(0.390238\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −604.244 −0.663275 −0.331638 0.943407i \(-0.607601\pi\)
−0.331638 + 0.943407i \(0.607601\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 516.079 0.562791
\(918\) 0 0
\(919\) 1179.83i 1.28382i 0.766781 + 0.641909i \(0.221857\pi\)
−0.766781 + 0.641909i \(0.778143\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 902.416i 0.977698i
\(924\) 0 0
\(925\) 176.716 0.191044
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 129.409 0.139299 0.0696496 0.997572i \(-0.477812\pi\)
0.0696496 + 0.997572i \(0.477812\pi\)
\(930\) 0 0
\(931\) 1518.32i 1.63085i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 124.330i 0.132690i 0.997797 + 0.0663448i \(0.0211337\pi\)
−0.997797 + 0.0663448i \(0.978866\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 1462.43i − 1.55412i −0.629425 0.777061i \(-0.716709\pi\)
0.629425 0.777061i \(-0.283291\pi\)
\(942\) 0 0
\(943\) 2004.43i 2.12559i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1866.17 −1.97061 −0.985304 0.170809i \(-0.945362\pi\)
−0.985304 + 0.170809i \(0.945362\pi\)
\(948\) 0 0
\(949\) −353.057 −0.372031
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1125.12i 1.18061i 0.807181 + 0.590304i \(0.200992\pi\)
−0.807181 + 0.590304i \(0.799008\pi\)
\(954\) 0 0
\(955\) 1607.10 1.68282
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1999.21i 2.08468i
\(960\) 0 0
\(961\) −352.568 −0.366876
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1200.70i 1.24425i
\(966\) 0 0
\(967\) 577.349i 0.597052i 0.954402 + 0.298526i \(0.0964950\pi\)
−0.954402 + 0.298526i \(0.903505\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 629.291 0.648085 0.324043 0.946042i \(-0.394958\pi\)
0.324043 + 0.946042i \(0.394958\pi\)
\(972\) 0 0
\(973\) −1510.87 −1.55279
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 567.655 0.581018 0.290509 0.956872i \(-0.406175\pi\)
0.290509 + 0.956872i \(0.406175\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1108.33 1.12749 0.563747 0.825947i \(-0.309359\pi\)
0.563747 + 0.825947i \(0.309359\pi\)
\(984\) 0 0
\(985\) 439.174i 0.445862i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1442.09i 1.45812i
\(990\) 0 0
\(991\) −534.101 −0.538952 −0.269476 0.963007i \(-0.586850\pi\)
−0.269476 + 0.963007i \(0.586850\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1529.59 1.53728
\(996\) 0 0
\(997\) 1577.87i 1.58262i 0.611416 + 0.791309i \(0.290600\pi\)
−0.611416 + 0.791309i \(0.709400\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4356.3.f.h.1693.6 8
3.2 odd 2 1452.3.f.c.241.2 yes 8
11.10 odd 2 inner 4356.3.f.h.1693.5 8
33.32 even 2 1452.3.f.c.241.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1452.3.f.c.241.1 8 33.32 even 2
1452.3.f.c.241.2 yes 8 3.2 odd 2
4356.3.f.h.1693.5 8 11.10 odd 2 inner
4356.3.f.h.1693.6 8 1.1 even 1 trivial