Properties

Label 2-66e2-11.10-c2-0-76
Degree $2$
Conductor $4356$
Sign $-0.522 + 0.852i$
Analytic cond. $118.692$
Root an. cond. $10.8946$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.29·5-s + 11.2i·7-s − 8.53i·13-s + 18.8i·17-s − 19.4i·19-s − 34.9·23-s − 6.54·25-s − 9.50i·29-s + 24.6·31-s + 48.4i·35-s − 27.0·37-s − 57.3i·41-s − 41.2i·43-s − 53.4·47-s − 77.9·49-s + ⋯
L(s)  = 1  + 0.859·5-s + 1.60i·7-s − 0.656i·13-s + 1.10i·17-s − 1.02i·19-s − 1.51·23-s − 0.261·25-s − 0.327i·29-s + 0.795·31-s + 1.38i·35-s − 0.729·37-s − 1.39i·41-s − 0.960i·43-s − 1.13·47-s − 1.59·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4356 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4356 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.522 + 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4356\)    =    \(2^{2} \cdot 3^{2} \cdot 11^{2}\)
Sign: $-0.522 + 0.852i$
Analytic conductor: \(118.692\)
Root analytic conductor: \(10.8946\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{4356} (1693, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4356,\ (\ :1),\ -0.522 + 0.852i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.5347182879\)
\(L(\frac12)\) \(\approx\) \(0.5347182879\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
good5 \( 1 - 4.29T + 25T^{2} \)
7 \( 1 - 11.2iT - 49T^{2} \)
13 \( 1 + 8.53iT - 169T^{2} \)
17 \( 1 - 18.8iT - 289T^{2} \)
19 \( 1 + 19.4iT - 361T^{2} \)
23 \( 1 + 34.9T + 529T^{2} \)
29 \( 1 + 9.50iT - 841T^{2} \)
31 \( 1 - 24.6T + 961T^{2} \)
37 \( 1 + 27.0T + 1.36e3T^{2} \)
41 \( 1 + 57.3iT - 1.68e3T^{2} \)
43 \( 1 + 41.2iT - 1.84e3T^{2} \)
47 \( 1 + 53.4T + 2.20e3T^{2} \)
53 \( 1 + 25.0T + 2.80e3T^{2} \)
59 \( 1 - 101.T + 3.48e3T^{2} \)
61 \( 1 - 114. iT - 3.72e3T^{2} \)
67 \( 1 + 73.4T + 4.48e3T^{2} \)
71 \( 1 + 105.T + 5.04e3T^{2} \)
73 \( 1 + 41.3iT - 5.32e3T^{2} \)
79 \( 1 + 76.6iT - 6.24e3T^{2} \)
83 \( 1 + 129. iT - 6.88e3T^{2} \)
89 \( 1 + 154.T + 7.92e3T^{2} \)
97 \( 1 - 106.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.192421002138531343827415758496, −7.19547285339268762869751226903, −6.13822850832243276416984348113, −5.86518775246535896888979812208, −5.23717047198930622274377684412, −4.22062581862698912435206832121, −3.12240543079087497860629780131, −2.28244150464099346779621522883, −1.73038219387012597949989344031, −0.099836386686913779054385416130, 1.17378724881367584830920623909, 1.91053729800837299093909466692, 3.08699497882799566745225789578, 4.00141826374762254325990953547, 4.60764178194465475636772517152, 5.53178943389692319919412912715, 6.42837756183423357773500387525, 6.84803087360059000843481662371, 7.78773828839549266946116367741, 8.230622428735184849169163627632

Graph of the $Z$-function along the critical line