Properties

Label 435.2.q.d.191.1
Level $435$
Weight $2$
Character 435.191
Analytic conductor $3.473$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [435,2,Mod(41,435)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("435.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(435, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 191.1
Character \(\chi\) \(=\) 435.191
Dual form 435.2.q.d.41.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.93705 - 1.93705i) q^{2} +(1.50032 + 0.865476i) q^{3} +5.50431i q^{4} +1.00000 q^{5} +(-1.22972 - 4.58265i) q^{6} +1.59227 q^{7} +(6.78801 - 6.78801i) q^{8} +(1.50190 + 2.59698i) q^{9} +(-1.93705 - 1.93705i) q^{10} +(-2.51227 - 2.51227i) q^{11} +(-4.76385 + 8.25821i) q^{12} +5.42072i q^{13} +(-3.08430 - 3.08430i) q^{14} +(1.50032 + 0.865476i) q^{15} -15.2888 q^{16} +(1.58699 + 1.58699i) q^{17} +(2.12121 - 7.93972i) q^{18} +(1.79172 - 1.79172i) q^{19} +5.50431i q^{20} +(2.38891 + 1.37807i) q^{21} +9.73277i q^{22} +2.26767i q^{23} +(16.0590 - 4.30931i) q^{24} +1.00000 q^{25} +(10.5002 - 10.5002i) q^{26} +(0.00570619 + 5.19615i) q^{27} +8.76433i q^{28} +(1.83937 + 5.06130i) q^{29} +(-1.22972 - 4.58265i) q^{30} +(6.53520 - 6.53520i) q^{31} +(16.0391 + 16.0391i) q^{32} +(-1.59489 - 5.94351i) q^{33} -6.14814i q^{34} +1.59227 q^{35} +(-14.2946 + 8.26693i) q^{36} +(1.18750 + 1.18750i) q^{37} -6.94129 q^{38} +(-4.69151 + 8.13280i) q^{39} +(6.78801 - 6.78801i) q^{40} +(-6.56896 + 6.56896i) q^{41} +(-1.95804 - 7.29681i) q^{42} +(0.586602 - 0.586602i) q^{43} +(13.8283 - 13.8283i) q^{44} +(1.50190 + 2.59698i) q^{45} +(4.39258 - 4.39258i) q^{46} +(2.90529 - 2.90529i) q^{47} +(-22.9380 - 13.2321i) q^{48} -4.46468 q^{49} +(-1.93705 - 1.93705i) q^{50} +(1.00748 + 3.75448i) q^{51} -29.8373 q^{52} -3.69903i q^{53} +(10.0541 - 10.0762i) q^{54} +(-2.51227 - 2.51227i) q^{55} +(10.8083 - 10.8083i) q^{56} +(4.23884 - 1.13746i) q^{57} +(6.24102 - 13.3669i) q^{58} -12.1062i q^{59} +(-4.76385 + 8.25821i) q^{60} +(7.46553 - 7.46553i) q^{61} -25.3180 q^{62} +(2.39143 + 4.13508i) q^{63} -31.5594i q^{64} +5.42072i q^{65} +(-8.42348 + 14.6022i) q^{66} -1.85583i q^{67} +(-8.73526 + 8.73526i) q^{68} +(-1.96261 + 3.40222i) q^{69} +(-3.08430 - 3.08430i) q^{70} +3.52616 q^{71} +(27.8232 + 7.43339i) q^{72} +(6.40581 + 6.40581i) q^{73} -4.60050i q^{74} +(1.50032 + 0.865476i) q^{75} +(9.86218 + 9.86218i) q^{76} +(-4.00020 - 4.00020i) q^{77} +(24.8413 - 6.66595i) q^{78} +(-3.54465 + 3.54465i) q^{79} -15.2888 q^{80} +(-4.48858 + 7.80081i) q^{81} +25.4488 q^{82} +14.3942i q^{83} +(-7.58532 + 13.1493i) q^{84} +(1.58699 + 1.58699i) q^{85} -2.27255 q^{86} +(-1.62079 + 9.18548i) q^{87} -34.1066 q^{88} +(-3.15754 - 3.15754i) q^{89} +(2.12121 - 7.93972i) q^{90} +8.63124i q^{91} -12.4819 q^{92} +(15.4609 - 4.14881i) q^{93} -11.2554 q^{94} +(1.79172 - 1.79172i) q^{95} +(10.1823 + 37.9452i) q^{96} +(-11.8364 - 11.8364i) q^{97} +(8.64830 + 8.64830i) q^{98} +(2.75112 - 10.2975i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 4 q^{2} + 2 q^{3} + 36 q^{5} - 8 q^{6} + 8 q^{7} - 4 q^{8} + 4 q^{10} + 12 q^{11} + 10 q^{12} - 28 q^{14} + 2 q^{15} - 60 q^{16} + 20 q^{17} + 32 q^{18} + 16 q^{19} - 12 q^{21} + 24 q^{24} + 36 q^{25}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.93705 1.93705i −1.36970 1.36970i −0.860863 0.508836i \(-0.830076\pi\)
−0.508836 0.860863i \(-0.669924\pi\)
\(3\) 1.50032 + 0.865476i 0.866208 + 0.499683i
\(4\) 5.50431i 2.75215i
\(5\) 1.00000 0.447214
\(6\) −1.22972 4.58265i −0.502030 1.87086i
\(7\) 1.59227 0.601821 0.300910 0.953652i \(-0.402710\pi\)
0.300910 + 0.953652i \(0.402710\pi\)
\(8\) 6.78801 6.78801i 2.39992 2.39992i
\(9\) 1.50190 + 2.59698i 0.500634 + 0.865659i
\(10\) −1.93705 1.93705i −0.612548 0.612548i
\(11\) −2.51227 2.51227i −0.757477 0.757477i 0.218385 0.975863i \(-0.429921\pi\)
−0.975863 + 0.218385i \(0.929921\pi\)
\(12\) −4.76385 + 8.25821i −1.37520 + 2.38394i
\(13\) 5.42072i 1.50344i 0.659484 + 0.751719i \(0.270775\pi\)
−0.659484 + 0.751719i \(0.729225\pi\)
\(14\) −3.08430 3.08430i −0.824314 0.824314i
\(15\) 1.50032 + 0.865476i 0.387380 + 0.223465i
\(16\) −15.2888 −3.82220
\(17\) 1.58699 + 1.58699i 0.384901 + 0.384901i 0.872864 0.487963i \(-0.162260\pi\)
−0.487963 + 0.872864i \(0.662260\pi\)
\(18\) 2.12121 7.93972i 0.499975 1.87141i
\(19\) 1.79172 1.79172i 0.411049 0.411049i −0.471055 0.882104i \(-0.656127\pi\)
0.882104 + 0.471055i \(0.156127\pi\)
\(20\) 5.50431i 1.23080i
\(21\) 2.38891 + 1.37807i 0.521302 + 0.300720i
\(22\) 9.73277i 2.07503i
\(23\) 2.26767i 0.472841i 0.971651 + 0.236421i \(0.0759743\pi\)
−0.971651 + 0.236421i \(0.924026\pi\)
\(24\) 16.0590 4.30931i 3.27804 0.879633i
\(25\) 1.00000 0.200000
\(26\) 10.5002 10.5002i 2.05926 2.05926i
\(27\) 0.00570619 + 5.19615i 0.00109816 + 0.999999i
\(28\) 8.76433i 1.65630i
\(29\) 1.83937 + 5.06130i 0.341563 + 0.939859i
\(30\) −1.22972 4.58265i −0.224515 0.836674i
\(31\) 6.53520 6.53520i 1.17376 1.17376i 0.192451 0.981307i \(-0.438357\pi\)
0.981307 0.192451i \(-0.0616435\pi\)
\(32\) 16.0391 + 16.0391i 2.83534 + 2.83534i
\(33\) −1.59489 5.94351i −0.277635 1.03463i
\(34\) 6.14814i 1.05440i
\(35\) 1.59227 0.269142
\(36\) −14.2946 + 8.26693i −2.38243 + 1.37782i
\(37\) 1.18750 + 1.18750i 0.195224 + 0.195224i 0.797949 0.602725i \(-0.205918\pi\)
−0.602725 + 0.797949i \(0.705918\pi\)
\(38\) −6.94129 −1.12603
\(39\) −4.69151 + 8.13280i −0.751242 + 1.30229i
\(40\) 6.78801 6.78801i 1.07328 1.07328i
\(41\) −6.56896 + 6.56896i −1.02590 + 1.02590i −0.0262439 + 0.999656i \(0.508355\pi\)
−0.999656 + 0.0262439i \(0.991645\pi\)
\(42\) −1.95804 7.29681i −0.302132 1.12592i
\(43\) 0.586602 0.586602i 0.0894560 0.0894560i −0.660963 0.750419i \(-0.729852\pi\)
0.750419 + 0.660963i \(0.229852\pi\)
\(44\) 13.8283 13.8283i 2.08469 2.08469i
\(45\) 1.50190 + 2.59698i 0.223890 + 0.387135i
\(46\) 4.39258 4.39258i 0.647650 0.647650i
\(47\) 2.90529 2.90529i 0.423781 0.423781i −0.462722 0.886503i \(-0.653127\pi\)
0.886503 + 0.462722i \(0.153127\pi\)
\(48\) −22.9380 13.2321i −3.31082 1.90989i
\(49\) −4.46468 −0.637812
\(50\) −1.93705 1.93705i −0.273940 0.273940i
\(51\) 1.00748 + 3.75448i 0.141076 + 0.525733i
\(52\) −29.8373 −4.13769
\(53\) 3.69903i 0.508100i −0.967191 0.254050i \(-0.918237\pi\)
0.967191 0.254050i \(-0.0817629\pi\)
\(54\) 10.0541 10.0762i 1.36819 1.37120i
\(55\) −2.51227 2.51227i −0.338754 0.338754i
\(56\) 10.8083 10.8083i 1.44432 1.44432i
\(57\) 4.23884 1.13746i 0.561448 0.150660i
\(58\) 6.24102 13.3669i 0.819486 1.75516i
\(59\) 12.1062i 1.57609i −0.615617 0.788045i \(-0.711093\pi\)
0.615617 0.788045i \(-0.288907\pi\)
\(60\) −4.76385 + 8.25821i −0.615010 + 1.06613i
\(61\) 7.46553 7.46553i 0.955863 0.955863i −0.0432030 0.999066i \(-0.513756\pi\)
0.999066 + 0.0432030i \(0.0137562\pi\)
\(62\) −25.3180 −3.21539
\(63\) 2.39143 + 4.13508i 0.301292 + 0.520972i
\(64\) 31.5594i 3.94493i
\(65\) 5.42072i 0.672358i
\(66\) −8.42348 + 14.6022i −1.03686 + 1.79741i
\(67\) 1.85583i 0.226725i −0.993554 0.113363i \(-0.963838\pi\)
0.993554 0.113363i \(-0.0361622\pi\)
\(68\) −8.73526 + 8.73526i −1.05931 + 1.05931i
\(69\) −1.96261 + 3.40222i −0.236271 + 0.409579i
\(70\) −3.08430 3.08430i −0.368644 0.368644i
\(71\) 3.52616 0.418478 0.209239 0.977864i \(-0.432901\pi\)
0.209239 + 0.977864i \(0.432901\pi\)
\(72\) 27.8232 + 7.43339i 3.27900 + 0.876033i
\(73\) 6.40581 + 6.40581i 0.749743 + 0.749743i 0.974431 0.224688i \(-0.0721362\pi\)
−0.224688 + 0.974431i \(0.572136\pi\)
\(74\) 4.60050i 0.534798i
\(75\) 1.50032 + 0.865476i 0.173242 + 0.0999366i
\(76\) 9.86218 + 9.86218i 1.13127 + 1.13127i
\(77\) −4.00020 4.00020i −0.455865 0.455865i
\(78\) 24.8413 6.66595i 2.81272 0.754770i
\(79\) −3.54465 + 3.54465i −0.398804 + 0.398804i −0.877811 0.479007i \(-0.840997\pi\)
0.479007 + 0.877811i \(0.340997\pi\)
\(80\) −15.2888 −1.70934
\(81\) −4.48858 + 7.80081i −0.498731 + 0.866757i
\(82\) 25.4488 2.81035
\(83\) 14.3942i 1.57997i 0.613127 + 0.789984i \(0.289911\pi\)
−0.613127 + 0.789984i \(0.710089\pi\)
\(84\) −7.58532 + 13.1493i −0.827626 + 1.43470i
\(85\) 1.58699 + 1.58699i 0.172133 + 0.172133i
\(86\) −2.27255 −0.245056
\(87\) −1.62079 + 9.18548i −0.173767 + 0.984787i
\(88\) −34.1066 −3.63578
\(89\) −3.15754 3.15754i −0.334699 0.334699i 0.519669 0.854368i \(-0.326055\pi\)
−0.854368 + 0.519669i \(0.826055\pi\)
\(90\) 2.12121 7.93972i 0.223596 0.836920i
\(91\) 8.63124i 0.904800i
\(92\) −12.4819 −1.30133
\(93\) 15.4609 4.14881i 1.60322 0.430212i
\(94\) −11.2554 −1.16090
\(95\) 1.79172 1.79172i 0.183827 0.183827i
\(96\) 10.1823 + 37.9452i 1.03922 + 3.87276i
\(97\) −11.8364 11.8364i −1.20180 1.20180i −0.973618 0.228184i \(-0.926721\pi\)
−0.228184 0.973618i \(-0.573279\pi\)
\(98\) 8.64830 + 8.64830i 0.873611 + 0.873611i
\(99\) 2.75112 10.2975i 0.276498 1.03494i
\(100\) 5.50431i 0.550431i
\(101\) −9.76773 9.76773i −0.971926 0.971926i 0.0276909 0.999617i \(-0.491185\pi\)
−0.999617 + 0.0276909i \(0.991185\pi\)
\(102\) 5.32107 9.22415i 0.526864 0.913327i
\(103\) 6.84057 0.674022 0.337011 0.941501i \(-0.390584\pi\)
0.337011 + 0.941501i \(0.390584\pi\)
\(104\) 36.7959 + 36.7959i 3.60814 + 3.60814i
\(105\) 2.38891 + 1.37807i 0.233133 + 0.134486i
\(106\) −7.16519 + 7.16519i −0.695945 + 0.695945i
\(107\) 0.164280i 0.0158815i 0.999968 + 0.00794076i \(0.00252765\pi\)
−0.999968 + 0.00794076i \(0.997472\pi\)
\(108\) −28.6012 + 0.0314086i −2.75215 + 0.00302229i
\(109\) 14.6990i 1.40791i −0.710245 0.703954i \(-0.751416\pi\)
0.710245 0.703954i \(-0.248584\pi\)
\(110\) 9.73277i 0.927983i
\(111\) 0.753875 + 2.80939i 0.0715547 + 0.266655i
\(112\) −24.3438 −2.30028
\(113\) 7.66400 7.66400i 0.720968 0.720968i −0.247834 0.968802i \(-0.579719\pi\)
0.968802 + 0.247834i \(0.0797188\pi\)
\(114\) −10.4141 6.00752i −0.975374 0.562656i
\(115\) 2.26767i 0.211461i
\(116\) −27.8589 + 10.1245i −2.58664 + 0.940033i
\(117\) −14.0775 + 8.14139i −1.30146 + 0.752672i
\(118\) −23.4503 + 23.4503i −2.15877 + 2.15877i
\(119\) 2.52691 + 2.52691i 0.231641 + 0.231641i
\(120\) 16.0590 4.30931i 1.46598 0.393384i
\(121\) 1.62298i 0.147543i
\(122\) −28.9222 −2.61849
\(123\) −15.5408 + 4.17024i −1.40127 + 0.376018i
\(124\) 35.9718 + 35.9718i 3.23036 + 3.23036i
\(125\) 1.00000 0.0894427
\(126\) 3.37754 12.6422i 0.300895 1.12625i
\(127\) −13.8555 + 13.8555i −1.22948 + 1.22948i −0.265314 + 0.964162i \(0.585475\pi\)
−0.964162 + 0.265314i \(0.914525\pi\)
\(128\) −29.0539 + 29.0539i −2.56802 + 2.56802i
\(129\) 1.38778 0.372399i 0.122187 0.0327879i
\(130\) 10.5002 10.5002i 0.920928 0.920928i
\(131\) −4.43515 + 4.43515i −0.387501 + 0.387501i −0.873795 0.486294i \(-0.838348\pi\)
0.486294 + 0.873795i \(0.338348\pi\)
\(132\) 32.7149 8.77876i 2.84747 0.764093i
\(133\) 2.85290 2.85290i 0.247378 0.247378i
\(134\) −3.59483 + 3.59483i −0.310546 + 0.310546i
\(135\) 0.00570619 + 5.19615i 0.000491110 + 0.447213i
\(136\) 21.5450 1.84747
\(137\) 4.07631 + 4.07631i 0.348262 + 0.348262i 0.859462 0.511200i \(-0.170799\pi\)
−0.511200 + 0.859462i \(0.670799\pi\)
\(138\) 10.3919 2.78859i 0.884620 0.237380i
\(139\) 13.7092 1.16280 0.581398 0.813620i \(-0.302506\pi\)
0.581398 + 0.813620i \(0.302506\pi\)
\(140\) 8.76433i 0.740721i
\(141\) 6.87333 1.84440i 0.578838 0.155326i
\(142\) −6.83034 6.83034i −0.573190 0.573190i
\(143\) 13.6183 13.6183i 1.13882 1.13882i
\(144\) −22.9623 39.7046i −1.91352 3.30872i
\(145\) 1.83937 + 5.06130i 0.152752 + 0.420318i
\(146\) 24.8167i 2.05385i
\(147\) −6.69844 3.86408i −0.552478 0.318704i
\(148\) −6.53639 + 6.53639i −0.537288 + 0.537288i
\(149\) −19.9073 −1.63087 −0.815436 0.578847i \(-0.803503\pi\)
−0.815436 + 0.578847i \(0.803503\pi\)
\(150\) −1.22972 4.58265i −0.100406 0.374172i
\(151\) 7.19222i 0.585295i 0.956220 + 0.292647i \(0.0945362\pi\)
−0.956220 + 0.292647i \(0.905464\pi\)
\(152\) 24.3244i 1.97297i
\(153\) −1.73787 + 6.50487i −0.140498 + 0.525887i
\(154\) 15.4972i 1.24880i
\(155\) 6.53520 6.53520i 0.524920 0.524920i
\(156\) −44.7654 25.8235i −3.58410 2.06753i
\(157\) −7.33987 7.33987i −0.585785 0.585785i 0.350702 0.936487i \(-0.385943\pi\)
−0.936487 + 0.350702i \(0.885943\pi\)
\(158\) 13.7323 1.09248
\(159\) 3.20142 5.54971i 0.253889 0.440121i
\(160\) 16.0391 + 16.0391i 1.26800 + 1.26800i
\(161\) 3.61073i 0.284565i
\(162\) 23.8051 6.41594i 1.87031 0.504084i
\(163\) −2.83532 2.83532i −0.222079 0.222079i 0.587294 0.809374i \(-0.300193\pi\)
−0.809374 + 0.587294i \(0.800193\pi\)
\(164\) −36.1576 36.1576i −2.82343 2.82343i
\(165\) −1.59489 5.94351i −0.124162 0.462701i
\(166\) 27.8823 27.8823i 2.16408 2.16408i
\(167\) 9.25131 0.715888 0.357944 0.933743i \(-0.383478\pi\)
0.357944 + 0.933743i \(0.383478\pi\)
\(168\) 25.5703 6.86157i 1.97279 0.529382i
\(169\) −16.3842 −1.26032
\(170\) 6.14814i 0.471541i
\(171\) 7.34404 + 1.96207i 0.561613 + 0.150043i
\(172\) 3.22884 + 3.22884i 0.246197 + 0.246197i
\(173\) −1.09012 −0.0828805 −0.0414402 0.999141i \(-0.513195\pi\)
−0.0414402 + 0.999141i \(0.513195\pi\)
\(174\) 20.9323 14.6532i 1.58687 1.11085i
\(175\) 1.59227 0.120364
\(176\) 38.4095 + 38.4095i 2.89523 + 2.89523i
\(177\) 10.4776 18.1631i 0.787546 1.36522i
\(178\) 12.2326i 0.916874i
\(179\) −0.592168 −0.0442607 −0.0221303 0.999755i \(-0.507045\pi\)
−0.0221303 + 0.999755i \(0.507045\pi\)
\(180\) −14.2946 + 8.26693i −1.06545 + 0.616181i
\(181\) −9.12023 −0.677902 −0.338951 0.940804i \(-0.610072\pi\)
−0.338951 + 0.940804i \(0.610072\pi\)
\(182\) 16.7191 16.7191i 1.23930 1.23930i
\(183\) 17.6619 4.73942i 1.30561 0.350348i
\(184\) 15.3929 + 15.3929i 1.13478 + 1.13478i
\(185\) 1.18750 + 1.18750i 0.0873070 + 0.0873070i
\(186\) −37.9850 21.9121i −2.78520 1.60668i
\(187\) 7.97387i 0.583107i
\(188\) 15.9916 + 15.9916i 1.16631 + 1.16631i
\(189\) 0.00908578 + 8.27366i 0.000660893 + 0.601820i
\(190\) −6.94129 −0.503574
\(191\) −15.0126 15.0126i −1.08628 1.08628i −0.995909 0.0903669i \(-0.971196\pi\)
−0.0903669 0.995909i \(-0.528804\pi\)
\(192\) 27.3139 47.3491i 1.97121 3.41713i
\(193\) 2.01301 2.01301i 0.144900 0.144900i −0.630935 0.775835i \(-0.717329\pi\)
0.775835 + 0.630935i \(0.217329\pi\)
\(194\) 45.8553i 3.29222i
\(195\) −4.69151 + 8.13280i −0.335966 + 0.582402i
\(196\) 24.5750i 1.75536i
\(197\) 4.71783i 0.336131i −0.985776 0.168066i \(-0.946248\pi\)
0.985776 0.168066i \(-0.0537521\pi\)
\(198\) −25.2758 + 14.6177i −1.79627 + 1.03883i
\(199\) −18.5631 −1.31591 −0.657953 0.753059i \(-0.728577\pi\)
−0.657953 + 0.753059i \(0.728577\pi\)
\(200\) 6.78801 6.78801i 0.479985 0.479985i
\(201\) 1.60617 2.78433i 0.113291 0.196391i
\(202\) 37.8411i 2.66249i
\(203\) 2.92877 + 8.05894i 0.205560 + 0.565627i
\(204\) −20.6658 + 5.54550i −1.44690 + 0.388263i
\(205\) −6.56896 + 6.56896i −0.458796 + 0.458796i
\(206\) −13.2505 13.2505i −0.923207 0.923207i
\(207\) −5.88908 + 3.40581i −0.409319 + 0.236720i
\(208\) 82.8763i 5.74644i
\(209\) −9.00256 −0.622720
\(210\) −1.95804 7.29681i −0.135117 0.503528i
\(211\) 0.489150 + 0.489150i 0.0336745 + 0.0336745i 0.723744 0.690069i \(-0.242420\pi\)
−0.690069 + 0.723744i \(0.742420\pi\)
\(212\) 20.3606 1.39837
\(213\) 5.29036 + 3.05181i 0.362489 + 0.209106i
\(214\) 0.318218 0.318218i 0.0217529 0.0217529i
\(215\) 0.586602 0.586602i 0.0400060 0.0400060i
\(216\) 35.3103 + 35.2328i 2.40256 + 2.39729i
\(217\) 10.4058 10.4058i 0.706391 0.706391i
\(218\) −28.4727 + 28.4727i −1.92841 + 1.92841i
\(219\) 4.06667 + 15.1548i 0.274800 + 1.02407i
\(220\) 13.8283 13.8283i 0.932303 0.932303i
\(221\) −8.60261 + 8.60261i −0.578674 + 0.578674i
\(222\) 3.98163 6.90221i 0.267229 0.463246i
\(223\) −19.4176 −1.30030 −0.650151 0.759805i \(-0.725294\pi\)
−0.650151 + 0.759805i \(0.725294\pi\)
\(224\) 25.5385 + 25.5385i 1.70637 + 1.70637i
\(225\) 1.50190 + 2.59698i 0.100127 + 0.173132i
\(226\) −29.6911 −1.97502
\(227\) 18.2628i 1.21215i −0.795409 0.606073i \(-0.792744\pi\)
0.795409 0.606073i \(-0.207256\pi\)
\(228\) 6.26091 + 23.3319i 0.414639 + 1.54519i
\(229\) −18.1241 18.1241i −1.19768 1.19768i −0.974861 0.222816i \(-0.928475\pi\)
−0.222816 0.974861i \(-0.571525\pi\)
\(230\) 4.39258 4.39258i 0.289638 0.289638i
\(231\) −2.53949 9.46365i −0.167086 0.622663i
\(232\) 46.8418 + 21.8705i 3.07532 + 1.43587i
\(233\) 0.0786482i 0.00515241i −0.999997 0.00257621i \(-0.999180\pi\)
0.999997 0.00257621i \(-0.000820033\pi\)
\(234\) 43.0390 + 11.4985i 2.81355 + 0.751681i
\(235\) 2.90529 2.90529i 0.189521 0.189521i
\(236\) 66.6361 4.33764
\(237\) −8.38590 + 2.25029i −0.544723 + 0.146172i
\(238\) 9.78948i 0.634558i
\(239\) 19.5678i 1.26574i −0.774259 0.632869i \(-0.781877\pi\)
0.774259 0.632869i \(-0.218123\pi\)
\(240\) −22.9380 13.2321i −1.48064 0.854127i
\(241\) 3.03156i 0.195280i −0.995222 0.0976399i \(-0.968871\pi\)
0.995222 0.0976399i \(-0.0311293\pi\)
\(242\) 3.14379 3.14379i 0.202090 0.202090i
\(243\) −13.4857 + 7.81892i −0.865109 + 0.501584i
\(244\) 41.0926 + 41.0926i 2.63068 + 2.63068i
\(245\) −4.46468 −0.285238
\(246\) 38.1812 + 22.0253i 2.43435 + 1.40428i
\(247\) 9.71241 + 9.71241i 0.617986 + 0.617986i
\(248\) 88.7221i 5.63386i
\(249\) −12.4578 + 21.5959i −0.789484 + 1.36858i
\(250\) −1.93705 1.93705i −0.122510 0.122510i
\(251\) 2.96374 + 2.96374i 0.187070 + 0.187070i 0.794428 0.607358i \(-0.207771\pi\)
−0.607358 + 0.794428i \(0.707771\pi\)
\(252\) −22.7608 + 13.1632i −1.43379 + 0.829201i
\(253\) 5.69698 5.69698i 0.358166 0.358166i
\(254\) 53.6775 3.36802
\(255\) 1.00748 + 3.75448i 0.0630911 + 0.235115i
\(256\) 49.4387 3.08992
\(257\) 19.6791i 1.22755i 0.789481 + 0.613775i \(0.210350\pi\)
−0.789481 + 0.613775i \(0.789650\pi\)
\(258\) −3.40955 1.96684i −0.212269 0.122450i
\(259\) 1.89082 + 1.89082i 0.117490 + 0.117490i
\(260\) −29.8373 −1.85043
\(261\) −10.3815 + 12.3784i −0.642600 + 0.766202i
\(262\) 17.1822 1.06152
\(263\) 1.93126 + 1.93126i 0.119087 + 0.119087i 0.764139 0.645052i \(-0.223164\pi\)
−0.645052 + 0.764139i \(0.723164\pi\)
\(264\) −51.1707 29.5185i −3.14934 1.81674i
\(265\) 3.69903i 0.227229i
\(266\) −11.0524 −0.677666
\(267\) −2.00454 7.47010i −0.122676 0.457162i
\(268\) 10.2150 0.623983
\(269\) −9.63194 + 9.63194i −0.587270 + 0.587270i −0.936891 0.349621i \(-0.886310\pi\)
0.349621 + 0.936891i \(0.386310\pi\)
\(270\) 10.0541 10.0762i 0.611875 0.613221i
\(271\) −3.05787 3.05787i −0.185752 0.185752i 0.608105 0.793857i \(-0.291930\pi\)
−0.793857 + 0.608105i \(0.791930\pi\)
\(272\) −24.2631 24.2631i −1.47117 1.47117i
\(273\) −7.47013 + 12.9496i −0.452113 + 0.783745i
\(274\) 15.7920i 0.954029i
\(275\) −2.51227 2.51227i −0.151495 0.151495i
\(276\) −18.7269 10.8028i −1.12722 0.650253i
\(277\) −7.70541 −0.462973 −0.231487 0.972838i \(-0.574359\pi\)
−0.231487 + 0.972838i \(0.574359\pi\)
\(278\) −26.5553 26.5553i −1.59268 1.59268i
\(279\) 26.7870 + 7.15654i 1.60370 + 0.428451i
\(280\) 10.8083 10.8083i 0.645921 0.645921i
\(281\) 11.9105i 0.710522i 0.934767 + 0.355261i \(0.115608\pi\)
−0.934767 + 0.355261i \(0.884392\pi\)
\(282\) −16.8866 9.74127i −1.00559 0.580084i
\(283\) 0.222685i 0.0132372i −0.999978 0.00661862i \(-0.997893\pi\)
0.999978 0.00661862i \(-0.00210679\pi\)
\(284\) 19.4091i 1.15172i
\(285\) 4.23884 1.13746i 0.251087 0.0673771i
\(286\) −52.7586 −3.11968
\(287\) −10.4595 + 10.4595i −0.617408 + 0.617408i
\(288\) −17.5640 + 65.7423i −1.03497 + 3.87390i
\(289\) 11.9629i 0.703703i
\(290\) 6.24102 13.3669i 0.366485 0.784933i
\(291\) −7.51422 28.0024i −0.440491 1.64153i
\(292\) −35.2595 + 35.2595i −2.06341 + 2.06341i
\(293\) −0.391762 0.391762i −0.0228870 0.0228870i 0.695571 0.718458i \(-0.255152\pi\)
−0.718458 + 0.695571i \(0.755152\pi\)
\(294\) 5.49030 + 20.4601i 0.320201 + 1.19326i
\(295\) 12.1062i 0.704849i
\(296\) 16.1216 0.937048
\(297\) 13.0398 13.0685i 0.756645 0.758309i
\(298\) 38.5615 + 38.5615i 2.23381 + 2.23381i
\(299\) −12.2924 −0.710887
\(300\) −4.76385 + 8.25821i −0.275041 + 0.476788i
\(301\) 0.934028 0.934028i 0.0538365 0.0538365i
\(302\) 13.9317 13.9317i 0.801678 0.801678i
\(303\) −6.20095 23.1084i −0.356235 1.32754i
\(304\) −27.3932 + 27.3932i −1.57111 + 1.57111i
\(305\) 7.46553 7.46553i 0.427475 0.427475i
\(306\) 15.9666 9.23390i 0.912748 0.527867i
\(307\) 12.5167 12.5167i 0.714367 0.714367i −0.253079 0.967446i \(-0.581443\pi\)
0.967446 + 0.253079i \(0.0814431\pi\)
\(308\) 22.0183 22.0183i 1.25461 1.25461i
\(309\) 10.2630 + 5.92035i 0.583843 + 0.336797i
\(310\) −25.3180 −1.43797
\(311\) 7.23981 + 7.23981i 0.410532 + 0.410532i 0.881924 0.471392i \(-0.156248\pi\)
−0.471392 + 0.881924i \(0.656248\pi\)
\(312\) 23.3595 + 87.0515i 1.32247 + 4.92832i
\(313\) 6.37435 0.360300 0.180150 0.983639i \(-0.442342\pi\)
0.180150 + 0.983639i \(0.442342\pi\)
\(314\) 28.4353i 1.60470i
\(315\) 2.39143 + 4.13508i 0.134742 + 0.232986i
\(316\) −19.5108 19.5108i −1.09757 1.09757i
\(317\) 3.85301 3.85301i 0.216407 0.216407i −0.590576 0.806982i \(-0.701099\pi\)
0.806982 + 0.590576i \(0.201099\pi\)
\(318\) −16.9514 + 4.54876i −0.950585 + 0.255082i
\(319\) 8.09433 17.3363i 0.453196 0.970648i
\(320\) 31.5594i 1.76422i
\(321\) −0.142180 + 0.246472i −0.00793572 + 0.0137567i
\(322\) 6.99416 6.99416i 0.389769 0.389769i
\(323\) 5.68687 0.316426
\(324\) −42.9381 24.7065i −2.38545 1.37259i
\(325\) 5.42072i 0.300688i
\(326\) 10.9843i 0.608364i
\(327\) 12.7216 22.0532i 0.703508 1.21954i
\(328\) 89.1804i 4.92416i
\(329\) 4.62601 4.62601i 0.255040 0.255040i
\(330\) −8.42348 + 14.6022i −0.463697 + 0.803826i
\(331\) 15.1637 + 15.1637i 0.833470 + 0.833470i 0.987990 0.154520i \(-0.0493831\pi\)
−0.154520 + 0.987990i \(0.549383\pi\)
\(332\) −79.2301 −4.34832
\(333\) −1.30041 + 4.86743i −0.0712618 + 0.266734i
\(334\) −17.9202 17.9202i −0.980551 0.980551i
\(335\) 1.85583i 0.101395i
\(336\) −36.5235 21.0690i −1.99252 1.14941i
\(337\) 6.16123 + 6.16123i 0.335624 + 0.335624i 0.854717 0.519094i \(-0.173730\pi\)
−0.519094 + 0.854717i \(0.673730\pi\)
\(338\) 31.7370 + 31.7370i 1.72627 + 1.72627i
\(339\) 18.1314 4.86542i 0.984765 0.264253i
\(340\) −8.73526 + 8.73526i −0.473736 + 0.473736i
\(341\) −32.8364 −1.77819
\(342\) −10.4251 18.0264i −0.563727 0.974755i
\(343\) −18.2548 −0.985669
\(344\) 7.96373i 0.429375i
\(345\) −1.96261 + 3.40222i −0.105663 + 0.183169i
\(346\) 2.11162 + 2.11162i 0.113521 + 0.113521i
\(347\) 12.2488 0.657552 0.328776 0.944408i \(-0.393364\pi\)
0.328776 + 0.944408i \(0.393364\pi\)
\(348\) −50.5597 8.92133i −2.71028 0.478233i
\(349\) 13.4198 0.718344 0.359172 0.933271i \(-0.383059\pi\)
0.359172 + 0.933271i \(0.383059\pi\)
\(350\) −3.08430 3.08430i −0.164863 0.164863i
\(351\) −28.1669 + 0.0309316i −1.50344 + 0.00165101i
\(352\) 80.5890i 4.29541i
\(353\) 23.6542 1.25898 0.629492 0.777007i \(-0.283263\pi\)
0.629492 + 0.777007i \(0.283263\pi\)
\(354\) −55.4784 + 14.8872i −2.94865 + 0.791244i
\(355\) 3.52616 0.187149
\(356\) 17.3801 17.3801i 0.921143 0.921143i
\(357\) 1.60418 + 5.97814i 0.0849024 + 0.316397i
\(358\) 1.14706 + 1.14706i 0.0606239 + 0.0606239i
\(359\) 15.8691 + 15.8691i 0.837539 + 0.837539i 0.988534 0.150996i \(-0.0482479\pi\)
−0.150996 + 0.988534i \(0.548248\pi\)
\(360\) 27.8232 + 7.43339i 1.46641 + 0.391774i
\(361\) 12.5795i 0.662078i
\(362\) 17.6663 + 17.6663i 0.928522 + 0.928522i
\(363\) −1.40465 + 2.43498i −0.0737250 + 0.127803i
\(364\) −47.5090 −2.49015
\(365\) 6.40581 + 6.40581i 0.335295 + 0.335295i
\(366\) −43.3924 25.0315i −2.26816 1.30842i
\(367\) 15.2494 15.2494i 0.796010 0.796010i −0.186454 0.982464i \(-0.559699\pi\)
0.982464 + 0.186454i \(0.0596994\pi\)
\(368\) 34.6699i 1.80729i
\(369\) −26.9254 7.19351i −1.40168 0.374479i
\(370\) 4.60050i 0.239169i
\(371\) 5.88984i 0.305785i
\(372\) 22.8363 + 85.1018i 1.18401 + 4.41232i
\(373\) 27.4763 1.42267 0.711334 0.702854i \(-0.248091\pi\)
0.711334 + 0.702854i \(0.248091\pi\)
\(374\) −15.4458 + 15.4458i −0.798682 + 0.798682i
\(375\) 1.50032 + 0.865476i 0.0774760 + 0.0446930i
\(376\) 39.4423i 2.03408i
\(377\) −27.4359 + 9.97072i −1.41302 + 0.513518i
\(378\) 16.0089 16.0441i 0.823408 0.825218i
\(379\) 17.2230 17.2230i 0.884684 0.884684i −0.109322 0.994006i \(-0.534868\pi\)
0.994006 + 0.109322i \(0.0348680\pi\)
\(380\) 9.86218 + 9.86218i 0.505919 + 0.505919i
\(381\) −32.7792 + 8.79603i −1.67933 + 0.450634i
\(382\) 58.1603i 2.97574i
\(383\) −13.5536 −0.692558 −0.346279 0.938132i \(-0.612555\pi\)
−0.346279 + 0.938132i \(0.612555\pi\)
\(384\) −68.7355 + 18.4446i −3.50764 + 0.941246i
\(385\) −4.00020 4.00020i −0.203869 0.203869i
\(386\) −7.79861 −0.396939
\(387\) 2.40441 + 0.642374i 0.122223 + 0.0326537i
\(388\) 65.1511 65.1511i 3.30755 3.30755i
\(389\) 13.9518 13.9518i 0.707386 0.707386i −0.258599 0.965985i \(-0.583261\pi\)
0.965985 + 0.258599i \(0.0832607\pi\)
\(390\) 24.8413 6.66595i 1.25789 0.337544i
\(391\) −3.59875 + 3.59875i −0.181997 + 0.181997i
\(392\) −30.3063 + 30.3063i −1.53070 + 1.53070i
\(393\) −10.4926 + 2.81561i −0.529284 + 0.142029i
\(394\) −9.13866 + 9.13866i −0.460399 + 0.460399i
\(395\) −3.54465 + 3.54465i −0.178351 + 0.178351i
\(396\) 56.6805 + 15.1430i 2.84830 + 0.760966i
\(397\) −5.38419 −0.270225 −0.135112 0.990830i \(-0.543140\pi\)
−0.135112 + 0.990830i \(0.543140\pi\)
\(398\) 35.9577 + 35.9577i 1.80240 + 1.80240i
\(399\) 6.74937 1.81114i 0.337891 0.0906702i
\(400\) −15.2888 −0.764440
\(401\) 8.94942i 0.446913i 0.974714 + 0.223456i \(0.0717340\pi\)
−0.974714 + 0.223456i \(0.928266\pi\)
\(402\) −8.50462 + 2.28214i −0.424172 + 0.113823i
\(403\) 35.4255 + 35.4255i 1.76467 + 1.76467i
\(404\) 53.7646 53.7646i 2.67489 2.67489i
\(405\) −4.48858 + 7.80081i −0.223039 + 0.387625i
\(406\) 9.93737 21.2837i 0.493184 1.05629i
\(407\) 5.96665i 0.295756i
\(408\) 32.3243 + 18.6467i 1.60029 + 0.923147i
\(409\) −20.5964 + 20.5964i −1.01842 + 1.01842i −0.0185969 + 0.999827i \(0.505920\pi\)
−0.999827 + 0.0185969i \(0.994080\pi\)
\(410\) 25.4488 1.25683
\(411\) 2.58780 + 9.64370i 0.127647 + 0.475688i
\(412\) 37.6526i 1.85501i
\(413\) 19.2763i 0.948524i
\(414\) 18.0046 + 4.81020i 0.884880 + 0.236409i
\(415\) 14.3942i 0.706584i
\(416\) −86.9435 + 86.9435i −4.26275 + 4.26275i
\(417\) 20.5681 + 11.8649i 1.00722 + 0.581029i
\(418\) 17.4384 + 17.4384i 0.852939 + 0.852939i
\(419\) 13.7990 0.674126 0.337063 0.941482i \(-0.390566\pi\)
0.337063 + 0.941482i \(0.390566\pi\)
\(420\) −7.58532 + 13.1493i −0.370126 + 0.641619i
\(421\) 13.4860 + 13.4860i 0.657266 + 0.657266i 0.954732 0.297467i \(-0.0961417\pi\)
−0.297467 + 0.954732i \(0.596142\pi\)
\(422\) 1.89501i 0.0922478i
\(423\) 11.9085 + 3.18152i 0.579009 + 0.154691i
\(424\) −25.1090 25.1090i −1.21940 1.21940i
\(425\) 1.58699 + 1.58699i 0.0769802 + 0.0769802i
\(426\) −4.33618 16.1592i −0.210089 0.782915i
\(427\) 11.8871 11.8871i 0.575258 0.575258i
\(428\) −0.904246 −0.0437084
\(429\) 32.2181 8.64545i 1.55550 0.417406i
\(430\) −2.27255 −0.109592
\(431\) 8.11323i 0.390800i −0.980724 0.195400i \(-0.937399\pi\)
0.980724 0.195400i \(-0.0626006\pi\)
\(432\) −0.0872407 79.4428i −0.00419737 3.82220i
\(433\) −25.0939 25.0939i −1.20594 1.20594i −0.972331 0.233606i \(-0.924947\pi\)
−0.233606 0.972331i \(-0.575053\pi\)
\(434\) −40.3130 −1.93509
\(435\) −1.62079 + 9.18548i −0.0777109 + 0.440410i
\(436\) 80.9078 3.87478
\(437\) 4.06302 + 4.06302i 0.194361 + 0.194361i
\(438\) 21.4783 37.2329i 1.02627 1.77906i
\(439\) 18.9770i 0.905724i −0.891581 0.452862i \(-0.850403\pi\)
0.891581 0.452862i \(-0.149597\pi\)
\(440\) −34.1066 −1.62597
\(441\) −6.70552 11.5947i −0.319310 0.552128i
\(442\) 33.3273 1.58522
\(443\) 28.6076 28.6076i 1.35919 1.35919i 0.484264 0.874922i \(-0.339087\pi\)
0.874922 0.484264i \(-0.160913\pi\)
\(444\) −15.4637 + 4.14956i −0.733876 + 0.196930i
\(445\) −3.15754 3.15754i −0.149682 0.149682i
\(446\) 37.6129 + 37.6129i 1.78102 + 1.78102i
\(447\) −29.8673 17.2293i −1.41268 0.814919i
\(448\) 50.2510i 2.37414i
\(449\) 9.47070 + 9.47070i 0.446950 + 0.446950i 0.894339 0.447389i \(-0.147646\pi\)
−0.447389 + 0.894339i \(0.647646\pi\)
\(450\) 2.12121 7.93972i 0.0999950 0.374282i
\(451\) 33.0060 1.55419
\(452\) 42.1850 + 42.1850i 1.98422 + 1.98422i
\(453\) −6.22470 + 10.7906i −0.292462 + 0.506987i
\(454\) −35.3759 + 35.3759i −1.66028 + 1.66028i
\(455\) 8.63124i 0.404639i
\(456\) 21.0522 36.4944i 0.985860 1.70900i
\(457\) 6.85908i 0.320854i −0.987048 0.160427i \(-0.948713\pi\)
0.987048 0.160427i \(-0.0512871\pi\)
\(458\) 70.2146i 3.28091i
\(459\) −8.23716 + 8.25527i −0.384478 + 0.385323i
\(460\) −12.4819 −0.581973
\(461\) 12.8682 12.8682i 0.599332 0.599332i −0.340803 0.940135i \(-0.610699\pi\)
0.940135 + 0.340803i \(0.110699\pi\)
\(462\) −13.4124 + 23.2507i −0.624003 + 1.08172i
\(463\) 21.1440i 0.982647i 0.870977 + 0.491324i \(0.163487\pi\)
−0.870977 + 0.491324i \(0.836513\pi\)
\(464\) −28.1218 77.3811i −1.30552 3.59233i
\(465\) 15.4609 4.14881i 0.716984 0.192397i
\(466\) −0.152345 + 0.152345i −0.00705726 + 0.00705726i
\(467\) −6.85345 6.85345i −0.317140 0.317140i 0.530528 0.847667i \(-0.321994\pi\)
−0.847667 + 0.530528i \(0.821994\pi\)
\(468\) −44.8127 77.4868i −2.07147 3.58183i
\(469\) 2.95497i 0.136448i
\(470\) −11.2554 −0.519172
\(471\) −4.65965 17.3646i −0.214705 0.800119i
\(472\) −82.1769 82.1769i −3.78250 3.78250i
\(473\) −2.94740 −0.135522
\(474\) 20.6028 + 11.8850i 0.946318 + 0.545895i
\(475\) 1.79172 1.79172i 0.0822097 0.0822097i
\(476\) −13.9089 + 13.9089i −0.637512 + 0.637512i
\(477\) 9.60629 5.55557i 0.439842 0.254372i
\(478\) −37.9038 + 37.9038i −1.73368 + 1.73368i
\(479\) 4.28513 4.28513i 0.195792 0.195792i −0.602401 0.798194i \(-0.705789\pi\)
0.798194 + 0.602401i \(0.205789\pi\)
\(480\) 10.1823 + 37.9452i 0.464755 + 1.73195i
\(481\) −6.43713 + 6.43713i −0.293508 + 0.293508i
\(482\) −5.87227 + 5.87227i −0.267475 + 0.267475i
\(483\) −3.12500 + 5.41724i −0.142193 + 0.246493i
\(484\) −8.93337 −0.406062
\(485\) −11.8364 11.8364i −0.537462 0.537462i
\(486\) 41.2681 + 10.9768i 1.87196 + 0.497920i
\(487\) −24.4125 −1.10624 −0.553118 0.833103i \(-0.686562\pi\)
−0.553118 + 0.833103i \(0.686562\pi\)
\(488\) 101.352i 4.58800i
\(489\) −1.79998 6.70778i −0.0813977 0.303336i
\(490\) 8.64830 + 8.64830i 0.390691 + 0.390691i
\(491\) −0.830529 + 0.830529i −0.0374813 + 0.0374813i −0.725599 0.688118i \(-0.758437\pi\)
0.688118 + 0.725599i \(0.258437\pi\)
\(492\) −22.9543 85.5414i −1.03486 3.85650i
\(493\) −5.11315 + 10.9513i −0.230285 + 0.493220i
\(494\) 37.6268i 1.69291i
\(495\) 2.75112 10.2975i 0.123654 0.462837i
\(496\) −99.9154 + 99.9154i −4.48633 + 4.48633i
\(497\) 5.61459 0.251849
\(498\) 65.9637 17.7008i 2.95590 0.793191i
\(499\) 21.7815i 0.975072i −0.873103 0.487536i \(-0.837896\pi\)
0.873103 0.487536i \(-0.162104\pi\)
\(500\) 5.50431i 0.246160i
\(501\) 13.8799 + 8.00679i 0.620108 + 0.357717i
\(502\) 11.4818i 0.512458i
\(503\) 3.19151 3.19151i 0.142302 0.142302i −0.632367 0.774669i \(-0.717916\pi\)
0.774669 + 0.632367i \(0.217916\pi\)
\(504\) 44.3020 + 11.8359i 1.97337 + 0.527215i
\(505\) −9.76773 9.76773i −0.434658 0.434658i
\(506\) −22.0707 −0.981160
\(507\) −24.5815 14.1802i −1.09170 0.629763i
\(508\) −76.2649 76.2649i −3.38371 3.38371i
\(509\) 22.4492i 0.995045i 0.867451 + 0.497522i \(0.165757\pi\)
−0.867451 + 0.497522i \(0.834243\pi\)
\(510\) 5.32107 9.22415i 0.235621 0.408452i
\(511\) 10.1998 + 10.1998i 0.451211 + 0.451211i
\(512\) −37.6574 37.6574i −1.66424 1.66424i
\(513\) 9.32027 + 9.29982i 0.411500 + 0.410597i
\(514\) 38.1194 38.1194i 1.68137 1.68137i
\(515\) 6.84057 0.301432
\(516\) 2.04980 + 7.63877i 0.0902374 + 0.336278i
\(517\) −14.5978 −0.642009
\(518\) 7.32523i 0.321852i
\(519\) −1.63553 0.943475i −0.0717918 0.0414140i
\(520\) 36.7959 + 36.7959i 1.61361 + 1.61361i
\(521\) −2.88860 −0.126552 −0.0632760 0.997996i \(-0.520155\pi\)
−0.0632760 + 0.997996i \(0.520155\pi\)
\(522\) 44.0870 3.86802i 1.92964 0.169298i
\(523\) 1.75222 0.0766194 0.0383097 0.999266i \(-0.487803\pi\)
0.0383097 + 0.999266i \(0.487803\pi\)
\(524\) −24.4124 24.4124i −1.06646 1.06646i
\(525\) 2.38891 + 1.37807i 0.104260 + 0.0601439i
\(526\) 7.48190i 0.326226i
\(527\) 20.7426 0.903560
\(528\) 24.3839 + 90.8690i 1.06117 + 3.95457i
\(529\) 17.8577 0.776421
\(530\) −7.16519 + 7.16519i −0.311236 + 0.311236i
\(531\) 31.4395 18.1823i 1.36436 0.789044i
\(532\) 15.7032 + 15.7032i 0.680821 + 0.680821i
\(533\) −35.6085 35.6085i −1.54238 1.54238i
\(534\) −10.5870 + 18.3528i −0.458146 + 0.794204i
\(535\) 0.164280i 0.00710243i
\(536\) −12.5974 12.5974i −0.544124 0.544124i
\(537\) −0.888439 0.512507i −0.0383390 0.0221163i
\(538\) 37.3151 1.60877
\(539\) 11.2165 + 11.2165i 0.483128 + 0.483128i
\(540\) −28.6012 + 0.0314086i −1.23080 + 0.00135161i
\(541\) −13.5847 + 13.5847i −0.584053 + 0.584053i −0.936014 0.351962i \(-0.885515\pi\)
0.351962 + 0.936014i \(0.385515\pi\)
\(542\) 11.8465i 0.508849i
\(543\) −13.6832 7.89335i −0.587204 0.338736i
\(544\) 50.9077i 2.18265i
\(545\) 14.6990i 0.629636i
\(546\) 39.5540 10.6140i 1.69275 0.454236i
\(547\) −2.68306 −0.114719 −0.0573596 0.998354i \(-0.518268\pi\)
−0.0573596 + 0.998354i \(0.518268\pi\)
\(548\) −22.4372 + 22.4372i −0.958471 + 0.958471i
\(549\) 30.6003 + 8.17532i 1.30599 + 0.348914i
\(550\) 9.73277i 0.415007i
\(551\) 12.3641 + 5.77278i 0.526727 + 0.245929i
\(552\) 9.77207 + 36.4165i 0.415927 + 1.54999i
\(553\) −5.64403 + 5.64403i −0.240008 + 0.240008i
\(554\) 14.9258 + 14.9258i 0.634134 + 0.634134i
\(555\) 0.753875 + 2.80939i 0.0320002 + 0.119252i
\(556\) 75.4594i 3.20019i
\(557\) −38.3013 −1.62288 −0.811439 0.584437i \(-0.801315\pi\)
−0.811439 + 0.584437i \(0.801315\pi\)
\(558\) −38.0251 65.7503i −1.60973 2.78343i
\(559\) 3.17981 + 3.17981i 0.134492 + 0.134492i
\(560\) −24.3438 −1.02872
\(561\) 6.90119 11.9633i 0.291369 0.505092i
\(562\) 23.0712 23.0712i 0.973202 0.973202i
\(563\) −29.4969 + 29.4969i −1.24315 + 1.24315i −0.284458 + 0.958688i \(0.591814\pi\)
−0.958688 + 0.284458i \(0.908186\pi\)
\(564\) 10.1521 + 37.8329i 0.427482 + 1.59305i
\(565\) 7.66400 7.66400i 0.322427 0.322427i
\(566\) −0.431351 + 0.431351i −0.0181310 + 0.0181310i
\(567\) −7.14703 + 12.4210i −0.300147 + 0.521632i
\(568\) 23.9356 23.9356i 1.00432 1.00432i
\(569\) −14.9735 + 14.9735i −0.627722 + 0.627722i −0.947495 0.319772i \(-0.896394\pi\)
0.319772 + 0.947495i \(0.396394\pi\)
\(570\) −10.4141 6.00752i −0.436200 0.251628i
\(571\) 31.8904 1.33457 0.667286 0.744801i \(-0.267456\pi\)
0.667286 + 0.744801i \(0.267456\pi\)
\(572\) 74.9593 + 74.9593i 3.13421 + 3.13421i
\(573\) −9.53062 35.5168i −0.398148 1.48373i
\(574\) 40.5213 1.69133
\(575\) 2.26767i 0.0945682i
\(576\) 81.9591 47.3991i 3.41496 1.97496i
\(577\) 14.1141 + 14.1141i 0.587577 + 0.587577i 0.936974 0.349398i \(-0.113614\pi\)
−0.349398 + 0.936974i \(0.613614\pi\)
\(578\) −23.1728 + 23.1728i −0.963861 + 0.963861i
\(579\) 4.76237 1.27794i 0.197917 0.0531095i
\(580\) −27.8589 + 10.1245i −1.15678 + 0.420396i
\(581\) 22.9194i 0.950858i
\(582\) −39.6866 + 68.7974i −1.64506 + 2.85175i
\(583\) −9.29295 + 9.29295i −0.384875 + 0.384875i
\(584\) 86.9654 3.59865
\(585\) −14.0775 + 8.14139i −0.582033 + 0.336605i
\(586\) 1.51772i 0.0626965i
\(587\) 37.8614i 1.56271i 0.624088 + 0.781354i \(0.285471\pi\)
−0.624088 + 0.781354i \(0.714529\pi\)
\(588\) 21.2691 36.8703i 0.877122 1.52050i
\(589\) 23.4185i 0.964943i
\(590\) −23.4503 + 23.4503i −0.965432 + 0.965432i
\(591\) 4.08317 7.07824i 0.167959 0.291160i
\(592\) −18.1555 18.1555i −0.746186 0.746186i
\(593\) 4.24731 0.174416 0.0872080 0.996190i \(-0.472206\pi\)
0.0872080 + 0.996190i \(0.472206\pi\)
\(594\) −50.5729 + 0.0555370i −2.07503 + 0.00227871i
\(595\) 2.52691 + 2.52691i 0.103593 + 0.103593i
\(596\) 109.576i 4.48841i
\(597\) −27.8506 16.0660i −1.13985 0.657536i
\(598\) 23.8109 + 23.8109i 0.973702 + 0.973702i
\(599\) −33.2384 33.2384i −1.35809 1.35809i −0.876276 0.481809i \(-0.839980\pi\)
−0.481809 0.876276i \(-0.660020\pi\)
\(600\) 16.0590 4.30931i 0.655607 0.175927i
\(601\) −6.75296 + 6.75296i −0.275459 + 0.275459i −0.831293 0.555834i \(-0.812399\pi\)
0.555834 + 0.831293i \(0.312399\pi\)
\(602\) −3.61851 −0.147480
\(603\) 4.81954 2.78727i 0.196267 0.113506i
\(604\) −39.5882 −1.61082
\(605\) 1.62298i 0.0659834i
\(606\) −32.7506 + 56.7737i −1.33040 + 2.30627i
\(607\) 12.3361 + 12.3361i 0.500708 + 0.500708i 0.911658 0.410950i \(-0.134803\pi\)
−0.410950 + 0.911658i \(0.634803\pi\)
\(608\) 57.4751 2.33092
\(609\) −2.58073 + 14.6257i −0.104577 + 0.592665i
\(610\) −28.9222 −1.17102
\(611\) 15.7488 + 15.7488i 0.637128 + 0.637128i
\(612\) −35.8048 9.56577i −1.44732 0.386673i
\(613\) 12.7794i 0.516155i 0.966124 + 0.258077i \(0.0830889\pi\)
−0.966124 + 0.258077i \(0.916911\pi\)
\(614\) −48.4910 −1.95694
\(615\) −15.5408 + 4.17024i −0.626666 + 0.168160i
\(616\) −54.3069 −2.18809
\(617\) −1.63094 + 1.63094i −0.0656592 + 0.0656592i −0.739174 0.673515i \(-0.764784\pi\)
0.673515 + 0.739174i \(0.264784\pi\)
\(618\) −8.41197 31.3480i −0.338379 1.26100i
\(619\) −7.67417 7.67417i −0.308451 0.308451i 0.535857 0.844308i \(-0.319988\pi\)
−0.844308 + 0.535857i \(0.819988\pi\)
\(620\) 35.9718 + 35.9718i 1.44466 + 1.44466i
\(621\) −11.7831 + 0.0129397i −0.472841 + 0.000519253i
\(622\) 28.0477i 1.12461i
\(623\) −5.02766 5.02766i −0.201429 0.201429i
\(624\) 71.7274 124.341i 2.87140 4.97761i
\(625\) 1.00000 0.0400000
\(626\) −12.3474 12.3474i −0.493502 0.493502i
\(627\) −13.5067 7.79150i −0.539405 0.311163i
\(628\) 40.4009 40.4009i 1.61217 1.61217i
\(629\) 3.76910i 0.150284i
\(630\) 3.37754 12.6422i 0.134564 0.503676i
\(631\) 5.67773i 0.226027i −0.993593 0.113013i \(-0.963950\pi\)
0.993593 0.113013i \(-0.0360503\pi\)
\(632\) 48.1222i 1.91420i
\(633\) 0.310532 + 1.15723i 0.0123425 + 0.0459956i
\(634\) −14.9269 −0.592824
\(635\) −13.8555 + 13.8555i −0.549838 + 0.549838i
\(636\) 30.5473 + 17.6216i 1.21128 + 0.698742i
\(637\) 24.2018i 0.958910i
\(638\) −49.2604 + 17.9022i −1.95024 + 0.708754i
\(639\) 5.29595 + 9.15736i 0.209504 + 0.362260i
\(640\) −29.0539 + 29.0539i −1.14846 + 1.14846i
\(641\) 33.9073 + 33.9073i 1.33926 + 1.33926i 0.896780 + 0.442476i \(0.145900\pi\)
0.442476 + 0.896780i \(0.354100\pi\)
\(642\) 0.752837 0.202017i 0.0297121 0.00797299i
\(643\) 14.0115i 0.552560i 0.961077 + 0.276280i \(0.0891018\pi\)
−0.961077 + 0.276280i \(0.910898\pi\)
\(644\) −19.8746 −0.783168
\(645\) 1.38778 0.372399i 0.0546438 0.0146632i
\(646\) −11.0157 11.0157i −0.433408 0.433408i
\(647\) 24.7453 0.972838 0.486419 0.873726i \(-0.338303\pi\)
0.486419 + 0.873726i \(0.338303\pi\)
\(648\) 22.4834 + 83.4205i 0.883233 + 3.27707i
\(649\) −30.4140 + 30.4140i −1.19385 + 1.19385i
\(650\) 10.5002 10.5002i 0.411852 0.411852i
\(651\) 24.6180 6.60602i 0.964854 0.258910i
\(652\) 15.6065 15.6065i 0.611197 0.611197i
\(653\) 4.91961 4.91961i 0.192519 0.192519i −0.604265 0.796784i \(-0.706533\pi\)
0.796784 + 0.604265i \(0.206533\pi\)
\(654\) −67.3604 + 18.0756i −2.63400 + 0.706812i
\(655\) −4.43515 + 4.43515i −0.173296 + 0.173296i
\(656\) 100.431 100.431i 3.92119 3.92119i
\(657\) −7.01484 + 26.2566i −0.273675 + 1.02437i
\(658\) −17.9216 −0.698656
\(659\) 8.18968 + 8.18968i 0.319025 + 0.319025i 0.848392 0.529368i \(-0.177571\pi\)
−0.529368 + 0.848392i \(0.677571\pi\)
\(660\) 32.7149 8.77876i 1.27343 0.341713i
\(661\) 14.4412 0.561699 0.280849 0.959752i \(-0.409384\pi\)
0.280849 + 0.959752i \(0.409384\pi\)
\(662\) 58.7454i 2.28321i
\(663\) −20.3520 + 5.46129i −0.790406 + 0.212099i
\(664\) 97.7080 + 97.7080i 3.79181 + 3.79181i
\(665\) 2.85290 2.85290i 0.110631 0.110631i
\(666\) 11.9474 6.90950i 0.462952 0.267738i
\(667\) −11.4773 + 4.17108i −0.444404 + 0.161505i
\(668\) 50.9221i 1.97023i
\(669\) −29.1326 16.8055i −1.12633 0.649738i
\(670\) −3.59483 + 3.59483i −0.138880 + 0.138880i
\(671\) −37.5108 −1.44809
\(672\) 16.2129 + 60.4189i 0.625426 + 2.33071i
\(673\) 17.7314i 0.683497i −0.939792 0.341748i \(-0.888981\pi\)
0.939792 0.341748i \(-0.111019\pi\)
\(674\) 23.8692i 0.919407i
\(675\) 0.00570619 + 5.19615i 0.000219631 + 0.200000i
\(676\) 90.1838i 3.46861i
\(677\) 10.4788 10.4788i 0.402734 0.402734i −0.476461 0.879195i \(-0.658081\pi\)
0.879195 + 0.476461i \(0.158081\pi\)
\(678\) −44.5460 25.6969i −1.71078 0.986884i
\(679\) −18.8467 18.8467i −0.723269 0.723269i
\(680\) 21.5450 0.826212
\(681\) 15.8060 27.4000i 0.605688 1.04997i
\(682\) 63.6056 + 63.6056i 2.43558 + 2.43558i
\(683\) 6.30348i 0.241196i 0.992701 + 0.120598i \(0.0384812\pi\)
−0.992701 + 0.120598i \(0.961519\pi\)
\(684\) −10.7998 + 40.4239i −0.412942 + 1.54565i
\(685\) 4.07631 + 4.07631i 0.155748 + 0.155748i
\(686\) 35.3605 + 35.3605i 1.35007 + 1.35007i
\(687\) −11.5059 42.8779i −0.438979 1.63590i
\(688\) −8.96844 + 8.96844i −0.341919 + 0.341919i
\(689\) 20.0514 0.763897
\(690\) 10.3919 2.78859i 0.395614 0.106160i
\(691\) −49.7574 −1.89286 −0.946431 0.322906i \(-0.895340\pi\)
−0.946431 + 0.322906i \(0.895340\pi\)
\(692\) 6.00037i 0.228100i
\(693\) 4.38053 16.3963i 0.166402 0.622846i
\(694\) −23.7266 23.7266i −0.900649 0.900649i
\(695\) 13.7092 0.520018
\(696\) 51.3492 + 73.3531i 1.94639 + 2.78044i
\(697\) −20.8497 −0.789739
\(698\) −25.9948 25.9948i −0.983916 0.983916i
\(699\) 0.0680681 0.117997i 0.00257457 0.00446306i
\(700\) 8.76433i 0.331261i
\(701\) 36.3379 1.37247 0.686233 0.727382i \(-0.259263\pi\)
0.686233 + 0.727382i \(0.259263\pi\)
\(702\) 54.6205 + 54.5007i 2.06152 + 2.05700i
\(703\) 4.25535 0.160493
\(704\) −79.2857 + 79.2857i −2.98819 + 2.98819i
\(705\) 6.87333 1.84440i 0.258864 0.0694641i
\(706\) −45.8192 45.8192i −1.72443 1.72443i
\(707\) −15.5528 15.5528i −0.584925 0.584925i
\(708\) 99.9753 + 57.6720i 3.75730 + 2.16745i
\(709\) 1.03361i 0.0388179i 0.999812 + 0.0194090i \(0.00617846\pi\)
−0.999812 + 0.0194090i \(0.993822\pi\)
\(710\) −6.83034 6.83034i −0.256338 0.256338i
\(711\) −14.5291 3.88166i −0.544883 0.145573i
\(712\) −42.8669 −1.60650
\(713\) 14.8197 + 14.8197i 0.555001 + 0.555001i
\(714\) 8.47256 14.6873i 0.317078 0.549659i
\(715\) 13.6183 13.6183i 0.509296 0.509296i
\(716\) 3.25947i 0.121812i
\(717\) 16.9355 29.3580i 0.632468 1.09639i
\(718\) 61.4784i 2.29435i
\(719\) 14.6154i 0.545062i 0.962147 + 0.272531i \(0.0878607\pi\)
−0.962147 + 0.272531i \(0.912139\pi\)
\(720\) −22.9623 39.7046i −0.855753 1.47970i
\(721\) 10.8920 0.405640
\(722\) 24.3671 24.3671i 0.906848 0.906848i
\(723\) 2.62374 4.54830i 0.0975780 0.169153i
\(724\) 50.2006i 1.86569i
\(725\) 1.83937 + 5.06130i 0.0683126 + 0.187972i
\(726\) 7.43755 1.99580i 0.276033 0.0740712i
\(727\) 16.2730 16.2730i 0.603534 0.603534i −0.337715 0.941248i \(-0.609654\pi\)
0.941248 + 0.337715i \(0.109654\pi\)
\(728\) 58.5890 + 58.5890i 2.17145 + 2.17145i
\(729\) −26.9999 + 0.0593004i −0.999998 + 0.00219631i
\(730\) 24.8167i 0.918508i
\(731\) 1.86186 0.0688634
\(732\) 26.0872 + 97.2166i 0.964212 + 3.59323i
\(733\) −21.9573 21.9573i −0.811011 0.811011i 0.173774 0.984785i \(-0.444404\pi\)
−0.984785 + 0.173774i \(0.944404\pi\)
\(734\) −59.0775 −2.18059
\(735\) −6.69844 3.86408i −0.247076 0.142529i
\(736\) −36.3713 + 36.3713i −1.34066 + 1.34066i
\(737\) −4.66234 + 4.66234i −0.171739 + 0.171739i
\(738\) 38.2216 + 66.0899i 1.40696 + 2.43280i
\(739\) −0.212016 + 0.212016i −0.00779913 + 0.00779913i −0.710996 0.703196i \(-0.751755\pi\)
0.703196 + 0.710996i \(0.251755\pi\)
\(740\) −6.53639 + 6.53639i −0.240282 + 0.240282i
\(741\) 6.16583 + 22.9776i 0.226508 + 0.844102i
\(742\) −11.4089 + 11.4089i −0.418834 + 0.418834i
\(743\) −24.0461 + 24.0461i −0.882166 + 0.882166i −0.993755 0.111588i \(-0.964406\pi\)
0.111588 + 0.993755i \(0.464406\pi\)
\(744\) 76.7869 133.111i 2.81514 4.88009i
\(745\) −19.9073 −0.729348
\(746\) −53.2229 53.2229i −1.94863 1.94863i
\(747\) −37.3814 + 21.6187i −1.36771 + 0.790986i
\(748\) 43.8906 1.60480
\(749\) 0.261577i 0.00955782i
\(750\) −1.22972 4.58265i −0.0449029 0.167335i
\(751\) 18.7224 + 18.7224i 0.683192 + 0.683192i 0.960718 0.277526i \(-0.0895146\pi\)
−0.277526 + 0.960718i \(0.589515\pi\)
\(752\) −44.4184 + 44.4184i −1.61977 + 1.61977i
\(753\) 1.88150 + 7.01160i 0.0685658 + 0.255517i
\(754\) 72.4584 + 33.8308i 2.63878 + 1.23205i
\(755\) 7.19222i 0.261752i
\(756\) −45.5408 + 0.0500109i −1.65630 + 0.00181888i
\(757\) −32.8279 + 32.8279i −1.19315 + 1.19315i −0.216972 + 0.976178i \(0.569618\pi\)
−0.976178 + 0.216972i \(0.930382\pi\)
\(758\) −66.7234 −2.42350
\(759\) 13.4779 3.61668i 0.489216 0.131277i
\(760\) 24.3244i 0.882340i
\(761\) 32.4308i 1.17561i 0.809001 + 0.587807i \(0.200009\pi\)
−0.809001 + 0.587807i \(0.799991\pi\)
\(762\) 80.5332 + 46.4566i 2.91741 + 1.68294i
\(763\) 23.4047i 0.847308i
\(764\) 82.6341 82.6341i 2.98960 2.98960i
\(765\) −1.73787 + 6.50487i −0.0628328 + 0.235184i
\(766\) 26.2540 + 26.2540i 0.948597 + 0.948597i
\(767\) 65.6242 2.36955
\(768\) 74.1737 + 42.7880i 2.67651 + 1.54398i
\(769\) −20.6376 20.6376i −0.744213 0.744213i 0.229173 0.973386i \(-0.426398\pi\)
−0.973386 + 0.229173i \(0.926398\pi\)
\(770\) 15.4972i 0.558479i
\(771\) −17.0318 + 29.5249i −0.613385 + 1.06331i
\(772\) 11.0802 + 11.0802i 0.398787 + 0.398787i
\(773\) 6.76485 + 6.76485i 0.243315 + 0.243315i 0.818220 0.574905i \(-0.194961\pi\)
−0.574905 + 0.818220i \(0.694961\pi\)
\(774\) −3.41315 5.90177i −0.122683 0.212135i
\(775\) 6.53520 6.53520i 0.234751 0.234751i
\(776\) −160.691 −5.76847
\(777\) 1.20037 + 4.47330i 0.0430631 + 0.160479i
\(778\) −54.0507 −1.93781
\(779\) 23.5395i 0.843389i
\(780\) −44.7654 25.8235i −1.60286 0.924629i
\(781\) −8.85866 8.85866i −0.316988 0.316988i
\(782\) 13.9419 0.498562
\(783\) −26.2888 + 9.58653i −0.939483 + 0.342595i
\(784\) 68.2596 2.43784
\(785\) −7.33987 7.33987i −0.261971 0.261971i
\(786\) 25.7787 + 14.8708i 0.919497 + 0.530423i
\(787\) 16.6517i 0.593569i −0.954944 0.296785i \(-0.904086\pi\)
0.954944 0.296785i \(-0.0959143\pi\)
\(788\) 25.9684 0.925085
\(789\) 1.22604 + 4.56897i 0.0436483 + 0.162660i
\(790\) 13.7323 0.488573
\(791\) 12.2031 12.2031i 0.433894 0.433894i
\(792\) −51.2248 88.5741i −1.82019 3.14734i
\(793\) 40.4686 + 40.4686i 1.43708 + 1.43708i
\(794\) 10.4294 + 10.4294i 0.370127 + 0.370127i
\(795\) 3.20142 5.54971i 0.113543 0.196828i
\(796\) 102.177i 3.62157i
\(797\) −38.7670 38.7670i −1.37320 1.37320i −0.855659 0.517540i \(-0.826848\pi\)
−0.517540 0.855659i \(-0.673152\pi\)
\(798\) −16.5821 9.56559i −0.587000 0.338618i
\(799\) 9.22133 0.326227
\(800\) 16.0391 + 16.0391i 0.567068 + 0.567068i
\(801\) 3.45775 12.9424i 0.122174 0.457297i
\(802\) 17.3355 17.3355i 0.612136 0.612136i
\(803\) 32.1862i 1.13583i
\(804\) 15.3258 + 8.84088i 0.540499 + 0.311794i
\(805\) 3.61073i 0.127262i
\(806\) 137.242i 4.83414i
\(807\) −22.7872 + 6.11475i −0.802147 + 0.215249i
\(808\) −132.607 −4.66510
\(809\) 7.51762 7.51762i 0.264305 0.264305i −0.562495 0.826801i \(-0.690159\pi\)
0.826801 + 0.562495i \(0.190159\pi\)
\(810\) 23.8051 6.41594i 0.836427 0.225433i
\(811\) 9.12308i 0.320355i −0.987088 0.160177i \(-0.948793\pi\)
0.987088 0.160177i \(-0.0512066\pi\)
\(812\) −44.3589 + 16.1209i −1.55669 + 0.565732i
\(813\) −1.94126 7.23428i −0.0680829 0.253717i
\(814\) −11.5577 + 11.5577i −0.405097 + 0.405097i
\(815\) −2.83532 2.83532i −0.0993169 0.0993169i
\(816\) −15.4032 57.4015i −0.539220 2.00945i
\(817\) 2.10205i 0.0735416i
\(818\) 79.7922 2.78987
\(819\) −22.4151 + 12.9633i −0.783248 + 0.452973i
\(820\) −36.1576 36.1576i −1.26268 1.26268i
\(821\) 12.3423 0.430749 0.215374 0.976532i \(-0.430903\pi\)
0.215374 + 0.976532i \(0.430903\pi\)
\(822\) 13.6676 23.6930i 0.476712 0.826388i
\(823\) −3.25062 + 3.25062i −0.113310 + 0.113310i −0.761488 0.648179i \(-0.775531\pi\)
0.648179 + 0.761488i \(0.275531\pi\)
\(824\) 46.4339 46.4339i 1.61760 1.61760i
\(825\) −1.59489 5.94351i −0.0555269 0.206926i
\(826\) −37.3391 + 37.3391i −1.29919 + 1.29919i
\(827\) 1.52365 1.52365i 0.0529824 0.0529824i −0.680119 0.733102i \(-0.738072\pi\)
0.733102 + 0.680119i \(0.238072\pi\)
\(828\) −18.7466 32.4153i −0.651491 1.12651i
\(829\) −15.0106 + 15.0106i −0.521340 + 0.521340i −0.917976 0.396636i \(-0.870178\pi\)
0.396636 + 0.917976i \(0.370178\pi\)
\(830\) 27.8823 27.8823i 0.967807 0.967807i
\(831\) −11.5606 6.66885i −0.401031 0.231340i
\(832\) 171.075 5.93095
\(833\) −7.08539 7.08539i −0.245494 0.245494i
\(834\) −16.8584 62.8243i −0.583758 2.17543i
\(835\) 9.25131 0.320155
\(836\) 49.5529i 1.71382i
\(837\) 33.9952 + 33.9206i 1.17505 + 1.17247i
\(838\) −26.7294 26.7294i −0.923351 0.923351i
\(839\) 30.8748 30.8748i 1.06592 1.06592i 0.0682485 0.997668i \(-0.478259\pi\)
0.997668 0.0682485i \(-0.0217411\pi\)
\(840\) 25.5703 6.86157i 0.882259 0.236747i
\(841\) −22.2334 + 18.6192i −0.766670 + 0.642042i
\(842\) 52.2459i 1.80051i
\(843\) −10.3083 + 17.8696i −0.355036 + 0.615460i
\(844\) −2.69243 + 2.69243i −0.0926773 + 0.0926773i
\(845\) −16.3842 −0.563634
\(846\) −16.9045 29.2300i −0.581188 1.00495i
\(847\) 2.58422i 0.0887947i
\(848\) 56.5537i 1.94206i
\(849\) 0.192728 0.334098i 0.00661442 0.0114662i
\(850\) 6.14814i 0.210879i
\(851\) −2.69286 + 2.69286i −0.0923101 + 0.0923101i
\(852\) −16.7981 + 29.1198i −0.575493 + 0.997627i
\(853\) −1.23954 1.23954i −0.0424412 0.0424412i 0.685568 0.728009i \(-0.259554\pi\)
−0.728009 + 0.685568i \(0.759554\pi\)
\(854\) −46.0519 −1.57586
\(855\) 7.34404 + 1.96207i 0.251161 + 0.0671013i
\(856\) 1.11513 + 1.11513i 0.0381144 + 0.0381144i
\(857\) 12.5177i 0.427596i 0.976878 + 0.213798i \(0.0685834\pi\)
−0.976878 + 0.213798i \(0.931417\pi\)
\(858\) −79.1546 45.6613i −2.70229 1.55885i
\(859\) 23.1283 + 23.1283i 0.789126 + 0.789126i 0.981351 0.192225i \(-0.0615704\pi\)
−0.192225 + 0.981351i \(0.561570\pi\)
\(860\) 3.22884 + 3.22884i 0.110103 + 0.110103i
\(861\) −24.7451 + 6.64015i −0.843312 + 0.226296i
\(862\) −15.7157 + 15.7157i −0.535279 + 0.535279i
\(863\) −40.8550 −1.39072 −0.695359 0.718662i \(-0.744755\pi\)
−0.695359 + 0.718662i \(0.744755\pi\)
\(864\) −83.2500 + 83.4331i −2.83222 + 2.83845i
\(865\) −1.09012 −0.0370653
\(866\) 97.2163i 3.30354i
\(867\) 10.3536 17.9482i 0.351628 0.609553i
\(868\) 57.2767 + 57.2767i 1.94410 + 1.94410i
\(869\) 17.8102 0.604170
\(870\) 20.9323 14.6532i 0.709670 0.496789i
\(871\) 10.0599 0.340867
\(872\) −99.7770 99.7770i −3.37887 3.37887i
\(873\) 12.9617 48.5159i 0.438688 1.64201i
\(874\) 15.7405i 0.532432i
\(875\) 1.59227 0.0538285
\(876\) −83.4168 + 22.3842i −2.81839 + 0.756292i
\(877\) −18.6911 −0.631155 −0.315578 0.948900i \(-0.602198\pi\)
−0.315578 + 0.948900i \(0.602198\pi\)
\(878\) −36.7594 + 36.7594i −1.24057 + 1.24057i
\(879\) −0.248706 0.926827i −0.00838865 0.0312611i
\(880\) 38.4095 + 38.4095i 1.29479 + 1.29479i
\(881\) 26.0499 + 26.0499i 0.877645 + 0.877645i 0.993291 0.115646i \(-0.0368937\pi\)
−0.115646 + 0.993291i \(0.536894\pi\)
\(882\) −9.47055 + 35.4484i −0.318890 + 1.19361i
\(883\) 33.5443i 1.12886i 0.825482 + 0.564428i \(0.190903\pi\)
−0.825482 + 0.564428i \(0.809097\pi\)
\(884\) −47.3514 47.3514i −1.59260 1.59260i
\(885\) 10.4776 18.1631i 0.352201 0.610546i
\(886\) −110.828 −3.72335
\(887\) −3.00322 3.00322i −0.100838 0.100838i 0.654888 0.755726i \(-0.272716\pi\)
−0.755726 + 0.654888i \(0.772716\pi\)
\(888\) 24.1875 + 13.9528i 0.811678 + 0.468227i
\(889\) −22.0616 + 22.0616i −0.739924 + 0.739924i
\(890\) 12.2326i 0.410039i
\(891\) 30.8742 8.32120i 1.03433 0.278771i
\(892\) 106.881i 3.57863i
\(893\) 10.4109i 0.348389i
\(894\) 24.4804 + 91.2285i 0.818747 + 3.05114i
\(895\) −0.592168 −0.0197940
\(896\) −46.2616 + 46.2616i −1.54549 + 1.54549i
\(897\) −18.4425 10.6388i −0.615776 0.355218i
\(898\) 36.6904i 1.22437i
\(899\) 45.0973 + 21.0559i 1.50408 + 0.702254i
\(900\) −14.2946 + 8.26693i −0.476485 + 0.275564i
\(901\) 5.87031 5.87031i 0.195568 0.195568i
\(902\) −63.9342 63.9342i −2.12877 2.12877i
\(903\) 2.20972 0.592959i 0.0735348 0.0197324i
\(904\) 104.047i 3.46054i
\(905\) −9.12023 −0.303167
\(906\) 32.9595 8.84440i 1.09501 0.293835i
\(907\) 6.64964 + 6.64964i 0.220798 + 0.220798i 0.808834 0.588037i \(-0.200099\pi\)
−0.588037 + 0.808834i \(0.700099\pi\)
\(908\) 100.524 3.33601
\(909\) 10.6964 40.0367i 0.354777 1.32794i
\(910\) 16.7191 16.7191i 0.554234 0.554234i
\(911\) 12.7040 12.7040i 0.420903 0.420903i −0.464612 0.885514i \(-0.653806\pi\)
0.885514 + 0.464612i \(0.153806\pi\)
\(912\) −64.8067 + 17.3903i −2.14596 + 0.575852i
\(913\) 36.1621 36.1621i 1.19679 1.19679i
\(914\) −13.2864 + 13.2864i −0.439474 + 0.439474i
\(915\) 17.6619 4.73942i 0.583884 0.156680i
\(916\) 99.7608 99.7608i 3.29619 3.29619i
\(917\) −7.06194 + 7.06194i −0.233206 + 0.233206i
\(918\) 31.9466 0.0350824i 1.05440 0.00115789i
\(919\) 21.9571 0.724297 0.362148 0.932120i \(-0.382043\pi\)
0.362148 + 0.932120i \(0.382043\pi\)
\(920\) 15.3929 + 15.3929i 0.507490 + 0.507490i
\(921\) 29.6120 7.94612i 0.975748 0.261834i
\(922\) −49.8526 −1.64181
\(923\) 19.1143i 0.629156i
\(924\) 52.0909 13.9781i 1.71366 0.459847i
\(925\) 1.18750 + 1.18750i 0.0390449 + 0.0390449i
\(926\) 40.9570 40.9570i 1.34593 1.34593i
\(927\) 10.2739 + 17.7648i 0.337438 + 0.583473i
\(928\) −51.6767 + 110.680i −1.69637 + 3.63326i
\(929\) 9.65009i 0.316609i 0.987390 + 0.158305i \(0.0506028\pi\)
−0.987390 + 0.158305i \(0.949397\pi\)
\(930\) −37.9850 21.9121i −1.24558 0.718527i
\(931\) −7.99946 + 7.99946i −0.262172 + 0.262172i
\(932\) 0.432904 0.0141802
\(933\) 4.59613 + 17.1279i 0.150470 + 0.560742i
\(934\) 26.5509i 0.868772i
\(935\) 7.97387i 0.260773i
\(936\) −40.2943 + 150.822i −1.31706 + 4.92977i
\(937\) 38.7601i 1.26624i 0.774055 + 0.633118i \(0.218225\pi\)
−0.774055 + 0.633118i \(0.781775\pi\)
\(938\) −5.72393 + 5.72393i −0.186893 + 0.186893i
\(939\) 9.56355 + 5.51685i 0.312095 + 0.180036i
\(940\) 15.9916 + 15.9916i 0.521590 + 0.521590i
\(941\) 28.9810 0.944754 0.472377 0.881397i \(-0.343396\pi\)
0.472377 + 0.881397i \(0.343396\pi\)
\(942\) −24.6101 + 42.6620i −0.801841 + 1.39000i
\(943\) −14.8962 14.8962i −0.485087 0.485087i
\(944\) 185.089i 6.02413i
\(945\) 0.00908578 + 8.27366i 0.000295560 + 0.269142i
\(946\) 5.70926 + 5.70926i 0.185624 + 0.185624i
\(947\) 5.05298 + 5.05298i 0.164200 + 0.164200i 0.784424 0.620224i \(-0.212958\pi\)
−0.620224 + 0.784424i \(0.712958\pi\)
\(948\) −12.3863 46.1586i −0.402287 1.49916i
\(949\) −34.7241 + 34.7241i −1.12719 + 1.12719i
\(950\) −6.94129 −0.225205
\(951\) 9.11543 2.44605i 0.295588 0.0793185i
\(952\) 34.3054 1.11184
\(953\) 32.6549i 1.05780i 0.848686 + 0.528898i \(0.177394\pi\)
−0.848686 + 0.528898i \(0.822606\pi\)
\(954\) −29.3693 7.84643i −0.950865 0.254037i
\(955\) −15.0126 15.0126i −0.485797 0.485797i
\(956\) 107.707 3.48351
\(957\) 27.1482 19.0045i 0.877578 0.614329i
\(958\) −16.6010 −0.536353
\(959\) 6.49057 + 6.49057i 0.209591 + 0.209591i
\(960\) 27.3139 47.3491i 0.881553 1.52819i
\(961\) 54.4178i 1.75541i
\(962\) 24.9380 0.804035
\(963\) −0.426631 + 0.246732i −0.0137480 + 0.00795082i
\(964\) 16.6866 0.537440
\(965\) 2.01301 2.01301i 0.0648012 0.0648012i
\(966\) 16.5467 4.44018i 0.532382 0.142860i
\(967\) 30.3946 + 30.3946i 0.977425 + 0.977425i 0.999751 0.0223259i \(-0.00710716\pi\)
−0.0223259 + 0.999751i \(0.507107\pi\)
\(968\) 11.0168 + 11.0168i 0.354093 + 0.354093i
\(969\) 8.53211 + 4.92185i 0.274091 + 0.158113i
\(970\) 45.8553i 1.47232i
\(971\) −15.9498 15.9498i −0.511852 0.511852i 0.403241 0.915094i \(-0.367884\pi\)
−0.915094 + 0.403241i \(0.867884\pi\)
\(972\) −43.0378 74.2295i −1.38044 2.38091i
\(973\) 21.8286 0.699794
\(974\) 47.2882 + 47.2882i 1.51521 + 1.51521i
\(975\) −4.69151 + 8.13280i −0.150248 + 0.260458i
\(976\) −114.139 + 114.139i −3.65350 + 3.65350i
\(977\) 10.6066i 0.339334i 0.985501 + 0.169667i \(0.0542693\pi\)
−0.985501 + 0.169667i \(0.945731\pi\)
\(978\) −9.50665 + 16.4799i −0.303989 + 0.526970i
\(979\) 15.8652i 0.507054i
\(980\) 24.5750i 0.785019i
\(981\) 38.1730 22.0764i 1.21877 0.704847i
\(982\) 3.21755 0.102676
\(983\) 35.3828 35.3828i 1.12854 1.12854i 0.138121 0.990415i \(-0.455894\pi\)
0.990415 0.138121i \(-0.0441062\pi\)
\(984\) −77.1835 + 133.799i −2.46052 + 4.26535i
\(985\) 4.71783i 0.150323i
\(986\) 31.1175 11.3087i 0.990984 0.360143i
\(987\) 10.9442 2.93678i 0.348357 0.0934786i
\(988\) −53.4601 + 53.4601i −1.70079 + 1.70079i
\(989\) 1.33022 + 1.33022i 0.0422985 + 0.0422985i
\(990\) −25.2758 + 14.6177i −0.803317 + 0.464580i
\(991\) 23.9380i 0.760416i 0.924901 + 0.380208i \(0.124148\pi\)
−0.924901 + 0.380208i \(0.875852\pi\)
\(992\) 209.637 6.65600
\(993\) 9.62650 + 35.8741i 0.305488 + 1.13843i
\(994\) −10.8757 10.8757i −0.344957 0.344957i
\(995\) −18.5631 −0.588491
\(996\) −118.870 68.5718i −3.76655 2.17278i
\(997\) 5.24305 5.24305i 0.166049 0.166049i −0.619191 0.785240i \(-0.712539\pi\)
0.785240 + 0.619191i \(0.212539\pi\)
\(998\) −42.1917 + 42.1917i −1.33556 + 1.33556i
\(999\) −6.16367 + 6.17722i −0.195010 + 0.195439i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.2.q.d.191.1 yes 36
3.2 odd 2 435.2.q.c.191.18 yes 36
29.12 odd 4 435.2.q.c.41.18 36
87.41 even 4 inner 435.2.q.d.41.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.q.c.41.18 36 29.12 odd 4
435.2.q.c.191.18 yes 36 3.2 odd 2
435.2.q.d.41.1 yes 36 87.41 even 4 inner
435.2.q.d.191.1 yes 36 1.1 even 1 trivial