Properties

Label 435.2.q.c.41.18
Level $435$
Weight $2$
Character 435.41
Analytic conductor $3.473$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [435,2,Mod(41,435)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("435.41"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(435, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 435.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.47349248793\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 41.18
Character \(\chi\) \(=\) 435.41
Dual form 435.2.q.c.191.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.93705 - 1.93705i) q^{2} +(-0.865476 + 1.50032i) q^{3} -5.50431i q^{4} -1.00000 q^{5} +(1.22972 + 4.58265i) q^{6} +1.59227 q^{7} +(-6.78801 - 6.78801i) q^{8} +(-1.50190 - 2.59698i) q^{9} +(-1.93705 + 1.93705i) q^{10} +(2.51227 - 2.51227i) q^{11} +(8.25821 + 4.76385i) q^{12} -5.42072i q^{13} +(3.08430 - 3.08430i) q^{14} +(0.865476 - 1.50032i) q^{15} -15.2888 q^{16} +(-1.58699 + 1.58699i) q^{17} +(-7.93972 - 2.12121i) q^{18} +(1.79172 + 1.79172i) q^{19} +5.50431i q^{20} +(-1.37807 + 2.38891i) q^{21} -9.73277i q^{22} +2.26767i q^{23} +(16.0590 - 4.30931i) q^{24} +1.00000 q^{25} +(-10.5002 - 10.5002i) q^{26} +(5.19615 - 0.00570619i) q^{27} -8.76433i q^{28} +(-1.83937 + 5.06130i) q^{29} +(-1.22972 - 4.58265i) q^{30} +(6.53520 + 6.53520i) q^{31} +(-16.0391 + 16.0391i) q^{32} +(1.59489 + 5.94351i) q^{33} +6.14814i q^{34} -1.59227 q^{35} +(-14.2946 + 8.26693i) q^{36} +(1.18750 - 1.18750i) q^{37} +6.94129 q^{38} +(8.13280 + 4.69151i) q^{39} +(6.78801 + 6.78801i) q^{40} +(6.56896 + 6.56896i) q^{41} +(1.95804 + 7.29681i) q^{42} +(0.586602 + 0.586602i) q^{43} +(-13.8283 - 13.8283i) q^{44} +(1.50190 + 2.59698i) q^{45} +(4.39258 + 4.39258i) q^{46} +(-2.90529 - 2.90529i) q^{47} +(13.2321 - 22.9380i) q^{48} -4.46468 q^{49} +(1.93705 - 1.93705i) q^{50} +(-1.00748 - 3.75448i) q^{51} -29.8373 q^{52} -3.69903i q^{53} +(10.0541 - 10.0762i) q^{54} +(-2.51227 + 2.51227i) q^{55} +(-10.8083 - 10.8083i) q^{56} +(-4.23884 + 1.13746i) q^{57} +(6.24102 + 13.3669i) q^{58} -12.1062i q^{59} +(-8.25821 - 4.76385i) q^{60} +(7.46553 + 7.46553i) q^{61} +25.3180 q^{62} +(-2.39143 - 4.13508i) q^{63} +31.5594i q^{64} +5.42072i q^{65} +(14.6022 + 8.42348i) q^{66} +1.85583i q^{67} +(8.73526 + 8.73526i) q^{68} +(-3.40222 - 1.96261i) q^{69} +(-3.08430 + 3.08430i) q^{70} -3.52616 q^{71} +(-7.43339 + 27.8232i) q^{72} +(6.40581 - 6.40581i) q^{73} -4.60050i q^{74} +(-0.865476 + 1.50032i) q^{75} +(9.86218 - 9.86218i) q^{76} +(4.00020 - 4.00020i) q^{77} +(24.8413 - 6.66595i) q^{78} +(-3.54465 - 3.54465i) q^{79} +15.2888 q^{80} +(-4.48858 + 7.80081i) q^{81} +25.4488 q^{82} +14.3942i q^{83} +(13.1493 + 7.58532i) q^{84} +(1.58699 - 1.58699i) q^{85} +2.27255 q^{86} +(-6.00161 - 7.14007i) q^{87} -34.1066 q^{88} +(3.15754 - 3.15754i) q^{89} +(7.93972 + 2.12121i) q^{90} -8.63124i q^{91} +12.4819 q^{92} +(-15.4609 + 4.14881i) q^{93} -11.2554 q^{94} +(-1.79172 - 1.79172i) q^{95} +(-10.1823 - 37.9452i) q^{96} +(-11.8364 + 11.8364i) q^{97} +(-8.64830 + 8.64830i) q^{98} +(-10.2975 - 2.75112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{2} + 6 q^{3} - 36 q^{5} + 8 q^{6} + 8 q^{7} + 4 q^{8} + 4 q^{10} - 12 q^{11} + 10 q^{12} + 28 q^{14} - 6 q^{15} - 60 q^{16} - 20 q^{17} - 28 q^{18} + 16 q^{19} + 12 q^{21} + 24 q^{24} + 36 q^{25}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/435\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(146\) \(262\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93705 1.93705i 1.36970 1.36970i 0.508836 0.860863i \(-0.330076\pi\)
0.860863 0.508836i \(-0.169924\pi\)
\(3\) −0.865476 + 1.50032i −0.499683 + 0.866208i
\(4\) 5.50431i 2.75215i
\(5\) −1.00000 −0.447214
\(6\) 1.22972 + 4.58265i 0.502030 + 1.87086i
\(7\) 1.59227 0.601821 0.300910 0.953652i \(-0.402710\pi\)
0.300910 + 0.953652i \(0.402710\pi\)
\(8\) −6.78801 6.78801i −2.39992 2.39992i
\(9\) −1.50190 2.59698i −0.500634 0.865659i
\(10\) −1.93705 + 1.93705i −0.612548 + 0.612548i
\(11\) 2.51227 2.51227i 0.757477 0.757477i −0.218385 0.975863i \(-0.570079\pi\)
0.975863 + 0.218385i \(0.0700790\pi\)
\(12\) 8.25821 + 4.76385i 2.38394 + 1.37520i
\(13\) 5.42072i 1.50344i −0.659484 0.751719i \(-0.729225\pi\)
0.659484 0.751719i \(-0.270775\pi\)
\(14\) 3.08430 3.08430i 0.824314 0.824314i
\(15\) 0.865476 1.50032i 0.223465 0.387380i
\(16\) −15.2888 −3.82220
\(17\) −1.58699 + 1.58699i −0.384901 + 0.384901i −0.872864 0.487963i \(-0.837740\pi\)
0.487963 + 0.872864i \(0.337740\pi\)
\(18\) −7.93972 2.12121i −1.87141 0.499975i
\(19\) 1.79172 + 1.79172i 0.411049 + 0.411049i 0.882104 0.471055i \(-0.156127\pi\)
−0.471055 + 0.882104i \(0.656127\pi\)
\(20\) 5.50431i 1.23080i
\(21\) −1.37807 + 2.38891i −0.300720 + 0.521302i
\(22\) 9.73277i 2.07503i
\(23\) 2.26767i 0.472841i 0.971651 + 0.236421i \(0.0759743\pi\)
−0.971651 + 0.236421i \(0.924026\pi\)
\(24\) 16.0590 4.30931i 3.27804 0.879633i
\(25\) 1.00000 0.200000
\(26\) −10.5002 10.5002i −2.05926 2.05926i
\(27\) 5.19615 0.00570619i 0.999999 0.00109816i
\(28\) 8.76433i 1.65630i
\(29\) −1.83937 + 5.06130i −0.341563 + 0.939859i
\(30\) −1.22972 4.58265i −0.224515 0.836674i
\(31\) 6.53520 + 6.53520i 1.17376 + 1.17376i 0.981307 + 0.192451i \(0.0616435\pi\)
0.192451 + 0.981307i \(0.438357\pi\)
\(32\) −16.0391 + 16.0391i −2.83534 + 2.83534i
\(33\) 1.59489 + 5.94351i 0.277635 + 1.03463i
\(34\) 6.14814i 1.05440i
\(35\) −1.59227 −0.269142
\(36\) −14.2946 + 8.26693i −2.38243 + 1.37782i
\(37\) 1.18750 1.18750i 0.195224 0.195224i −0.602725 0.797949i \(-0.705918\pi\)
0.797949 + 0.602725i \(0.205918\pi\)
\(38\) 6.94129 1.12603
\(39\) 8.13280 + 4.69151i 1.30229 + 0.751242i
\(40\) 6.78801 + 6.78801i 1.07328 + 1.07328i
\(41\) 6.56896 + 6.56896i 1.02590 + 1.02590i 0.999656 + 0.0262439i \(0.00835466\pi\)
0.0262439 + 0.999656i \(0.491645\pi\)
\(42\) 1.95804 + 7.29681i 0.302132 + 1.12592i
\(43\) 0.586602 + 0.586602i 0.0894560 + 0.0894560i 0.750419 0.660963i \(-0.229852\pi\)
−0.660963 + 0.750419i \(0.729852\pi\)
\(44\) −13.8283 13.8283i −2.08469 2.08469i
\(45\) 1.50190 + 2.59698i 0.223890 + 0.387135i
\(46\) 4.39258 + 4.39258i 0.647650 + 0.647650i
\(47\) −2.90529 2.90529i −0.423781 0.423781i 0.462722 0.886503i \(-0.346873\pi\)
−0.886503 + 0.462722i \(0.846873\pi\)
\(48\) 13.2321 22.9380i 1.90989 3.31082i
\(49\) −4.46468 −0.637812
\(50\) 1.93705 1.93705i 0.273940 0.273940i
\(51\) −1.00748 3.75448i −0.141076 0.525733i
\(52\) −29.8373 −4.13769
\(53\) 3.69903i 0.508100i −0.967191 0.254050i \(-0.918237\pi\)
0.967191 0.254050i \(-0.0817629\pi\)
\(54\) 10.0541 10.0762i 1.36819 1.37120i
\(55\) −2.51227 + 2.51227i −0.338754 + 0.338754i
\(56\) −10.8083 10.8083i −1.44432 1.44432i
\(57\) −4.23884 + 1.13746i −0.561448 + 0.150660i
\(58\) 6.24102 + 13.3669i 0.819486 + 1.75516i
\(59\) 12.1062i 1.57609i −0.615617 0.788045i \(-0.711093\pi\)
0.615617 0.788045i \(-0.288907\pi\)
\(60\) −8.25821 4.76385i −1.06613 0.615010i
\(61\) 7.46553 + 7.46553i 0.955863 + 0.955863i 0.999066 0.0432030i \(-0.0137562\pi\)
−0.0432030 + 0.999066i \(0.513756\pi\)
\(62\) 25.3180 3.21539
\(63\) −2.39143 4.13508i −0.301292 0.520972i
\(64\) 31.5594i 3.94493i
\(65\) 5.42072i 0.672358i
\(66\) 14.6022 + 8.42348i 1.79741 + 1.03686i
\(67\) 1.85583i 0.226725i 0.993554 + 0.113363i \(0.0361622\pi\)
−0.993554 + 0.113363i \(0.963838\pi\)
\(68\) 8.73526 + 8.73526i 1.05931 + 1.05931i
\(69\) −3.40222 1.96261i −0.409579 0.236271i
\(70\) −3.08430 + 3.08430i −0.368644 + 0.368644i
\(71\) −3.52616 −0.418478 −0.209239 0.977864i \(-0.567099\pi\)
−0.209239 + 0.977864i \(0.567099\pi\)
\(72\) −7.43339 + 27.8232i −0.876033 + 3.27900i
\(73\) 6.40581 6.40581i 0.749743 0.749743i −0.224688 0.974431i \(-0.572136\pi\)
0.974431 + 0.224688i \(0.0721362\pi\)
\(74\) 4.60050i 0.534798i
\(75\) −0.865476 + 1.50032i −0.0999366 + 0.173242i
\(76\) 9.86218 9.86218i 1.13127 1.13127i
\(77\) 4.00020 4.00020i 0.455865 0.455865i
\(78\) 24.8413 6.66595i 2.81272 0.754770i
\(79\) −3.54465 3.54465i −0.398804 0.398804i 0.479007 0.877811i \(-0.340997\pi\)
−0.877811 + 0.479007i \(0.840997\pi\)
\(80\) 15.2888 1.70934
\(81\) −4.48858 + 7.80081i −0.498731 + 0.866757i
\(82\) 25.4488 2.81035
\(83\) 14.3942i 1.57997i 0.613127 + 0.789984i \(0.289911\pi\)
−0.613127 + 0.789984i \(0.710089\pi\)
\(84\) 13.1493 + 7.58532i 1.43470 + 0.827626i
\(85\) 1.58699 1.58699i 0.172133 0.172133i
\(86\) 2.27255 0.245056
\(87\) −6.00161 7.14007i −0.643441 0.765496i
\(88\) −34.1066 −3.63578
\(89\) 3.15754 3.15754i 0.334699 0.334699i −0.519669 0.854368i \(-0.673945\pi\)
0.854368 + 0.519669i \(0.173945\pi\)
\(90\) 7.93972 + 2.12121i 0.836920 + 0.223596i
\(91\) 8.63124i 0.904800i
\(92\) 12.4819 1.30133
\(93\) −15.4609 + 4.14881i −1.60322 + 0.430212i
\(94\) −11.2554 −1.16090
\(95\) −1.79172 1.79172i −0.183827 0.183827i
\(96\) −10.1823 37.9452i −1.03922 3.87276i
\(97\) −11.8364 + 11.8364i −1.20180 + 1.20180i −0.228184 + 0.973618i \(0.573279\pi\)
−0.973618 + 0.228184i \(0.926721\pi\)
\(98\) −8.64830 + 8.64830i −0.873611 + 0.873611i
\(99\) −10.2975 2.75112i −1.03494 0.276498i
\(100\) 5.50431i 0.550431i
\(101\) 9.76773 9.76773i 0.971926 0.971926i −0.0276909 0.999617i \(-0.508815\pi\)
0.999617 + 0.0276909i \(0.00881542\pi\)
\(102\) −9.22415 5.32107i −0.913327 0.526864i
\(103\) 6.84057 0.674022 0.337011 0.941501i \(-0.390584\pi\)
0.337011 + 0.941501i \(0.390584\pi\)
\(104\) −36.7959 + 36.7959i −3.60814 + 3.60814i
\(105\) 1.37807 2.38891i 0.134486 0.233133i
\(106\) −7.16519 7.16519i −0.695945 0.695945i
\(107\) 0.164280i 0.0158815i 0.999968 + 0.00794076i \(0.00252765\pi\)
−0.999968 + 0.00794076i \(0.997472\pi\)
\(108\) −0.0314086 28.6012i −0.00302229 2.75215i
\(109\) 14.6990i 1.40791i 0.710245 + 0.703954i \(0.248584\pi\)
−0.710245 + 0.703954i \(0.751416\pi\)
\(110\) 9.73277i 0.927983i
\(111\) 0.753875 + 2.80939i 0.0715547 + 0.266655i
\(112\) −24.3438 −2.30028
\(113\) −7.66400 7.66400i −0.720968 0.720968i 0.247834 0.968802i \(-0.420281\pi\)
−0.968802 + 0.247834i \(0.920281\pi\)
\(114\) −6.00752 + 10.4141i −0.562656 + 0.975374i
\(115\) 2.26767i 0.211461i
\(116\) 27.8589 + 10.1245i 2.58664 + 0.940033i
\(117\) −14.0775 + 8.14139i −1.30146 + 0.752672i
\(118\) −23.4503 23.4503i −2.15877 2.15877i
\(119\) −2.52691 + 2.52691i −0.231641 + 0.231641i
\(120\) −16.0590 + 4.30931i −1.46598 + 0.393384i
\(121\) 1.62298i 0.147543i
\(122\) 28.9222 2.61849
\(123\) −15.5408 + 4.17024i −1.40127 + 0.376018i
\(124\) 35.9718 35.9718i 3.23036 3.23036i
\(125\) −1.00000 −0.0894427
\(126\) −12.6422 3.37754i −1.12625 0.300895i
\(127\) −13.8555 13.8555i −1.22948 1.22948i −0.964162 0.265314i \(-0.914525\pi\)
−0.265314 0.964162i \(-0.585475\pi\)
\(128\) 29.0539 + 29.0539i 2.56802 + 2.56802i
\(129\) −1.38778 + 0.372399i −0.122187 + 0.0327879i
\(130\) 10.5002 + 10.5002i 0.920928 + 0.920928i
\(131\) 4.43515 + 4.43515i 0.387501 + 0.387501i 0.873795 0.486294i \(-0.161652\pi\)
−0.486294 + 0.873795i \(0.661652\pi\)
\(132\) 32.7149 8.77876i 2.84747 0.764093i
\(133\) 2.85290 + 2.85290i 0.247378 + 0.247378i
\(134\) 3.59483 + 3.59483i 0.310546 + 0.310546i
\(135\) −5.19615 + 0.00570619i −0.447213 + 0.000491110i
\(136\) 21.5450 1.84747
\(137\) −4.07631 + 4.07631i −0.348262 + 0.348262i −0.859462 0.511200i \(-0.829201\pi\)
0.511200 + 0.859462i \(0.329201\pi\)
\(138\) −10.3919 + 2.78859i −0.884620 + 0.237380i
\(139\) 13.7092 1.16280 0.581398 0.813620i \(-0.302506\pi\)
0.581398 + 0.813620i \(0.302506\pi\)
\(140\) 8.76433i 0.740721i
\(141\) 6.87333 1.84440i 0.578838 0.155326i
\(142\) −6.83034 + 6.83034i −0.573190 + 0.573190i
\(143\) −13.6183 13.6183i −1.13882 1.13882i
\(144\) 22.9623 + 39.7046i 1.91352 + 3.30872i
\(145\) 1.83937 5.06130i 0.152752 0.420318i
\(146\) 24.8167i 2.05385i
\(147\) 3.86408 6.69844i 0.318704 0.552478i
\(148\) −6.53639 6.53639i −0.537288 0.537288i
\(149\) 19.9073 1.63087 0.815436 0.578847i \(-0.196497\pi\)
0.815436 + 0.578847i \(0.196497\pi\)
\(150\) 1.22972 + 4.58265i 0.100406 + 0.374172i
\(151\) 7.19222i 0.585295i −0.956220 0.292647i \(-0.905464\pi\)
0.956220 0.292647i \(-0.0945362\pi\)
\(152\) 24.3244i 1.97297i
\(153\) 6.50487 + 1.73787i 0.525887 + 0.140498i
\(154\) 15.4972i 1.24880i
\(155\) −6.53520 6.53520i −0.524920 0.524920i
\(156\) 25.8235 44.7654i 2.06753 3.58410i
\(157\) −7.33987 + 7.33987i −0.585785 + 0.585785i −0.936487 0.350702i \(-0.885943\pi\)
0.350702 + 0.936487i \(0.385943\pi\)
\(158\) −13.7323 −1.09248
\(159\) 5.54971 + 3.20142i 0.440121 + 0.253889i
\(160\) 16.0391 16.0391i 1.26800 1.26800i
\(161\) 3.61073i 0.284565i
\(162\) 6.41594 + 23.8051i 0.504084 + 1.87031i
\(163\) −2.83532 + 2.83532i −0.222079 + 0.222079i −0.809374 0.587294i \(-0.800193\pi\)
0.587294 + 0.809374i \(0.300193\pi\)
\(164\) 36.1576 36.1576i 2.82343 2.82343i
\(165\) −1.59489 5.94351i −0.124162 0.462701i
\(166\) 27.8823 + 27.8823i 2.16408 + 2.16408i
\(167\) −9.25131 −0.715888 −0.357944 0.933743i \(-0.616522\pi\)
−0.357944 + 0.933743i \(0.616522\pi\)
\(168\) 25.5703 6.86157i 1.97279 0.529382i
\(169\) −16.3842 −1.26032
\(170\) 6.14814i 0.471541i
\(171\) 1.96207 7.34404i 0.150043 0.561613i
\(172\) 3.22884 3.22884i 0.246197 0.246197i
\(173\) 1.09012 0.0828805 0.0414402 0.999141i \(-0.486805\pi\)
0.0414402 + 0.999141i \(0.486805\pi\)
\(174\) −25.4561 2.20525i −1.92982 0.167179i
\(175\) 1.59227 0.120364
\(176\) −38.4095 + 38.4095i −2.89523 + 2.89523i
\(177\) 18.1631 + 10.4776i 1.36522 + 0.787546i
\(178\) 12.2326i 0.916874i
\(179\) 0.592168 0.0442607 0.0221303 0.999755i \(-0.492955\pi\)
0.0221303 + 0.999755i \(0.492955\pi\)
\(180\) 14.2946 8.26693i 1.06545 0.616181i
\(181\) −9.12023 −0.677902 −0.338951 0.940804i \(-0.610072\pi\)
−0.338951 + 0.940804i \(0.610072\pi\)
\(182\) −16.7191 16.7191i −1.23930 1.23930i
\(183\) −17.6619 + 4.73942i −1.30561 + 0.350348i
\(184\) 15.3929 15.3929i 1.13478 1.13478i
\(185\) −1.18750 + 1.18750i −0.0873070 + 0.0873070i
\(186\) −21.9121 + 37.9850i −1.60668 + 2.78520i
\(187\) 7.97387i 0.583107i
\(188\) −15.9916 + 15.9916i −1.16631 + 1.16631i
\(189\) 8.27366 0.00908578i 0.601820 0.000660893i
\(190\) −6.94129 −0.503574
\(191\) 15.0126 15.0126i 1.08628 1.08628i 0.0903669 0.995909i \(-0.471196\pi\)
0.995909 0.0903669i \(-0.0288040\pi\)
\(192\) −47.3491 27.3139i −3.41713 1.97121i
\(193\) 2.01301 + 2.01301i 0.144900 + 0.144900i 0.775835 0.630935i \(-0.217329\pi\)
−0.630935 + 0.775835i \(0.717329\pi\)
\(194\) 45.8553i 3.29222i
\(195\) −8.13280 4.69151i −0.582402 0.335966i
\(196\) 24.5750i 1.75536i
\(197\) 4.71783i 0.336131i −0.985776 0.168066i \(-0.946248\pi\)
0.985776 0.168066i \(-0.0537521\pi\)
\(198\) −25.2758 + 14.6177i −1.79627 + 1.03883i
\(199\) −18.5631 −1.31591 −0.657953 0.753059i \(-0.728577\pi\)
−0.657953 + 0.753059i \(0.728577\pi\)
\(200\) −6.78801 6.78801i −0.479985 0.479985i
\(201\) −2.78433 1.60617i −0.196391 0.113291i
\(202\) 37.8411i 2.66249i
\(203\) −2.92877 + 8.05894i −0.205560 + 0.565627i
\(204\) −20.6658 + 5.54550i −1.44690 + 0.388263i
\(205\) −6.56896 6.56896i −0.458796 0.458796i
\(206\) 13.2505 13.2505i 0.923207 0.923207i
\(207\) 5.88908 3.40581i 0.409319 0.236720i
\(208\) 82.8763i 5.74644i
\(209\) 9.00256 0.622720
\(210\) −1.95804 7.29681i −0.135117 0.503528i
\(211\) 0.489150 0.489150i 0.0336745 0.0336745i −0.690069 0.723744i \(-0.742420\pi\)
0.723744 + 0.690069i \(0.242420\pi\)
\(212\) −20.3606 −1.39837
\(213\) 3.05181 5.29036i 0.209106 0.362489i
\(214\) 0.318218 + 0.318218i 0.0217529 + 0.0217529i
\(215\) −0.586602 0.586602i −0.0400060 0.0400060i
\(216\) −35.3103 35.2328i −2.40256 2.39729i
\(217\) 10.4058 + 10.4058i 0.706391 + 0.706391i
\(218\) 28.4727 + 28.4727i 1.92841 + 1.92841i
\(219\) 4.06667 + 15.1548i 0.274800 + 1.02407i
\(220\) 13.8283 + 13.8283i 0.932303 + 0.932303i
\(221\) 8.60261 + 8.60261i 0.578674 + 0.578674i
\(222\) 6.90221 + 3.98163i 0.463246 + 0.267229i
\(223\) −19.4176 −1.30030 −0.650151 0.759805i \(-0.725294\pi\)
−0.650151 + 0.759805i \(0.725294\pi\)
\(224\) −25.5385 + 25.5385i −1.70637 + 1.70637i
\(225\) −1.50190 2.59698i −0.100127 0.173132i
\(226\) −29.6911 −1.97502
\(227\) 18.2628i 1.21215i −0.795409 0.606073i \(-0.792744\pi\)
0.795409 0.606073i \(-0.207256\pi\)
\(228\) 6.26091 + 23.3319i 0.414639 + 1.54519i
\(229\) −18.1241 + 18.1241i −1.19768 + 1.19768i −0.222816 + 0.974861i \(0.571525\pi\)
−0.974861 + 0.222816i \(0.928475\pi\)
\(230\) −4.39258 4.39258i −0.289638 0.289638i
\(231\) 2.53949 + 9.46365i 0.167086 + 0.622663i
\(232\) 46.8418 21.8705i 3.07532 1.43587i
\(233\) 0.0786482i 0.00515241i −0.999997 0.00257621i \(-0.999180\pi\)
0.999997 0.00257621i \(-0.000820033\pi\)
\(234\) −11.4985 + 43.0390i −0.751681 + 2.81355i
\(235\) 2.90529 + 2.90529i 0.189521 + 0.189521i
\(236\) −66.6361 −4.33764
\(237\) 8.38590 2.25029i 0.544723 0.146172i
\(238\) 9.78948i 0.634558i
\(239\) 19.5678i 1.26574i −0.774259 0.632869i \(-0.781877\pi\)
0.774259 0.632869i \(-0.218123\pi\)
\(240\) −13.2321 + 22.9380i −0.854127 + 1.48064i
\(241\) 3.03156i 0.195280i 0.995222 + 0.0976399i \(0.0311293\pi\)
−0.995222 + 0.0976399i \(0.968871\pi\)
\(242\) −3.14379 3.14379i −0.202090 0.202090i
\(243\) −7.81892 13.4857i −0.501584 0.865109i
\(244\) 41.0926 41.0926i 2.63068 2.63068i
\(245\) 4.46468 0.285238
\(246\) −22.0253 + 38.1812i −1.40428 + 2.43435i
\(247\) 9.71241 9.71241i 0.617986 0.617986i
\(248\) 88.7221i 5.63386i
\(249\) −21.5959 12.4578i −1.36858 0.789484i
\(250\) −1.93705 + 1.93705i −0.122510 + 0.122510i
\(251\) −2.96374 + 2.96374i −0.187070 + 0.187070i −0.794428 0.607358i \(-0.792229\pi\)
0.607358 + 0.794428i \(0.292229\pi\)
\(252\) −22.7608 + 13.1632i −1.43379 + 0.829201i
\(253\) 5.69698 + 5.69698i 0.358166 + 0.358166i
\(254\) −53.6775 −3.36802
\(255\) 1.00748 + 3.75448i 0.0630911 + 0.235115i
\(256\) 49.4387 3.08992
\(257\) 19.6791i 1.22755i 0.789481 + 0.613775i \(0.210350\pi\)
−0.789481 + 0.613775i \(0.789650\pi\)
\(258\) −1.96684 + 3.40955i −0.122450 + 0.212269i
\(259\) 1.89082 1.89082i 0.117490 0.117490i
\(260\) 29.8373 1.85043
\(261\) 15.9066 2.82476i 0.984595 0.174848i
\(262\) 17.1822 1.06152
\(263\) −1.93126 + 1.93126i −0.119087 + 0.119087i −0.764139 0.645052i \(-0.776836\pi\)
0.645052 + 0.764139i \(0.276836\pi\)
\(264\) 29.5185 51.1707i 1.81674 3.14934i
\(265\) 3.69903i 0.227229i
\(266\) 11.0524 0.677666
\(267\) 2.00454 + 7.47010i 0.122676 + 0.457162i
\(268\) 10.2150 0.623983
\(269\) 9.63194 + 9.63194i 0.587270 + 0.587270i 0.936891 0.349621i \(-0.113690\pi\)
−0.349621 + 0.936891i \(0.613690\pi\)
\(270\) −10.0541 + 10.0762i −0.611875 + 0.613221i
\(271\) −3.05787 + 3.05787i −0.185752 + 0.185752i −0.793857 0.608105i \(-0.791930\pi\)
0.608105 + 0.793857i \(0.291930\pi\)
\(272\) 24.2631 24.2631i 1.47117 1.47117i
\(273\) 12.9496 + 7.47013i 0.783745 + 0.452113i
\(274\) 15.7920i 0.954029i
\(275\) 2.51227 2.51227i 0.151495 0.151495i
\(276\) −10.8028 + 18.7269i −0.650253 + 1.12722i
\(277\) −7.70541 −0.462973 −0.231487 0.972838i \(-0.574359\pi\)
−0.231487 + 0.972838i \(0.574359\pi\)
\(278\) 26.5553 26.5553i 1.59268 1.59268i
\(279\) 7.15654 26.7870i 0.428451 1.60370i
\(280\) 10.8083 + 10.8083i 0.645921 + 0.645921i
\(281\) 11.9105i 0.710522i 0.934767 + 0.355261i \(0.115608\pi\)
−0.934767 + 0.355261i \(0.884392\pi\)
\(282\) 9.74127 16.8866i 0.580084 1.00559i
\(283\) 0.222685i 0.0132372i 0.999978 + 0.00661862i \(0.00210679\pi\)
−0.999978 + 0.00661862i \(0.997893\pi\)
\(284\) 19.4091i 1.15172i
\(285\) 4.23884 1.13746i 0.251087 0.0673771i
\(286\) −52.7586 −3.11968
\(287\) 10.4595 + 10.4595i 0.617408 + 0.617408i
\(288\) 65.7423 + 17.5640i 3.87390 + 1.03497i
\(289\) 11.9629i 0.703703i
\(290\) −6.24102 13.3669i −0.366485 0.784933i
\(291\) −7.51422 28.0024i −0.440491 1.64153i
\(292\) −35.2595 35.2595i −2.06341 2.06341i
\(293\) 0.391762 0.391762i 0.0228870 0.0228870i −0.695571 0.718458i \(-0.744848\pi\)
0.718458 + 0.695571i \(0.244848\pi\)
\(294\) −5.49030 20.4601i −0.320201 1.19326i
\(295\) 12.1062i 0.704849i
\(296\) −16.1216 −0.937048
\(297\) 13.0398 13.0685i 0.756645 0.758309i
\(298\) 38.5615 38.5615i 2.23381 2.23381i
\(299\) 12.2924 0.710887
\(300\) 8.25821 + 4.76385i 0.476788 + 0.275041i
\(301\) 0.934028 + 0.934028i 0.0538365 + 0.0538365i
\(302\) −13.9317 13.9317i −0.801678 0.801678i
\(303\) 6.20095 + 23.1084i 0.356235 + 1.32754i
\(304\) −27.3932 27.3932i −1.57111 1.57111i
\(305\) −7.46553 7.46553i −0.427475 0.427475i
\(306\) 15.9666 9.23390i 0.912748 0.527867i
\(307\) 12.5167 + 12.5167i 0.714367 + 0.714367i 0.967446 0.253079i \(-0.0814431\pi\)
−0.253079 + 0.967446i \(0.581443\pi\)
\(308\) −22.0183 22.0183i −1.25461 1.25461i
\(309\) −5.92035 + 10.2630i −0.336797 + 0.583843i
\(310\) −25.3180 −1.43797
\(311\) −7.23981 + 7.23981i −0.410532 + 0.410532i −0.881924 0.471392i \(-0.843752\pi\)
0.471392 + 0.881924i \(0.343752\pi\)
\(312\) −23.3595 87.0515i −1.32247 4.92832i
\(313\) 6.37435 0.360300 0.180150 0.983639i \(-0.442342\pi\)
0.180150 + 0.983639i \(0.442342\pi\)
\(314\) 28.4353i 1.60470i
\(315\) 2.39143 + 4.13508i 0.134742 + 0.232986i
\(316\) −19.5108 + 19.5108i −1.09757 + 1.09757i
\(317\) −3.85301 3.85301i −0.216407 0.216407i 0.590576 0.806982i \(-0.298901\pi\)
−0.806982 + 0.590576i \(0.798901\pi\)
\(318\) 16.9514 4.54876i 0.950585 0.255082i
\(319\) 8.09433 + 17.3363i 0.453196 + 0.970648i
\(320\) 31.5594i 1.76422i
\(321\) −0.246472 0.142180i −0.0137567 0.00793572i
\(322\) 6.99416 + 6.99416i 0.389769 + 0.389769i
\(323\) −5.68687 −0.316426
\(324\) 42.9381 + 24.7065i 2.38545 + 1.37259i
\(325\) 5.42072i 0.300688i
\(326\) 10.9843i 0.608364i
\(327\) −22.0532 12.7216i −1.21954 0.703508i
\(328\) 89.1804i 4.92416i
\(329\) −4.62601 4.62601i −0.255040 0.255040i
\(330\) −14.6022 8.42348i −0.803826 0.463697i
\(331\) 15.1637 15.1637i 0.833470 0.833470i −0.154520 0.987990i \(-0.549383\pi\)
0.987990 + 0.154520i \(0.0493831\pi\)
\(332\) 79.2301 4.34832
\(333\) −4.86743 1.30041i −0.266734 0.0712618i
\(334\) −17.9202 + 17.9202i −0.980551 + 0.980551i
\(335\) 1.85583i 0.101395i
\(336\) 21.0690 36.5235i 1.14941 1.99252i
\(337\) 6.16123 6.16123i 0.335624 0.335624i −0.519094 0.854717i \(-0.673730\pi\)
0.854717 + 0.519094i \(0.173730\pi\)
\(338\) −31.7370 + 31.7370i −1.72627 + 1.72627i
\(339\) 18.1314 4.86542i 0.984765 0.264253i
\(340\) −8.73526 8.73526i −0.473736 0.473736i
\(341\) 32.8364 1.77819
\(342\) −10.4251 18.0264i −0.563727 0.974755i
\(343\) −18.2548 −0.985669
\(344\) 7.96373i 0.429375i
\(345\) 3.40222 + 1.96261i 0.183169 + 0.105663i
\(346\) 2.11162 2.11162i 0.113521 0.113521i
\(347\) −12.2488 −0.657552 −0.328776 0.944408i \(-0.606636\pi\)
−0.328776 + 0.944408i \(0.606636\pi\)
\(348\) −39.3012 + 33.0347i −2.10676 + 1.77085i
\(349\) 13.4198 0.718344 0.359172 0.933271i \(-0.383059\pi\)
0.359172 + 0.933271i \(0.383059\pi\)
\(350\) 3.08430 3.08430i 0.164863 0.164863i
\(351\) −0.0309316 28.1669i −0.00165101 1.50344i
\(352\) 80.5890i 4.29541i
\(353\) −23.6542 −1.25898 −0.629492 0.777007i \(-0.716737\pi\)
−0.629492 + 0.777007i \(0.716737\pi\)
\(354\) 55.4784 14.8872i 2.94865 0.791244i
\(355\) 3.52616 0.187149
\(356\) −17.3801 17.3801i −0.921143 0.921143i
\(357\) −1.60418 5.97814i −0.0849024 0.316397i
\(358\) 1.14706 1.14706i 0.0606239 0.0606239i
\(359\) −15.8691 + 15.8691i −0.837539 + 0.837539i −0.988534 0.150996i \(-0.951752\pi\)
0.150996 + 0.988534i \(0.451752\pi\)
\(360\) 7.43339 27.8232i 0.391774 1.46641i
\(361\) 12.5795i 0.662078i
\(362\) −17.6663 + 17.6663i −0.928522 + 0.928522i
\(363\) 2.43498 + 1.40465i 0.127803 + 0.0737250i
\(364\) −47.5090 −2.49015
\(365\) −6.40581 + 6.40581i −0.335295 + 0.335295i
\(366\) −25.0315 + 43.3924i −1.30842 + 2.26816i
\(367\) 15.2494 + 15.2494i 0.796010 + 0.796010i 0.982464 0.186454i \(-0.0596994\pi\)
−0.186454 + 0.982464i \(0.559699\pi\)
\(368\) 34.6699i 1.80729i
\(369\) 7.19351 26.9254i 0.374479 1.40168i
\(370\) 4.60050i 0.239169i
\(371\) 5.88984i 0.305785i
\(372\) 22.8363 + 85.1018i 1.18401 + 4.41232i
\(373\) 27.4763 1.42267 0.711334 0.702854i \(-0.248091\pi\)
0.711334 + 0.702854i \(0.248091\pi\)
\(374\) 15.4458 + 15.4458i 0.798682 + 0.798682i
\(375\) 0.865476 1.50032i 0.0446930 0.0774760i
\(376\) 39.4423i 2.03408i
\(377\) 27.4359 + 9.97072i 1.41302 + 0.513518i
\(378\) 16.0089 16.0441i 0.823408 0.825218i
\(379\) 17.2230 + 17.2230i 0.884684 + 0.884684i 0.994006 0.109322i \(-0.0348680\pi\)
−0.109322 + 0.994006i \(0.534868\pi\)
\(380\) −9.86218 + 9.86218i −0.505919 + 0.505919i
\(381\) 32.7792 8.79603i 1.67933 0.450634i
\(382\) 58.1603i 2.97574i
\(383\) 13.5536 0.692558 0.346279 0.938132i \(-0.387445\pi\)
0.346279 + 0.938132i \(0.387445\pi\)
\(384\) −68.7355 + 18.4446i −3.50764 + 0.941246i
\(385\) −4.00020 + 4.00020i −0.203869 + 0.203869i
\(386\) 7.79861 0.396939
\(387\) 0.642374 2.40441i 0.0326537 0.122223i
\(388\) 65.1511 + 65.1511i 3.30755 + 3.30755i
\(389\) −13.9518 13.9518i −0.707386 0.707386i 0.258599 0.965985i \(-0.416739\pi\)
−0.965985 + 0.258599i \(0.916739\pi\)
\(390\) −24.8413 + 6.66595i −1.25789 + 0.337544i
\(391\) −3.59875 3.59875i −0.181997 0.181997i
\(392\) 30.3063 + 30.3063i 1.53070 + 1.53070i
\(393\) −10.4926 + 2.81561i −0.529284 + 0.142029i
\(394\) −9.13866 9.13866i −0.460399 0.460399i
\(395\) 3.54465 + 3.54465i 0.178351 + 0.178351i
\(396\) −15.1430 + 56.6805i −0.760966 + 2.84830i
\(397\) −5.38419 −0.270225 −0.135112 0.990830i \(-0.543140\pi\)
−0.135112 + 0.990830i \(0.543140\pi\)
\(398\) −35.9577 + 35.9577i −1.80240 + 1.80240i
\(399\) −6.74937 + 1.81114i −0.337891 + 0.0906702i
\(400\) −15.2888 −0.764440
\(401\) 8.94942i 0.446913i 0.974714 + 0.223456i \(0.0717340\pi\)
−0.974714 + 0.223456i \(0.928266\pi\)
\(402\) −8.50462 + 2.28214i −0.424172 + 0.113823i
\(403\) 35.4255 35.4255i 1.76467 1.76467i
\(404\) −53.7646 53.7646i −2.67489 2.67489i
\(405\) 4.48858 7.80081i 0.223039 0.387625i
\(406\) 9.93737 + 21.2837i 0.493184 + 1.05629i
\(407\) 5.96665i 0.295756i
\(408\) −18.6467 + 32.3243i −0.923147 + 1.60029i
\(409\) −20.5964 20.5964i −1.01842 1.01842i −0.999827 0.0185969i \(-0.994080\pi\)
−0.0185969 0.999827i \(-0.505920\pi\)
\(410\) −25.4488 −1.25683
\(411\) −2.58780 9.64370i −0.127647 0.475688i
\(412\) 37.6526i 1.85501i
\(413\) 19.2763i 0.948524i
\(414\) 4.81020 18.0046i 0.236409 0.884880i
\(415\) 14.3942i 0.706584i
\(416\) 86.9435 + 86.9435i 4.26275 + 4.26275i
\(417\) −11.8649 + 20.5681i −0.581029 + 1.00722i
\(418\) 17.4384 17.4384i 0.852939 0.852939i
\(419\) −13.7990 −0.674126 −0.337063 0.941482i \(-0.609434\pi\)
−0.337063 + 0.941482i \(0.609434\pi\)
\(420\) −13.1493 7.58532i −0.641619 0.370126i
\(421\) 13.4860 13.4860i 0.657266 0.657266i −0.297467 0.954732i \(-0.596142\pi\)
0.954732 + 0.297467i \(0.0961417\pi\)
\(422\) 1.89501i 0.0922478i
\(423\) −3.18152 + 11.9085i −0.154691 + 0.579009i
\(424\) −25.1090 + 25.1090i −1.21940 + 1.21940i
\(425\) −1.58699 + 1.58699i −0.0769802 + 0.0769802i
\(426\) −4.33618 16.1592i −0.210089 0.782915i
\(427\) 11.8871 + 11.8871i 0.575258 + 0.575258i
\(428\) 0.904246 0.0437084
\(429\) 32.2181 8.64545i 1.55550 0.417406i
\(430\) −2.27255 −0.109592
\(431\) 8.11323i 0.390800i −0.980724 0.195400i \(-0.937399\pi\)
0.980724 0.195400i \(-0.0626006\pi\)
\(432\) −79.4428 + 0.0872407i −3.82220 + 0.00419737i
\(433\) −25.0939 + 25.0939i −1.20594 + 1.20594i −0.233606 + 0.972331i \(0.575053\pi\)
−0.972331 + 0.233606i \(0.924947\pi\)
\(434\) 40.3130 1.93509
\(435\) 6.00161 + 7.14007i 0.287755 + 0.342340i
\(436\) 80.9078 3.87478
\(437\) −4.06302 + 4.06302i −0.194361 + 0.194361i
\(438\) 37.2329 + 21.4783i 1.77906 + 1.02627i
\(439\) 18.9770i 0.905724i 0.891581 + 0.452862i \(0.149597\pi\)
−0.891581 + 0.452862i \(0.850403\pi\)
\(440\) 34.1066 1.62597
\(441\) 6.70552 + 11.5947i 0.319310 + 0.552128i
\(442\) 33.3273 1.58522
\(443\) −28.6076 28.6076i −1.35919 1.35919i −0.874922 0.484264i \(-0.839087\pi\)
−0.484264 0.874922i \(-0.660913\pi\)
\(444\) 15.4637 4.14956i 0.733876 0.196930i
\(445\) −3.15754 + 3.15754i −0.149682 + 0.149682i
\(446\) −37.6129 + 37.6129i −1.78102 + 1.78102i
\(447\) −17.2293 + 29.8673i −0.814919 + 1.41268i
\(448\) 50.2510i 2.37414i
\(449\) −9.47070 + 9.47070i −0.446950 + 0.446950i −0.894339 0.447389i \(-0.852354\pi\)
0.447389 + 0.894339i \(0.352354\pi\)
\(450\) −7.93972 2.12121i −0.374282 0.0999950i
\(451\) 33.0060 1.55419
\(452\) −42.1850 + 42.1850i −1.98422 + 1.98422i
\(453\) 10.7906 + 6.22470i 0.506987 + 0.292462i
\(454\) −35.3759 35.3759i −1.66028 1.66028i
\(455\) 8.63124i 0.404639i
\(456\) 36.4944 + 21.0522i 1.70900 + 0.985860i
\(457\) 6.85908i 0.320854i 0.987048 + 0.160427i \(0.0512871\pi\)
−0.987048 + 0.160427i \(0.948713\pi\)
\(458\) 70.2146i 3.28091i
\(459\) −8.23716 + 8.25527i −0.384478 + 0.385323i
\(460\) −12.4819 −0.581973
\(461\) −12.8682 12.8682i −0.599332 0.599332i 0.340803 0.940135i \(-0.389301\pi\)
−0.940135 + 0.340803i \(0.889301\pi\)
\(462\) 23.2507 + 13.4124i 1.08172 + 0.624003i
\(463\) 21.1440i 0.982647i −0.870977 0.491324i \(-0.836513\pi\)
0.870977 0.491324i \(-0.163487\pi\)
\(464\) 28.1218 77.3811i 1.30552 3.59233i
\(465\) 15.4609 4.14881i 0.716984 0.192397i
\(466\) −0.152345 0.152345i −0.00705726 0.00705726i
\(467\) 6.85345 6.85345i 0.317140 0.317140i −0.530528 0.847667i \(-0.678006\pi\)
0.847667 + 0.530528i \(0.178006\pi\)
\(468\) 44.8127 + 77.4868i 2.07147 + 3.58183i
\(469\) 2.95497i 0.136448i
\(470\) 11.2554 0.519172
\(471\) −4.65965 17.3646i −0.214705 0.800119i
\(472\) −82.1769 + 82.1769i −3.78250 + 3.78250i
\(473\) 2.94740 0.135522
\(474\) 11.8850 20.6028i 0.545895 0.946318i
\(475\) 1.79172 + 1.79172i 0.0822097 + 0.0822097i
\(476\) 13.9089 + 13.9089i 0.637512 + 0.637512i
\(477\) −9.60629 + 5.55557i −0.439842 + 0.254372i
\(478\) −37.9038 37.9038i −1.73368 1.73368i
\(479\) −4.28513 4.28513i −0.195792 0.195792i 0.602401 0.798194i \(-0.294211\pi\)
−0.798194 + 0.602401i \(0.794211\pi\)
\(480\) 10.1823 + 37.9452i 0.464755 + 1.73195i
\(481\) −6.43713 6.43713i −0.293508 0.293508i
\(482\) 5.87227 + 5.87227i 0.267475 + 0.267475i
\(483\) −5.41724 3.12500i −0.246493 0.142193i
\(484\) −8.93337 −0.406062
\(485\) 11.8364 11.8364i 0.537462 0.537462i
\(486\) −41.2681 10.9768i −1.87196 0.497920i
\(487\) −24.4125 −1.10624 −0.553118 0.833103i \(-0.686562\pi\)
−0.553118 + 0.833103i \(0.686562\pi\)
\(488\) 101.352i 4.58800i
\(489\) −1.79998 6.70778i −0.0813977 0.303336i
\(490\) 8.64830 8.64830i 0.390691 0.390691i
\(491\) 0.830529 + 0.830529i 0.0374813 + 0.0374813i 0.725599 0.688118i \(-0.241563\pi\)
−0.688118 + 0.725599i \(0.741563\pi\)
\(492\) 22.9543 + 85.5414i 1.03486 + 3.85650i
\(493\) −5.11315 10.9513i −0.230285 0.493220i
\(494\) 37.6268i 1.69291i
\(495\) 10.2975 + 2.75112i 0.462837 + 0.123654i
\(496\) −99.9154 99.9154i −4.48633 4.48633i
\(497\) −5.61459 −0.251849
\(498\) −65.9637 + 17.7008i −2.95590 + 0.793191i
\(499\) 21.7815i 0.975072i 0.873103 + 0.487536i \(0.162104\pi\)
−0.873103 + 0.487536i \(0.837896\pi\)
\(500\) 5.50431i 0.246160i
\(501\) 8.00679 13.8799i 0.357717 0.620108i
\(502\) 11.4818i 0.512458i
\(503\) −3.19151 3.19151i −0.142302 0.142302i 0.632367 0.774669i \(-0.282084\pi\)
−0.774669 + 0.632367i \(0.782084\pi\)
\(504\) −11.8359 + 44.3020i −0.527215 + 1.97337i
\(505\) −9.76773 + 9.76773i −0.434658 + 0.434658i
\(506\) 22.0707 0.981160
\(507\) 14.1802 24.5815i 0.629763 1.09170i
\(508\) −76.2649 + 76.2649i −3.38371 + 3.38371i
\(509\) 22.4492i 0.995045i 0.867451 + 0.497522i \(0.165757\pi\)
−0.867451 + 0.497522i \(0.834243\pi\)
\(510\) 9.22415 + 5.32107i 0.408452 + 0.235621i
\(511\) 10.1998 10.1998i 0.451211 0.451211i
\(512\) 37.6574 37.6574i 1.66424 1.66424i
\(513\) 9.32027 + 9.29982i 0.411500 + 0.410597i
\(514\) 38.1194 + 38.1194i 1.68137 + 1.68137i
\(515\) −6.84057 −0.301432
\(516\) 2.04980 + 7.63877i 0.0902374 + 0.336278i
\(517\) −14.5978 −0.642009
\(518\) 7.32523i 0.321852i
\(519\) −0.943475 + 1.63553i −0.0414140 + 0.0717918i
\(520\) 36.7959 36.7959i 1.61361 1.61361i
\(521\) 2.88860 0.126552 0.0632760 0.997996i \(-0.479845\pi\)
0.0632760 + 0.997996i \(0.479845\pi\)
\(522\) 25.3402 36.2836i 1.10911 1.58809i
\(523\) 1.75222 0.0766194 0.0383097 0.999266i \(-0.487803\pi\)
0.0383097 + 0.999266i \(0.487803\pi\)
\(524\) 24.4124 24.4124i 1.06646 1.06646i
\(525\) −1.37807 + 2.38891i −0.0601439 + 0.104260i
\(526\) 7.48190i 0.326226i
\(527\) −20.7426 −0.903560
\(528\) −24.3839 90.8690i −1.06117 3.95457i
\(529\) 17.8577 0.776421
\(530\) 7.16519 + 7.16519i 0.311236 + 0.311236i
\(531\) −31.4395 + 18.1823i −1.36436 + 0.789044i
\(532\) 15.7032 15.7032i 0.680821 0.680821i
\(533\) 35.6085 35.6085i 1.54238 1.54238i
\(534\) 18.3528 + 10.5870i 0.794204 + 0.458146i
\(535\) 0.164280i 0.00710243i
\(536\) 12.5974 12.5974i 0.544124 0.544124i
\(537\) −0.512507 + 0.888439i −0.0221163 + 0.0383390i
\(538\) 37.3151 1.60877
\(539\) −11.2165 + 11.2165i −0.483128 + 0.483128i
\(540\) 0.0314086 + 28.6012i 0.00135161 + 1.23080i
\(541\) −13.5847 13.5847i −0.584053 0.584053i 0.351962 0.936014i \(-0.385515\pi\)
−0.936014 + 0.351962i \(0.885515\pi\)
\(542\) 11.8465i 0.508849i
\(543\) 7.89335 13.6832i 0.338736 0.587204i
\(544\) 50.9077i 2.18265i
\(545\) 14.6990i 0.629636i
\(546\) 39.5540 10.6140i 1.69275 0.454236i
\(547\) −2.68306 −0.114719 −0.0573596 0.998354i \(-0.518268\pi\)
−0.0573596 + 0.998354i \(0.518268\pi\)
\(548\) 22.4372 + 22.4372i 0.958471 + 0.958471i
\(549\) 8.17532 30.6003i 0.348914 1.30599i
\(550\) 9.73277i 0.415007i
\(551\) −12.3641 + 5.77278i −0.526727 + 0.245929i
\(552\) 9.77207 + 36.4165i 0.415927 + 1.54999i
\(553\) −5.64403 5.64403i −0.240008 0.240008i
\(554\) −14.9258 + 14.9258i −0.634134 + 0.634134i
\(555\) −0.753875 2.80939i −0.0320002 0.119252i
\(556\) 75.4594i 3.20019i
\(557\) 38.3013 1.62288 0.811439 0.584437i \(-0.198685\pi\)
0.811439 + 0.584437i \(0.198685\pi\)
\(558\) −38.0251 65.7503i −1.60973 2.78343i
\(559\) 3.17981 3.17981i 0.134492 0.134492i
\(560\) 24.3438 1.02872
\(561\) −11.9633 6.90119i −0.505092 0.291369i
\(562\) 23.0712 + 23.0712i 0.973202 + 0.973202i
\(563\) 29.4969 + 29.4969i 1.24315 + 1.24315i 0.958688 + 0.284458i \(0.0918137\pi\)
0.284458 + 0.958688i \(0.408186\pi\)
\(564\) −10.1521 37.8329i −0.427482 1.59305i
\(565\) 7.66400 + 7.66400i 0.322427 + 0.322427i
\(566\) 0.431351 + 0.431351i 0.0181310 + 0.0181310i
\(567\) −7.14703 + 12.4210i −0.300147 + 0.521632i
\(568\) 23.9356 + 23.9356i 1.00432 + 1.00432i
\(569\) 14.9735 + 14.9735i 0.627722 + 0.627722i 0.947495 0.319772i \(-0.103606\pi\)
−0.319772 + 0.947495i \(0.603606\pi\)
\(570\) 6.00752 10.4141i 0.251628 0.436200i
\(571\) 31.8904 1.33457 0.667286 0.744801i \(-0.267456\pi\)
0.667286 + 0.744801i \(0.267456\pi\)
\(572\) −74.9593 + 74.9593i −3.13421 + 3.13421i
\(573\) 9.53062 + 35.5168i 0.398148 + 1.48373i
\(574\) 40.5213 1.69133
\(575\) 2.26767i 0.0945682i
\(576\) 81.9591 47.3991i 3.41496 1.97496i
\(577\) 14.1141 14.1141i 0.587577 0.587577i −0.349398 0.936974i \(-0.613614\pi\)
0.936974 + 0.349398i \(0.113614\pi\)
\(578\) 23.1728 + 23.1728i 0.963861 + 0.963861i
\(579\) −4.76237 + 1.27794i −0.197917 + 0.0531095i
\(580\) −27.8589 10.1245i −1.15678 0.420396i
\(581\) 22.9194i 0.950858i
\(582\) −68.7974 39.6866i −2.85175 1.64506i
\(583\) −9.29295 9.29295i −0.384875 0.384875i
\(584\) −86.9654 −3.59865
\(585\) 14.0775 8.14139i 0.582033 0.336605i
\(586\) 1.51772i 0.0626965i
\(587\) 37.8614i 1.56271i 0.624088 + 0.781354i \(0.285471\pi\)
−0.624088 + 0.781354i \(0.714529\pi\)
\(588\) −36.8703 21.2691i −1.52050 0.877122i
\(589\) 23.4185i 0.964943i
\(590\) 23.4503 + 23.4503i 0.965432 + 0.965432i
\(591\) 7.07824 + 4.08317i 0.291160 + 0.167959i
\(592\) −18.1555 + 18.1555i −0.746186 + 0.746186i
\(593\) −4.24731 −0.174416 −0.0872080 0.996190i \(-0.527794\pi\)
−0.0872080 + 0.996190i \(0.527794\pi\)
\(594\) −0.0555370 50.5729i −0.00227871 2.07503i
\(595\) 2.52691 2.52691i 0.103593 0.103593i
\(596\) 109.576i 4.48841i
\(597\) 16.0660 27.8506i 0.657536 1.13985i
\(598\) 23.8109 23.8109i 0.973702 0.973702i
\(599\) 33.2384 33.2384i 1.35809 1.35809i 0.481809 0.876276i \(-0.339980\pi\)
0.876276 0.481809i \(-0.160020\pi\)
\(600\) 16.0590 4.30931i 0.655607 0.175927i
\(601\) −6.75296 6.75296i −0.275459 0.275459i 0.555834 0.831293i \(-0.312399\pi\)
−0.831293 + 0.555834i \(0.812399\pi\)
\(602\) 3.61851 0.147480
\(603\) 4.81954 2.78727i 0.196267 0.113506i
\(604\) −39.5882 −1.61082
\(605\) 1.62298i 0.0659834i
\(606\) 56.7737 + 32.7506i 2.30627 + 1.33040i
\(607\) 12.3361 12.3361i 0.500708 0.500708i −0.410950 0.911658i \(-0.634803\pi\)
0.911658 + 0.410950i \(0.134803\pi\)
\(608\) −57.4751 −2.33092
\(609\) −9.55618 11.3689i −0.387236 0.460691i
\(610\) −28.9222 −1.17102
\(611\) −15.7488 + 15.7488i −0.637128 + 0.637128i
\(612\) 9.56577 35.8048i 0.386673 1.44732i
\(613\) 12.7794i 0.516155i −0.966124 0.258077i \(-0.916911\pi\)
0.966124 0.258077i \(-0.0830889\pi\)
\(614\) 48.4910 1.95694
\(615\) 15.5408 4.17024i 0.626666 0.168160i
\(616\) −54.3069 −2.18809
\(617\) 1.63094 + 1.63094i 0.0656592 + 0.0656592i 0.739174 0.673515i \(-0.235216\pi\)
−0.673515 + 0.739174i \(0.735216\pi\)
\(618\) 8.41197 + 31.3480i 0.338379 + 1.26100i
\(619\) −7.67417 + 7.67417i −0.308451 + 0.308451i −0.844308 0.535857i \(-0.819988\pi\)
0.535857 + 0.844308i \(0.319988\pi\)
\(620\) −35.9718 + 35.9718i −1.44466 + 1.44466i
\(621\) 0.0129397 + 11.7831i 0.000519253 + 0.472841i
\(622\) 28.0477i 1.12461i
\(623\) 5.02766 5.02766i 0.201429 0.201429i
\(624\) −124.341 71.7274i −4.97761 2.87140i
\(625\) 1.00000 0.0400000
\(626\) 12.3474 12.3474i 0.493502 0.493502i
\(627\) −7.79150 + 13.5067i −0.311163 + 0.539405i
\(628\) 40.4009 + 40.4009i 1.61217 + 1.61217i
\(629\) 3.76910i 0.150284i
\(630\) 12.6422 + 3.37754i 0.503676 + 0.134564i
\(631\) 5.67773i 0.226027i 0.993593 + 0.113013i \(0.0360503\pi\)
−0.993593 + 0.113013i \(0.963950\pi\)
\(632\) 48.1222i 1.91420i
\(633\) 0.310532 + 1.15723i 0.0123425 + 0.0459956i
\(634\) −14.9269 −0.592824
\(635\) 13.8555 + 13.8555i 0.549838 + 0.549838i
\(636\) 17.6216 30.5473i 0.698742 1.21128i
\(637\) 24.2018i 0.958910i
\(638\) 49.2604 + 17.9022i 1.95024 + 0.708754i
\(639\) 5.29595 + 9.15736i 0.209504 + 0.362260i
\(640\) −29.0539 29.0539i −1.14846 1.14846i
\(641\) −33.9073 + 33.9073i −1.33926 + 1.33926i −0.442476 + 0.896780i \(0.645900\pi\)
−0.896780 + 0.442476i \(0.854100\pi\)
\(642\) −0.752837 + 0.202017i −0.0297121 + 0.00797299i
\(643\) 14.0115i 0.552560i −0.961077 0.276280i \(-0.910898\pi\)
0.961077 0.276280i \(-0.0891018\pi\)
\(644\) 19.8746 0.783168
\(645\) 1.38778 0.372399i 0.0546438 0.0146632i
\(646\) −11.0157 + 11.0157i −0.433408 + 0.433408i
\(647\) −24.7453 −0.972838 −0.486419 0.873726i \(-0.661697\pi\)
−0.486419 + 0.873726i \(0.661697\pi\)
\(648\) 83.4205 22.4834i 3.27707 0.883233i
\(649\) −30.4140 30.4140i −1.19385 1.19385i
\(650\) −10.5002 10.5002i −0.411852 0.411852i
\(651\) −24.6180 + 6.60602i −0.964854 + 0.258910i
\(652\) 15.6065 + 15.6065i 0.611197 + 0.611197i
\(653\) −4.91961 4.91961i −0.192519 0.192519i 0.604265 0.796784i \(-0.293467\pi\)
−0.796784 + 0.604265i \(0.793467\pi\)
\(654\) −67.3604 + 18.0756i −2.63400 + 0.706812i
\(655\) −4.43515 4.43515i −0.173296 0.173296i
\(656\) −100.431 100.431i −3.92119 3.92119i
\(657\) −26.2566 7.01484i −1.02437 0.273675i
\(658\) −17.9216 −0.698656
\(659\) −8.18968 + 8.18968i −0.319025 + 0.319025i −0.848392 0.529368i \(-0.822429\pi\)
0.529368 + 0.848392i \(0.322429\pi\)
\(660\) −32.7149 + 8.77876i −1.27343 + 0.341713i
\(661\) 14.4412 0.561699 0.280849 0.959752i \(-0.409384\pi\)
0.280849 + 0.959752i \(0.409384\pi\)
\(662\) 58.7454i 2.28321i
\(663\) −20.3520 + 5.46129i −0.790406 + 0.212099i
\(664\) 97.7080 97.7080i 3.79181 3.79181i
\(665\) −2.85290 2.85290i −0.110631 0.110631i
\(666\) −11.9474 + 6.90950i −0.462952 + 0.267738i
\(667\) −11.4773 4.17108i −0.444404 0.161505i
\(668\) 50.9221i 1.97023i
\(669\) 16.8055 29.1326i 0.649738 1.12633i
\(670\) −3.59483 3.59483i −0.138880 0.138880i
\(671\) 37.5108 1.44809
\(672\) −16.2129 60.4189i −0.625426 2.33071i
\(673\) 17.7314i 0.683497i 0.939792 + 0.341748i \(0.111019\pi\)
−0.939792 + 0.341748i \(0.888981\pi\)
\(674\) 23.8692i 0.919407i
\(675\) 5.19615 0.00570619i 0.200000 0.000219631i
\(676\) 90.1838i 3.46861i
\(677\) −10.4788 10.4788i −0.402734 0.402734i 0.476461 0.879195i \(-0.341919\pi\)
−0.879195 + 0.476461i \(0.841919\pi\)
\(678\) 25.6969 44.5460i 0.986884 1.71078i
\(679\) −18.8467 + 18.8467i −0.723269 + 0.723269i
\(680\) −21.5450 −0.826212
\(681\) 27.4000 + 15.8060i 1.04997 + 0.605688i
\(682\) 63.6056 63.6056i 2.43558 2.43558i
\(683\) 6.30348i 0.241196i 0.992701 + 0.120598i \(0.0384812\pi\)
−0.992701 + 0.120598i \(0.961519\pi\)
\(684\) −40.4239 10.7998i −1.54565 0.412942i
\(685\) 4.07631 4.07631i 0.155748 0.155748i
\(686\) −35.3605 + 35.3605i −1.35007 + 1.35007i
\(687\) −11.5059 42.8779i −0.438979 1.63590i
\(688\) −8.96844 8.96844i −0.341919 0.341919i
\(689\) −20.0514 −0.763897
\(690\) 10.3919 2.78859i 0.395614 0.106160i
\(691\) −49.7574 −1.89286 −0.946431 0.322906i \(-0.895340\pi\)
−0.946431 + 0.322906i \(0.895340\pi\)
\(692\) 6.00037i 0.228100i
\(693\) −16.3963 4.38053i −0.622846 0.166402i
\(694\) −23.7266 + 23.7266i −0.900649 + 0.900649i
\(695\) −13.7092 −0.520018
\(696\) −7.72786 + 89.2059i −0.292924 + 3.38134i
\(697\) −20.8497 −0.789739
\(698\) 25.9948 25.9948i 0.983916 0.983916i
\(699\) 0.117997 + 0.0680681i 0.00446306 + 0.00257457i
\(700\) 8.76433i 0.331261i
\(701\) −36.3379 −1.37247 −0.686233 0.727382i \(-0.740737\pi\)
−0.686233 + 0.727382i \(0.740737\pi\)
\(702\) −54.6205 54.5007i −2.06152 2.05700i
\(703\) 4.25535 0.160493
\(704\) 79.2857 + 79.2857i 2.98819 + 2.98819i
\(705\) −6.87333 + 1.84440i −0.258864 + 0.0694641i
\(706\) −45.8192 + 45.8192i −1.72443 + 1.72443i
\(707\) 15.5528 15.5528i 0.584925 0.584925i
\(708\) 57.6720 99.9753i 2.16745 3.75730i
\(709\) 1.03361i 0.0388179i −0.999812 0.0194090i \(-0.993822\pi\)
0.999812 0.0194090i \(-0.00617846\pi\)
\(710\) 6.83034 6.83034i 0.256338 0.256338i
\(711\) −3.88166 + 14.5291i −0.145573 + 0.544883i
\(712\) −42.8669 −1.60650
\(713\) −14.8197 + 14.8197i −0.555001 + 0.555001i
\(714\) −14.6873 8.47256i −0.549659 0.317078i
\(715\) 13.6183 + 13.6183i 0.509296 + 0.509296i
\(716\) 3.25947i 0.121812i
\(717\) 29.3580 + 16.9355i 1.09639 + 0.632468i
\(718\) 61.4784i 2.29435i
\(719\) 14.6154i 0.545062i 0.962147 + 0.272531i \(0.0878607\pi\)
−0.962147 + 0.272531i \(0.912139\pi\)
\(720\) −22.9623 39.7046i −0.855753 1.47970i
\(721\) 10.8920 0.405640
\(722\) −24.3671 24.3671i −0.906848 0.906848i
\(723\) −4.54830 2.62374i −0.169153 0.0975780i
\(724\) 50.2006i 1.86569i
\(725\) −1.83937 + 5.06130i −0.0683126 + 0.187972i
\(726\) 7.43755 1.99580i 0.276033 0.0740712i
\(727\) 16.2730 + 16.2730i 0.603534 + 0.603534i 0.941248 0.337715i \(-0.109654\pi\)
−0.337715 + 0.941248i \(0.609654\pi\)
\(728\) −58.5890 + 58.5890i −2.17145 + 2.17145i
\(729\) 26.9999 0.0593004i 0.999998 0.00219631i
\(730\) 24.8167i 0.918508i
\(731\) −1.86186 −0.0688634
\(732\) 26.0872 + 97.2166i 0.964212 + 3.59323i
\(733\) −21.9573 + 21.9573i −0.811011 + 0.811011i −0.984785 0.173774i \(-0.944404\pi\)
0.173774 + 0.984785i \(0.444404\pi\)
\(734\) 59.0775 2.18059
\(735\) −3.86408 + 6.69844i −0.142529 + 0.247076i
\(736\) −36.3713 36.3713i −1.34066 1.34066i
\(737\) 4.66234 + 4.66234i 0.171739 + 0.171739i
\(738\) −38.2216 66.0899i −1.40696 2.43280i
\(739\) −0.212016 0.212016i −0.00779913 0.00779913i 0.703196 0.710996i \(-0.251755\pi\)
−0.710996 + 0.703196i \(0.751755\pi\)
\(740\) 6.53639 + 6.53639i 0.240282 + 0.240282i
\(741\) 6.16583 + 22.9776i 0.226508 + 0.844102i
\(742\) −11.4089 11.4089i −0.418834 0.418834i
\(743\) 24.0461 + 24.0461i 0.882166 + 0.882166i 0.993755 0.111588i \(-0.0355938\pi\)
−0.111588 + 0.993755i \(0.535594\pi\)
\(744\) 133.111 + 76.7869i 4.88009 + 2.81514i
\(745\) −19.9073 −0.729348
\(746\) 53.2229 53.2229i 1.94863 1.94863i
\(747\) 37.3814 21.6187i 1.36771 0.790986i
\(748\) 43.8906 1.60480
\(749\) 0.261577i 0.00955782i
\(750\) −1.22972 4.58265i −0.0449029 0.167335i
\(751\) 18.7224 18.7224i 0.683192 0.683192i −0.277526 0.960718i \(-0.589515\pi\)
0.960718 + 0.277526i \(0.0895146\pi\)
\(752\) 44.4184 + 44.4184i 1.61977 + 1.61977i
\(753\) −1.88150 7.01160i −0.0685658 0.255517i
\(754\) 72.4584 33.8308i 2.63878 1.23205i
\(755\) 7.19222i 0.261752i
\(756\) −0.0500109 45.5408i −0.00181888 1.65630i
\(757\) −32.8279 32.8279i −1.19315 1.19315i −0.976178 0.216972i \(-0.930382\pi\)
−0.216972 0.976178i \(-0.569618\pi\)
\(758\) 66.7234 2.42350
\(759\) −13.4779 + 3.61668i −0.489216 + 0.131277i
\(760\) 24.3244i 0.882340i
\(761\) 32.4308i 1.17561i 0.809001 + 0.587807i \(0.200009\pi\)
−0.809001 + 0.587807i \(0.799991\pi\)
\(762\) 46.4566 80.5332i 1.68294 2.91741i
\(763\) 23.4047i 0.847308i
\(764\) −82.6341 82.6341i −2.98960 2.98960i
\(765\) −6.50487 1.73787i −0.235184 0.0628328i
\(766\) 26.2540 26.2540i 0.948597 0.948597i
\(767\) −65.6242 −2.36955
\(768\) −42.7880 + 74.1737i −1.54398 + 2.67651i
\(769\) −20.6376 + 20.6376i −0.744213 + 0.744213i −0.973386 0.229173i \(-0.926398\pi\)
0.229173 + 0.973386i \(0.426398\pi\)
\(770\) 15.4972i 0.558479i
\(771\) −29.5249 17.0318i −1.06331 0.613385i
\(772\) 11.0802 11.0802i 0.398787 0.398787i
\(773\) −6.76485 + 6.76485i −0.243315 + 0.243315i −0.818220 0.574905i \(-0.805039\pi\)
0.574905 + 0.818220i \(0.305039\pi\)
\(774\) −3.41315 5.90177i −0.122683 0.212135i
\(775\) 6.53520 + 6.53520i 0.234751 + 0.234751i
\(776\) 160.691 5.76847
\(777\) 1.20037 + 4.47330i 0.0430631 + 0.160479i
\(778\) −54.0507 −1.93781
\(779\) 23.5395i 0.843389i
\(780\) −25.8235 + 44.7654i −0.924629 + 1.60286i
\(781\) −8.85866 + 8.85866i −0.316988 + 0.316988i
\(782\) −13.9419 −0.498562
\(783\) −9.52877 + 26.3097i −0.340530 + 0.940233i
\(784\) 68.2596 2.43784
\(785\) 7.33987 7.33987i 0.261971 0.261971i
\(786\) −14.8708 + 25.7787i −0.530423 + 0.919497i
\(787\) 16.6517i 0.593569i 0.954944 + 0.296785i \(0.0959143\pi\)
−0.954944 + 0.296785i \(0.904086\pi\)
\(788\) −25.9684 −0.925085
\(789\) −1.22604 4.56897i −0.0436483 0.162660i
\(790\) 13.7323 0.488573
\(791\) −12.2031 12.2031i −0.433894 0.433894i
\(792\) 51.2248 + 88.5741i 1.82019 + 3.14734i
\(793\) 40.4686 40.4686i 1.43708 1.43708i
\(794\) −10.4294 + 10.4294i −0.370127 + 0.370127i
\(795\) −5.54971 3.20142i −0.196828 0.113543i
\(796\) 102.177i 3.62157i
\(797\) 38.7670 38.7670i 1.37320 1.37320i 0.517540 0.855659i \(-0.326848\pi\)
0.855659 0.517540i \(-0.173152\pi\)
\(798\) −9.56559 + 16.5821i −0.338618 + 0.587000i
\(799\) 9.22133 0.326227
\(800\) −16.0391 + 16.0391i −0.567068 + 0.567068i
\(801\) −12.9424 3.45775i −0.457297 0.122174i
\(802\) 17.3355 + 17.3355i 0.612136 + 0.612136i
\(803\) 32.1862i 1.13583i
\(804\) −8.84088 + 15.3258i −0.311794 + 0.540499i
\(805\) 3.61073i 0.127262i
\(806\) 137.242i 4.83414i
\(807\) −22.7872 + 6.11475i −0.802147 + 0.215249i
\(808\) −132.607 −4.66510
\(809\) −7.51762 7.51762i −0.264305 0.264305i 0.562495 0.826801i \(-0.309841\pi\)
−0.826801 + 0.562495i \(0.809841\pi\)
\(810\) −6.41594 23.8051i −0.225433 0.836427i
\(811\) 9.12308i 0.320355i 0.987088 + 0.160177i \(0.0512066\pi\)
−0.987088 + 0.160177i \(0.948793\pi\)
\(812\) 44.3589 + 16.1209i 1.55669 + 0.565732i
\(813\) −1.94126 7.23428i −0.0680829 0.253717i
\(814\) −11.5577 11.5577i −0.405097 0.405097i
\(815\) 2.83532 2.83532i 0.0993169 0.0993169i
\(816\) 15.4032 + 57.4015i 0.539220 + 2.00945i
\(817\) 2.10205i 0.0735416i
\(818\) −79.7922 −2.78987
\(819\) −22.4151 + 12.9633i −0.783248 + 0.452973i
\(820\) −36.1576 + 36.1576i −1.26268 + 1.26268i
\(821\) −12.3423 −0.430749 −0.215374 0.976532i \(-0.569097\pi\)
−0.215374 + 0.976532i \(0.569097\pi\)
\(822\) −23.6930 13.6676i −0.826388 0.476712i
\(823\) −3.25062 3.25062i −0.113310 0.113310i 0.648179 0.761488i \(-0.275531\pi\)
−0.761488 + 0.648179i \(0.775531\pi\)
\(824\) −46.4339 46.4339i −1.61760 1.61760i
\(825\) 1.59489 + 5.94351i 0.0555269 + 0.206926i
\(826\) −37.3391 37.3391i −1.29919 1.29919i
\(827\) −1.52365 1.52365i −0.0529824 0.0529824i 0.680119 0.733102i \(-0.261928\pi\)
−0.733102 + 0.680119i \(0.761928\pi\)
\(828\) −18.7466 32.4153i −0.651491 1.12651i
\(829\) −15.0106 15.0106i −0.521340 0.521340i 0.396636 0.917976i \(-0.370178\pi\)
−0.917976 + 0.396636i \(0.870178\pi\)
\(830\) −27.8823 27.8823i −0.967807 0.967807i
\(831\) 6.66885 11.5606i 0.231340 0.401031i
\(832\) 171.075 5.93095
\(833\) 7.08539 7.08539i 0.245494 0.245494i
\(834\) 16.8584 + 62.8243i 0.583758 + 2.17543i
\(835\) 9.25131 0.320155
\(836\) 49.5529i 1.71382i
\(837\) 33.9952 + 33.9206i 1.17505 + 1.17247i
\(838\) −26.7294 + 26.7294i −0.923351 + 0.923351i
\(839\) −30.8748 30.8748i −1.06592 1.06592i −0.997668 0.0682485i \(-0.978259\pi\)
−0.0682485 0.997668i \(-0.521741\pi\)
\(840\) −25.5703 + 6.86157i −0.882259 + 0.236747i
\(841\) −22.2334 18.6192i −0.766670 0.642042i
\(842\) 52.2459i 1.80051i
\(843\) −17.8696 10.3083i −0.615460 0.355036i
\(844\) −2.69243 2.69243i −0.0926773 0.0926773i
\(845\) 16.3842 0.563634
\(846\) 16.9045 + 29.2300i 0.581188 + 1.00495i
\(847\) 2.58422i 0.0887947i
\(848\) 56.5537i 1.94206i
\(849\) −0.334098 0.192728i −0.0114662 0.00661442i
\(850\) 6.14814i 0.210879i
\(851\) 2.69286 + 2.69286i 0.0923101 + 0.0923101i
\(852\) −29.1198 16.7981i −0.997627 0.575493i
\(853\) −1.23954 + 1.23954i −0.0424412 + 0.0424412i −0.728009 0.685568i \(-0.759554\pi\)
0.685568 + 0.728009i \(0.259554\pi\)
\(854\) 46.0519 1.57586
\(855\) −1.96207 + 7.34404i −0.0671013 + 0.251161i
\(856\) 1.11513 1.11513i 0.0381144 0.0381144i
\(857\) 12.5177i 0.427596i 0.976878 + 0.213798i \(0.0685834\pi\)
−0.976878 + 0.213798i \(0.931417\pi\)
\(858\) 45.6613 79.1546i 1.55885 2.70229i
\(859\) 23.1283 23.1283i 0.789126 0.789126i −0.192225 0.981351i \(-0.561570\pi\)
0.981351 + 0.192225i \(0.0615704\pi\)
\(860\) −3.22884 + 3.22884i −0.110103 + 0.110103i
\(861\) −24.7451 + 6.64015i −0.843312 + 0.226296i
\(862\) −15.7157 15.7157i −0.535279 0.535279i
\(863\) 40.8550 1.39072 0.695359 0.718662i \(-0.255245\pi\)
0.695359 + 0.718662i \(0.255245\pi\)
\(864\) −83.2500 + 83.4331i −2.83222 + 2.83845i
\(865\) −1.09012 −0.0370653
\(866\) 97.2163i 3.30354i
\(867\) −17.9482 10.3536i −0.609553 0.351628i
\(868\) 57.2767 57.2767i 1.94410 1.94410i
\(869\) −17.8102 −0.604170
\(870\) 25.4561 + 2.20525i 0.863042 + 0.0747649i
\(871\) 10.0599 0.340867
\(872\) 99.7770 99.7770i 3.37887 3.37887i
\(873\) 48.5159 + 12.9617i 1.64201 + 0.438688i
\(874\) 15.7405i 0.532432i
\(875\) −1.59227 −0.0538285
\(876\) 83.4168 22.3842i 2.81839 0.756292i
\(877\) −18.6911 −0.631155 −0.315578 0.948900i \(-0.602198\pi\)
−0.315578 + 0.948900i \(0.602198\pi\)
\(878\) 36.7594 + 36.7594i 1.24057 + 1.24057i
\(879\) 0.248706 + 0.926827i 0.00838865 + 0.0312611i
\(880\) 38.4095 38.4095i 1.29479 1.29479i
\(881\) −26.0499 + 26.0499i −0.877645 + 0.877645i −0.993291 0.115646i \(-0.963106\pi\)
0.115646 + 0.993291i \(0.463106\pi\)
\(882\) 35.4484 + 9.47055i 1.19361 + 0.318890i
\(883\) 33.5443i 1.12886i −0.825482 0.564428i \(-0.809097\pi\)
0.825482 0.564428i \(-0.190903\pi\)
\(884\) 47.3514 47.3514i 1.59260 1.59260i
\(885\) −18.1631 10.4776i −0.610546 0.352201i
\(886\) −110.828 −3.72335
\(887\) 3.00322 3.00322i 0.100838 0.100838i −0.654888 0.755726i \(-0.727284\pi\)
0.755726 + 0.654888i \(0.227284\pi\)
\(888\) 13.9528 24.1875i 0.468227 0.811678i
\(889\) −22.0616 22.0616i −0.739924 0.739924i
\(890\) 12.2326i 0.410039i
\(891\) 8.32120 + 30.8742i 0.278771 + 1.03433i
\(892\) 106.881i 3.57863i
\(893\) 10.4109i 0.348389i
\(894\) 24.4804 + 91.2285i 0.818747 + 3.05114i
\(895\) −0.592168 −0.0197940
\(896\) 46.2616 + 46.2616i 1.54549 + 1.54549i
\(897\) −10.6388 + 18.4425i −0.355218 + 0.615776i
\(898\) 36.6904i 1.22437i
\(899\) −45.0973 + 21.0559i −1.50408 + 0.702254i
\(900\) −14.2946 + 8.26693i −0.476485 + 0.275564i
\(901\) 5.87031 + 5.87031i 0.195568 + 0.195568i
\(902\) 63.9342 63.9342i 2.12877 2.12877i
\(903\) −2.20972 + 0.592959i −0.0735348 + 0.0197324i
\(904\) 104.047i 3.46054i
\(905\) 9.12023 0.303167
\(906\) 32.9595 8.84440i 1.09501 0.293835i
\(907\) 6.64964 6.64964i 0.220798 0.220798i −0.588037 0.808834i \(-0.700099\pi\)
0.808834 + 0.588037i \(0.200099\pi\)
\(908\) −100.524 −3.33601
\(909\) −40.0367 10.6964i −1.32794 0.354777i
\(910\) 16.7191 + 16.7191i 0.554234 + 0.554234i
\(911\) −12.7040 12.7040i −0.420903 0.420903i 0.464612 0.885514i \(-0.346194\pi\)
−0.885514 + 0.464612i \(0.846194\pi\)
\(912\) 64.8067 17.3903i 2.14596 0.575852i
\(913\) 36.1621 + 36.1621i 1.19679 + 1.19679i
\(914\) 13.2864 + 13.2864i 0.439474 + 0.439474i
\(915\) 17.6619 4.73942i 0.583884 0.156680i
\(916\) 99.7608 + 99.7608i 3.29619 + 3.29619i
\(917\) 7.06194 + 7.06194i 0.233206 + 0.233206i
\(918\) 0.0350824 + 31.9466i 0.00115789 + 1.05440i
\(919\) 21.9571 0.724297 0.362148 0.932120i \(-0.382043\pi\)
0.362148 + 0.932120i \(0.382043\pi\)
\(920\) −15.3929 + 15.3929i −0.507490 + 0.507490i
\(921\) −29.6120 + 7.94612i −0.975748 + 0.261834i
\(922\) −49.8526 −1.64181
\(923\) 19.1143i 0.629156i
\(924\) 52.0909 13.9781i 1.71366 0.459847i
\(925\) 1.18750 1.18750i 0.0390449 0.0390449i
\(926\) −40.9570 40.9570i −1.34593 1.34593i
\(927\) −10.2739 17.7648i −0.337438 0.583473i
\(928\) −51.6767 110.680i −1.69637 3.63326i
\(929\) 9.65009i 0.316609i 0.987390 + 0.158305i \(0.0506028\pi\)
−0.987390 + 0.158305i \(0.949397\pi\)
\(930\) 21.9121 37.9850i 0.718527 1.24558i
\(931\) −7.99946 7.99946i −0.262172 0.262172i
\(932\) −0.432904 −0.0141802
\(933\) −4.59613 17.1279i −0.150470 0.560742i
\(934\) 26.5509i 0.868772i
\(935\) 7.97387i 0.260773i
\(936\) 150.822 + 40.2943i 4.92977 + 1.31706i
\(937\) 38.7601i 1.26624i −0.774055 0.633118i \(-0.781775\pi\)
0.774055 0.633118i \(-0.218225\pi\)
\(938\) 5.72393 + 5.72393i 0.186893 + 0.186893i
\(939\) −5.51685 + 9.56355i −0.180036 + 0.312095i
\(940\) 15.9916 15.9916i 0.521590 0.521590i
\(941\) −28.9810 −0.944754 −0.472377 0.881397i \(-0.656604\pi\)
−0.472377 + 0.881397i \(0.656604\pi\)
\(942\) −42.6620 24.6101i −1.39000 0.801841i
\(943\) −14.8962 + 14.8962i −0.485087 + 0.485087i
\(944\) 185.089i 6.02413i
\(945\) −8.27366 + 0.00908578i −0.269142 + 0.000295560i
\(946\) 5.70926 5.70926i 0.185624 0.185624i
\(947\) −5.05298 + 5.05298i −0.164200 + 0.164200i −0.784424 0.620224i \(-0.787042\pi\)
0.620224 + 0.784424i \(0.287042\pi\)
\(948\) −12.3863 46.1586i −0.402287 1.49916i
\(949\) −34.7241 34.7241i −1.12719 1.12719i
\(950\) 6.94129 0.225205
\(951\) 9.11543 2.44605i 0.295588 0.0793185i
\(952\) 34.3054 1.11184
\(953\) 32.6549i 1.05780i 0.848686 + 0.528898i \(0.177394\pi\)
−0.848686 + 0.528898i \(0.822606\pi\)
\(954\) −7.84643 + 29.3693i −0.254037 + 0.950865i
\(955\) −15.0126 + 15.0126i −0.485797 + 0.485797i
\(956\) −107.707 −3.48351
\(957\) −33.0154 2.86011i −1.06724 0.0924542i
\(958\) −16.6010 −0.536353
\(959\) −6.49057 + 6.49057i −0.209591 + 0.209591i
\(960\) 47.3491 + 27.3139i 1.52819 + 0.881553i
\(961\) 54.4178i 1.75541i
\(962\) −24.9380 −0.804035
\(963\) 0.426631 0.246732i 0.0137480 0.00795082i
\(964\) 16.6866 0.537440
\(965\) −2.01301 2.01301i −0.0648012 0.0648012i
\(966\) −16.5467 + 4.44018i −0.532382 + 0.142860i
\(967\) 30.3946 30.3946i 0.977425 0.977425i −0.0223259 0.999751i \(-0.507107\pi\)
0.999751 + 0.0223259i \(0.00710716\pi\)
\(968\) −11.0168 + 11.0168i −0.354093 + 0.354093i
\(969\) 4.92185 8.53211i 0.158113 0.274091i
\(970\) 45.8553i 1.47232i
\(971\) 15.9498 15.9498i 0.511852 0.511852i −0.403241 0.915094i \(-0.632116\pi\)
0.915094 + 0.403241i \(0.132116\pi\)
\(972\) −74.2295 + 43.0378i −2.38091 + 1.38044i
\(973\) 21.8286 0.699794
\(974\) −47.2882 + 47.2882i −1.51521 + 1.51521i
\(975\) 8.13280 + 4.69151i 0.260458 + 0.150248i
\(976\) −114.139 114.139i −3.65350 3.65350i
\(977\) 10.6066i 0.339334i 0.985501 + 0.169667i \(0.0542693\pi\)
−0.985501 + 0.169667i \(0.945731\pi\)
\(978\) −16.4799 9.50665i −0.526970 0.303989i
\(979\) 15.8652i 0.507054i
\(980\) 24.5750i 0.785019i
\(981\) 38.1730 22.0764i 1.21877 0.704847i
\(982\) 3.21755 0.102676
\(983\) −35.3828 35.3828i −1.12854 1.12854i −0.990415 0.138121i \(-0.955894\pi\)
−0.138121 0.990415i \(-0.544106\pi\)
\(984\) 133.799 + 77.1835i 4.26535 + 2.46052i
\(985\) 4.71783i 0.150323i
\(986\) −31.1175 11.3087i −0.990984 0.360143i
\(987\) 10.9442 2.93678i 0.348357 0.0934786i
\(988\) −53.4601 53.4601i −1.70079 1.70079i
\(989\) −1.33022 + 1.33022i −0.0422985 + 0.0422985i
\(990\) 25.2758 14.6177i 0.803317 0.464580i
\(991\) 23.9380i 0.760416i −0.924901 0.380208i \(-0.875852\pi\)
0.924901 0.380208i \(-0.124148\pi\)
\(992\) −209.637 −6.65600
\(993\) 9.62650 + 35.8741i 0.305488 + 1.13843i
\(994\) −10.8757 + 10.8757i −0.344957 + 0.344957i
\(995\) 18.5631 0.588491
\(996\) −68.5718 + 118.870i −2.17278 + 3.76655i
\(997\) 5.24305 + 5.24305i 0.166049 + 0.166049i 0.785240 0.619191i \(-0.212539\pi\)
−0.619191 + 0.785240i \(0.712539\pi\)
\(998\) 42.1917 + 42.1917i 1.33556 + 1.33556i
\(999\) 6.16367 6.17722i 0.195010 0.195439i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.2.q.c.41.18 36
3.2 odd 2 435.2.q.d.41.1 yes 36
29.17 odd 4 435.2.q.d.191.1 yes 36
87.17 even 4 inner 435.2.q.c.191.18 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.q.c.41.18 36 1.1 even 1 trivial
435.2.q.c.191.18 yes 36 87.17 even 4 inner
435.2.q.d.41.1 yes 36 3.2 odd 2
435.2.q.d.191.1 yes 36 29.17 odd 4