Properties

Label 432.9.g.h.271.8
Level $432$
Weight $9$
Character 432.271
Analytic conductor $175.988$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(271,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.271"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,57036] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3658 x^{10} + 10323672 x^{8} + 10806771976 x^{6} + 8657863222624 x^{4} + 575997114675360 x^{2} + 35\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{40}\cdot 3^{25} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.8
Root \(17.0122 + 29.4661i\) of defining polynomial
Character \(\chi\) \(=\) 432.271
Dual form 432.9.g.h.271.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+281.444 q^{5} +23.3884i q^{7} +18435.7i q^{11} -44777.0 q^{13} +94354.3 q^{17} -78057.7i q^{19} -501632. i q^{23} -311414. q^{25} +637248. q^{29} -395010. i q^{31} +6582.51i q^{35} +1.01162e6 q^{37} -3.04204e6 q^{41} +2.55366e6i q^{43} +7.20891e6i q^{47} +5.76425e6 q^{49} +1.51025e7 q^{53} +5.18861e6i q^{55} +176235. i q^{59} -1.37032e7 q^{61} -1.26022e7 q^{65} -3.67424e7i q^{67} +1.04049e7i q^{71} -1.27655e7 q^{73} -431181. q^{77} +4.53221e7i q^{79} -6.30178e7i q^{83} +2.65554e7 q^{85} +3.79752e7 q^{89} -1.04726e6i q^{91} -2.19688e7i q^{95} +7.73978e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 57036 q^{13} + 306996 q^{25} - 2032140 q^{37} - 6810648 q^{49} + 28116276 q^{61} + 33515148 q^{73} + 95803200 q^{85} + 90106572 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 281.444 0.450310 0.225155 0.974323i \(-0.427711\pi\)
0.225155 + 0.974323i \(0.427711\pi\)
\(6\) 0 0
\(7\) 23.3884i 0.00974110i 0.999988 + 0.00487055i \(0.00155035\pi\)
−0.999988 + 0.00487055i \(0.998450\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 18435.7i 1.25918i 0.776927 + 0.629591i \(0.216778\pi\)
−0.776927 + 0.629591i \(0.783222\pi\)
\(12\) 0 0
\(13\) −44777.0 −1.56777 −0.783884 0.620907i \(-0.786764\pi\)
−0.783884 + 0.620907i \(0.786764\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 94354.3 1.12971 0.564854 0.825191i \(-0.308933\pi\)
0.564854 + 0.825191i \(0.308933\pi\)
\(18\) 0 0
\(19\) − 78057.7i − 0.598965i −0.954102 0.299482i \(-0.903186\pi\)
0.954102 0.299482i \(-0.0968140\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 501632.i − 1.79256i −0.443486 0.896281i \(-0.646258\pi\)
0.443486 0.896281i \(-0.353742\pi\)
\(24\) 0 0
\(25\) −311414. −0.797221
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 637248. 0.900983 0.450492 0.892781i \(-0.351249\pi\)
0.450492 + 0.892781i \(0.351249\pi\)
\(30\) 0 0
\(31\) − 395010.i − 0.427721i −0.976864 0.213861i \(-0.931396\pi\)
0.976864 0.213861i \(-0.0686039\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6582.51i 0.00438651i
\(36\) 0 0
\(37\) 1.01162e6 0.539770 0.269885 0.962893i \(-0.413014\pi\)
0.269885 + 0.962893i \(0.413014\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.04204e6 −1.07654 −0.538269 0.842773i \(-0.680922\pi\)
−0.538269 + 0.842773i \(0.680922\pi\)
\(42\) 0 0
\(43\) 2.55366e6i 0.746945i 0.927641 + 0.373472i \(0.121833\pi\)
−0.927641 + 0.373472i \(0.878167\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.20891e6i 1.47733i 0.674072 + 0.738666i \(0.264544\pi\)
−0.674072 + 0.738666i \(0.735456\pi\)
\(48\) 0 0
\(49\) 5.76425e6 0.999905
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.51025e7 1.91402 0.957008 0.290061i \(-0.0936757\pi\)
0.957008 + 0.290061i \(0.0936757\pi\)
\(54\) 0 0
\(55\) 5.18861e6i 0.567022i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 176235.i 0.0145440i 0.999974 + 0.00727202i \(0.00231478\pi\)
−0.999974 + 0.00727202i \(0.997685\pi\)
\(60\) 0 0
\(61\) −1.37032e7 −0.989699 −0.494850 0.868979i \(-0.664777\pi\)
−0.494850 + 0.868979i \(0.664777\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.26022e7 −0.705982
\(66\) 0 0
\(67\) − 3.67424e7i − 1.82334i −0.410919 0.911672i \(-0.634792\pi\)
0.410919 0.911672i \(-0.365208\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.04049e7i 0.409455i 0.978819 + 0.204728i \(0.0656309\pi\)
−0.978819 + 0.204728i \(0.934369\pi\)
\(72\) 0 0
\(73\) −1.27655e7 −0.449517 −0.224759 0.974414i \(-0.572159\pi\)
−0.224759 + 0.974414i \(0.572159\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −431181. −0.0122658
\(78\) 0 0
\(79\) 4.53221e7i 1.16360i 0.813334 + 0.581798i \(0.197650\pi\)
−0.813334 + 0.581798i \(0.802350\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 6.30178e7i − 1.32786i −0.747797 0.663928i \(-0.768888\pi\)
0.747797 0.663928i \(-0.231112\pi\)
\(84\) 0 0
\(85\) 2.65554e7 0.508719
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.79752e7 0.605257 0.302629 0.953109i \(-0.402136\pi\)
0.302629 + 0.953109i \(0.402136\pi\)
\(90\) 0 0
\(91\) − 1.04726e6i − 0.0152718i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 2.19688e7i − 0.269720i
\(96\) 0 0
\(97\) 7.73978e7 0.874262 0.437131 0.899398i \(-0.355995\pi\)
0.437131 + 0.899398i \(0.355995\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.12667e7 0.588761 0.294380 0.955688i \(-0.404887\pi\)
0.294380 + 0.955688i \(0.404887\pi\)
\(102\) 0 0
\(103\) 1.08143e8i 0.960835i 0.877040 + 0.480417i \(0.159515\pi\)
−0.877040 + 0.480417i \(0.840485\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.39322e8i 1.06288i 0.847096 + 0.531440i \(0.178349\pi\)
−0.847096 + 0.531440i \(0.821651\pi\)
\(108\) 0 0
\(109\) 8.33449e7 0.590437 0.295218 0.955430i \(-0.404608\pi\)
0.295218 + 0.955430i \(0.404608\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.95074e8 −1.80975 −0.904873 0.425681i \(-0.860034\pi\)
−0.904873 + 0.425681i \(0.860034\pi\)
\(114\) 0 0
\(115\) − 1.41181e8i − 0.807209i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.20679e6i 0.0110046i
\(120\) 0 0
\(121\) −1.25516e8 −0.585541
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.97585e8 −0.809307
\(126\) 0 0
\(127\) − 4.93862e7i − 0.189841i −0.995485 0.0949206i \(-0.969740\pi\)
0.995485 0.0949206i \(-0.0302597\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.85164e8i 0.628740i 0.949300 + 0.314370i \(0.101793\pi\)
−0.949300 + 0.314370i \(0.898207\pi\)
\(132\) 0 0
\(133\) 1.82564e6 0.00583457
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.56232e7 0.157897 0.0789484 0.996879i \(-0.474844\pi\)
0.0789484 + 0.996879i \(0.474844\pi\)
\(138\) 0 0
\(139\) 3.71559e8i 0.995333i 0.867369 + 0.497666i \(0.165810\pi\)
−0.867369 + 0.497666i \(0.834190\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 8.25496e8i − 1.97411i
\(144\) 0 0
\(145\) 1.79350e8 0.405722
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.18079e8 1.65978 0.829889 0.557928i \(-0.188403\pi\)
0.829889 + 0.557928i \(0.188403\pi\)
\(150\) 0 0
\(151\) − 1.34848e8i − 0.259380i −0.991555 0.129690i \(-0.958602\pi\)
0.991555 0.129690i \(-0.0413983\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 1.11173e8i − 0.192607i
\(156\) 0 0
\(157\) 5.05470e8 0.831949 0.415974 0.909376i \(-0.363441\pi\)
0.415974 + 0.909376i \(0.363441\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.17324e7 0.0174615
\(162\) 0 0
\(163\) 6.96867e8i 0.987187i 0.869693 + 0.493593i \(0.164317\pi\)
−0.869693 + 0.493593i \(0.835683\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.23757e8i 1.18766i 0.804591 + 0.593829i \(0.202385\pi\)
−0.804591 + 0.593829i \(0.797615\pi\)
\(168\) 0 0
\(169\) 1.18925e9 1.45790
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.66993e8 −0.186429 −0.0932144 0.995646i \(-0.529714\pi\)
−0.0932144 + 0.995646i \(0.529714\pi\)
\(174\) 0 0
\(175\) − 7.28348e6i − 0.00776581i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.00340e8i 0.487364i 0.969855 + 0.243682i \(0.0783553\pi\)
−0.969855 + 0.243682i \(0.921645\pi\)
\(180\) 0 0
\(181\) 1.14933e9 1.07086 0.535428 0.844581i \(-0.320150\pi\)
0.535428 + 0.844581i \(0.320150\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.84713e8 0.243064
\(186\) 0 0
\(187\) 1.73949e9i 1.42251i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 3.08471e8i − 0.231783i −0.993262 0.115891i \(-0.963028\pi\)
0.993262 0.115891i \(-0.0369724\pi\)
\(192\) 0 0
\(193\) 1.29057e9 0.930145 0.465073 0.885272i \(-0.346028\pi\)
0.465073 + 0.885272i \(0.346028\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.97226e8 −0.595713 −0.297856 0.954611i \(-0.596272\pi\)
−0.297856 + 0.954611i \(0.596272\pi\)
\(198\) 0 0
\(199\) − 2.80181e8i − 0.178660i −0.996002 0.0893299i \(-0.971527\pi\)
0.996002 0.0893299i \(-0.0284725\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.49042e7i 0.00877657i
\(204\) 0 0
\(205\) −8.56163e8 −0.484776
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.43905e9 0.754206
\(210\) 0 0
\(211\) − 9.73562e8i − 0.491172i −0.969375 0.245586i \(-0.921020\pi\)
0.969375 0.245586i \(-0.0789804\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.18710e8i 0.336357i
\(216\) 0 0
\(217\) 9.23864e6 0.00416648
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.22491e9 −1.77112
\(222\) 0 0
\(223\) 3.12348e9i 1.26305i 0.775358 + 0.631523i \(0.217570\pi\)
−0.775358 + 0.631523i \(0.782430\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 8.76571e7i − 0.0330129i −0.999864 0.0165065i \(-0.994746\pi\)
0.999864 0.0165065i \(-0.00525441\pi\)
\(228\) 0 0
\(229\) 4.06777e9 1.47916 0.739579 0.673070i \(-0.235025\pi\)
0.739579 + 0.673070i \(0.235025\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.50672e9 1.52910 0.764551 0.644563i \(-0.222961\pi\)
0.764551 + 0.644563i \(0.222961\pi\)
\(234\) 0 0
\(235\) 2.02890e9i 0.665257i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 8.37062e8i − 0.256546i −0.991739 0.128273i \(-0.959057\pi\)
0.991739 0.128273i \(-0.0409434\pi\)
\(240\) 0 0
\(241\) 6.15014e9 1.82313 0.911563 0.411160i \(-0.134876\pi\)
0.911563 + 0.411160i \(0.134876\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.62231e9 0.450267
\(246\) 0 0
\(247\) 3.49519e9i 0.939038i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.21090e9i 0.305079i 0.988297 + 0.152540i \(0.0487451\pi\)
−0.988297 + 0.152540i \(0.951255\pi\)
\(252\) 0 0
\(253\) 9.24794e9 2.25716
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.03803e9 −0.467172 −0.233586 0.972336i \(-0.575046\pi\)
−0.233586 + 0.972336i \(0.575046\pi\)
\(258\) 0 0
\(259\) 2.36601e7i 0.00525796i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 7.74386e9i − 1.61858i −0.587408 0.809291i \(-0.699852\pi\)
0.587408 0.809291i \(-0.300148\pi\)
\(264\) 0 0
\(265\) 4.25051e9 0.861901
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.01126e9 −0.384113 −0.192056 0.981384i \(-0.561516\pi\)
−0.192056 + 0.981384i \(0.561516\pi\)
\(270\) 0 0
\(271\) 6.63609e9i 1.23037i 0.788383 + 0.615184i \(0.210918\pi\)
−0.788383 + 0.615184i \(0.789082\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 5.74114e9i − 1.00385i
\(276\) 0 0
\(277\) 3.03332e9 0.515228 0.257614 0.966248i \(-0.417064\pi\)
0.257614 + 0.966248i \(0.417064\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.15594e10 −1.85400 −0.926998 0.375065i \(-0.877620\pi\)
−0.926998 + 0.375065i \(0.877620\pi\)
\(282\) 0 0
\(283\) 6.64711e9i 1.03630i 0.855288 + 0.518152i \(0.173380\pi\)
−0.855288 + 0.518152i \(0.826620\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 7.11484e7i − 0.0104867i
\(288\) 0 0
\(289\) 1.92698e9 0.276239
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.19517e10 1.62166 0.810830 0.585282i \(-0.199016\pi\)
0.810830 + 0.585282i \(0.199016\pi\)
\(294\) 0 0
\(295\) 4.96004e7i 0.00654933i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.24616e10i 2.81032i
\(300\) 0 0
\(301\) −5.97259e7 −0.00727606
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.85669e9 −0.445672
\(306\) 0 0
\(307\) − 7.03462e9i − 0.791930i −0.918266 0.395965i \(-0.870410\pi\)
0.918266 0.395965i \(-0.129590\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.19961e10i 1.28233i 0.767402 + 0.641166i \(0.221549\pi\)
−0.767402 + 0.641166i \(0.778451\pi\)
\(312\) 0 0
\(313\) 1.09732e10 1.14329 0.571645 0.820501i \(-0.306305\pi\)
0.571645 + 0.820501i \(0.306305\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.40572e9 0.238237 0.119118 0.992880i \(-0.461993\pi\)
0.119118 + 0.992880i \(0.461993\pi\)
\(318\) 0 0
\(319\) 1.17481e10i 1.13450i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 7.36508e9i − 0.676655i
\(324\) 0 0
\(325\) 1.39442e10 1.24986
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.68605e8 −0.0143908
\(330\) 0 0
\(331\) 8.04237e9i 0.669996i 0.942219 + 0.334998i \(0.108736\pi\)
−0.942219 + 0.334998i \(0.891264\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 1.03409e10i − 0.821070i
\(336\) 0 0
\(337\) 1.23899e10 0.960609 0.480304 0.877102i \(-0.340526\pi\)
0.480304 + 0.877102i \(0.340526\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.28228e9 0.538579
\(342\) 0 0
\(343\) 2.69646e8i 0.0194813i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.72806e10i − 1.19190i −0.803021 0.595951i \(-0.796775\pi\)
0.803021 0.595951i \(-0.203225\pi\)
\(348\) 0 0
\(349\) 6.66046e9 0.448954 0.224477 0.974479i \(-0.427933\pi\)
0.224477 + 0.974479i \(0.427933\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.30231e10 1.48274 0.741371 0.671096i \(-0.234176\pi\)
0.741371 + 0.671096i \(0.234176\pi\)
\(354\) 0 0
\(355\) 2.92841e9i 0.184382i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 1.26084e9i − 0.0759072i −0.999280 0.0379536i \(-0.987916\pi\)
0.999280 0.0379536i \(-0.0120839\pi\)
\(360\) 0 0
\(361\) 1.08906e10 0.641241
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.59277e9 −0.202422
\(366\) 0 0
\(367\) 2.95471e10i 1.62873i 0.580350 + 0.814367i \(0.302916\pi\)
−0.580350 + 0.814367i \(0.697084\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3.53223e8i 0.0186446i
\(372\) 0 0
\(373\) 2.20480e10 1.13903 0.569513 0.821982i \(-0.307132\pi\)
0.569513 + 0.821982i \(0.307132\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.85341e10 −1.41253
\(378\) 0 0
\(379\) 1.84796e10i 0.895643i 0.894123 + 0.447821i \(0.147800\pi\)
−0.894123 + 0.447821i \(0.852200\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.23271e9i 0.103762i 0.998653 + 0.0518809i \(0.0165216\pi\)
−0.998653 + 0.0518809i \(0.983478\pi\)
\(384\) 0 0
\(385\) −1.21353e8 −0.00552342
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.14835e10 −0.501508 −0.250754 0.968051i \(-0.580678\pi\)
−0.250754 + 0.968051i \(0.580678\pi\)
\(390\) 0 0
\(391\) − 4.73312e10i − 2.02507i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.27556e10i 0.523979i
\(396\) 0 0
\(397\) −6.65121e9 −0.267756 −0.133878 0.990998i \(-0.542743\pi\)
−0.133878 + 0.990998i \(0.542743\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.44492e10 1.33230 0.666149 0.745819i \(-0.267942\pi\)
0.666149 + 0.745819i \(0.267942\pi\)
\(402\) 0 0
\(403\) 1.76874e10i 0.670568i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.86499e10i 0.679669i
\(408\) 0 0
\(409\) −7.81290e9 −0.279202 −0.139601 0.990208i \(-0.544582\pi\)
−0.139601 + 0.990208i \(0.544582\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.12186e6 −0.000141675 0
\(414\) 0 0
\(415\) − 1.77360e10i − 0.597946i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.63977e9i 0.150536i 0.997163 + 0.0752680i \(0.0239812\pi\)
−0.997163 + 0.0752680i \(0.976019\pi\)
\(420\) 0 0
\(421\) −4.57018e10 −1.45481 −0.727403 0.686210i \(-0.759273\pi\)
−0.727403 + 0.686210i \(0.759273\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.93833e10 −0.900627
\(426\) 0 0
\(427\) − 3.20496e8i − 0.00964076i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.90498e10i 0.552054i 0.961150 + 0.276027i \(0.0890179\pi\)
−0.961150 + 0.276027i \(0.910982\pi\)
\(432\) 0 0
\(433\) 1.32123e10 0.375862 0.187931 0.982182i \(-0.439822\pi\)
0.187931 + 0.982182i \(0.439822\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.91563e10 −1.07368
\(438\) 0 0
\(439\) − 6.29790e9i − 0.169565i −0.996399 0.0847827i \(-0.972980\pi\)
0.996399 0.0847827i \(-0.0270196\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 6.36986e10i − 1.65392i −0.562259 0.826961i \(-0.690068\pi\)
0.562259 0.826961i \(-0.309932\pi\)
\(444\) 0 0
\(445\) 1.06879e10 0.272553
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.30959e10 1.06035 0.530177 0.847887i \(-0.322126\pi\)
0.530177 + 0.847887i \(0.322126\pi\)
\(450\) 0 0
\(451\) − 5.60821e10i − 1.35556i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 2.94745e8i − 0.00687704i
\(456\) 0 0
\(457\) −3.84852e10 −0.882325 −0.441162 0.897427i \(-0.645434\pi\)
−0.441162 + 0.897427i \(0.645434\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.45292e9 −0.187156 −0.0935779 0.995612i \(-0.529830\pi\)
−0.0935779 + 0.995612i \(0.529830\pi\)
\(462\) 0 0
\(463\) 5.80849e10i 1.26398i 0.774978 + 0.631989i \(0.217761\pi\)
−0.774978 + 0.631989i \(0.782239\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 1.24229e10i − 0.261189i −0.991436 0.130595i \(-0.958311\pi\)
0.991436 0.130595i \(-0.0416886\pi\)
\(468\) 0 0
\(469\) 8.59346e8 0.0177614
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.70784e10 −0.940540
\(474\) 0 0
\(475\) 2.43083e10i 0.477507i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.43435e10i 1.03230i 0.856499 + 0.516149i \(0.172635\pi\)
−0.856499 + 0.516149i \(0.827365\pi\)
\(480\) 0 0
\(481\) −4.52972e10 −0.846235
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.17831e10 0.393689
\(486\) 0 0
\(487\) − 1.23281e9i − 0.0219169i −0.999940 0.0109585i \(-0.996512\pi\)
0.999940 0.0109585i \(-0.00348826\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 1.69739e10i − 0.292050i −0.989281 0.146025i \(-0.953352\pi\)
0.989281 0.146025i \(-0.0466479\pi\)
\(492\) 0 0
\(493\) 6.01271e10 1.01785
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.43355e8 −0.00398854
\(498\) 0 0
\(499\) − 6.22259e10i − 1.00362i −0.864978 0.501809i \(-0.832668\pi\)
0.864978 0.501809i \(-0.167332\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 9.30365e10i − 1.45339i −0.686962 0.726693i \(-0.741056\pi\)
0.686962 0.726693i \(-0.258944\pi\)
\(504\) 0 0
\(505\) 1.72431e10 0.265125
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.16721e9 −0.106777 −0.0533887 0.998574i \(-0.517002\pi\)
−0.0533887 + 0.998574i \(0.517002\pi\)
\(510\) 0 0
\(511\) − 2.98564e8i − 0.00437879i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.04361e10i 0.432674i
\(516\) 0 0
\(517\) −1.32901e11 −1.86023
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.79857e10 1.19416 0.597078 0.802183i \(-0.296328\pi\)
0.597078 + 0.802183i \(0.296328\pi\)
\(522\) 0 0
\(523\) − 1.48988e11i − 1.99134i −0.0929812 0.995668i \(-0.529640\pi\)
0.0929812 0.995668i \(-0.470360\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 3.72709e10i − 0.483200i
\(528\) 0 0
\(529\) −1.73324e11 −2.21328
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.36214e11 1.68776
\(534\) 0 0
\(535\) 3.92112e10i 0.478625i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.06268e11i 1.25906i
\(540\) 0 0
\(541\) −1.63747e11 −1.91154 −0.955769 0.294117i \(-0.904974\pi\)
−0.955769 + 0.294117i \(0.904974\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.34569e10 0.265880
\(546\) 0 0
\(547\) − 8.91292e10i − 0.995567i −0.867301 0.497784i \(-0.834147\pi\)
0.867301 0.497784i \(-0.165853\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 4.97421e10i − 0.539657i
\(552\) 0 0
\(553\) −1.06001e9 −0.0113347
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −1.64327e11 −1.70722 −0.853608 0.520916i \(-0.825591\pi\)
−0.853608 + 0.520916i \(0.825591\pi\)
\(558\) 0 0
\(559\) − 1.14345e11i − 1.17104i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.70133e11i 1.69339i 0.532082 + 0.846693i \(0.321410\pi\)
−0.532082 + 0.846693i \(0.678590\pi\)
\(564\) 0 0
\(565\) −8.30468e10 −0.814947
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.60379e10 −0.439205 −0.219602 0.975589i \(-0.570476\pi\)
−0.219602 + 0.975589i \(0.570476\pi\)
\(570\) 0 0
\(571\) − 1.38854e11i − 1.30621i −0.757266 0.653107i \(-0.773465\pi\)
0.757266 0.653107i \(-0.226535\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.56216e11i 1.42907i
\(576\) 0 0
\(577\) 2.21757e10 0.200066 0.100033 0.994984i \(-0.468105\pi\)
0.100033 + 0.994984i \(0.468105\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.47388e9 0.0129348
\(582\) 0 0
\(583\) 2.78425e11i 2.41010i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 1.45439e11i − 1.22498i −0.790478 0.612490i \(-0.790168\pi\)
0.790478 0.612490i \(-0.209832\pi\)
\(588\) 0 0
\(589\) −3.08335e10 −0.256190
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.38982e11 −1.12393 −0.561964 0.827162i \(-0.689954\pi\)
−0.561964 + 0.827162i \(0.689954\pi\)
\(594\) 0 0
\(595\) 6.21088e8i 0.00495548i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.36649e10i 0.727561i 0.931485 + 0.363780i \(0.118514\pi\)
−0.931485 + 0.363780i \(0.881486\pi\)
\(600\) 0 0
\(601\) −2.08604e11 −1.59892 −0.799458 0.600722i \(-0.794880\pi\)
−0.799458 + 0.600722i \(0.794880\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.53256e10 −0.263675
\(606\) 0 0
\(607\) − 2.06930e11i − 1.52429i −0.647405 0.762146i \(-0.724146\pi\)
0.647405 0.762146i \(-0.275854\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 3.22794e11i − 2.31611i
\(612\) 0 0
\(613\) 9.61960e10 0.681263 0.340632 0.940197i \(-0.389359\pi\)
0.340632 + 0.940197i \(0.389359\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.50368e11 1.03756 0.518782 0.854907i \(-0.326386\pi\)
0.518782 + 0.854907i \(0.326386\pi\)
\(618\) 0 0
\(619\) 1.32770e11i 0.904350i 0.891929 + 0.452175i \(0.149352\pi\)
−0.891929 + 0.452175i \(0.850648\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.88178e8i 0.00589587i
\(624\) 0 0
\(625\) 6.60373e10 0.432782
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.54504e10 0.609783
\(630\) 0 0
\(631\) − 2.13375e11i − 1.34594i −0.739670 0.672970i \(-0.765018\pi\)
0.739670 0.672970i \(-0.234982\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1.38994e10i − 0.0854874i
\(636\) 0 0
\(637\) −2.58106e11 −1.56762
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.20634e10 −0.130689 −0.0653446 0.997863i \(-0.520815\pi\)
−0.0653446 + 0.997863i \(0.520815\pi\)
\(642\) 0 0
\(643\) − 4.70805e10i − 0.275421i −0.990473 0.137711i \(-0.956026\pi\)
0.990473 0.137711i \(-0.0439744\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 9.60972e10i − 0.548395i −0.961673 0.274198i \(-0.911588\pi\)
0.961673 0.274198i \(-0.0884123\pi\)
\(648\) 0 0
\(649\) −3.24902e9 −0.0183136
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.52293e11 1.38756 0.693781 0.720187i \(-0.255944\pi\)
0.693781 + 0.720187i \(0.255944\pi\)
\(654\) 0 0
\(655\) 5.21132e10i 0.283128i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.11758e11i 0.592569i 0.955100 + 0.296284i \(0.0957476\pi\)
−0.955100 + 0.296284i \(0.904252\pi\)
\(660\) 0 0
\(661\) −3.57895e10 −0.187478 −0.0937388 0.995597i \(-0.529882\pi\)
−0.0937388 + 0.995597i \(0.529882\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.13816e8 0.00262737
\(666\) 0 0
\(667\) − 3.19664e11i − 1.61507i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 2.52628e11i − 1.24621i
\(672\) 0 0
\(673\) −1.87846e11 −0.915675 −0.457837 0.889036i \(-0.651376\pi\)
−0.457837 + 0.889036i \(0.651376\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.74445e10 0.321064 0.160532 0.987031i \(-0.448679\pi\)
0.160532 + 0.987031i \(0.448679\pi\)
\(678\) 0 0
\(679\) 1.81021e9i 0.00851627i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.74004e11i 0.799605i 0.916601 + 0.399802i \(0.130921\pi\)
−0.916601 + 0.399802i \(0.869079\pi\)
\(684\) 0 0
\(685\) 1.56548e10 0.0711025
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.76246e11 −3.00073
\(690\) 0 0
\(691\) 3.19656e11i 1.40207i 0.713125 + 0.701036i \(0.247279\pi\)
−0.713125 + 0.701036i \(0.752721\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.04573e11i 0.448208i
\(696\) 0 0
\(697\) −2.87030e11 −1.21617
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −6.11911e10 −0.253406 −0.126703 0.991941i \(-0.540439\pi\)
−0.126703 + 0.991941i \(0.540439\pi\)
\(702\) 0 0
\(703\) − 7.89644e10i − 0.323303i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.43293e9i 0.00573518i
\(708\) 0 0
\(709\) −9.28241e10 −0.367347 −0.183673 0.982987i \(-0.558799\pi\)
−0.183673 + 0.982987i \(0.558799\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.98150e11 −0.766717
\(714\) 0 0
\(715\) − 2.32331e11i − 0.888960i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.12759e11i 0.796108i 0.917362 + 0.398054i \(0.130314\pi\)
−0.917362 + 0.398054i \(0.869686\pi\)
\(720\) 0 0
\(721\) −2.52929e9 −0.00935959
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.98448e11 −0.718283
\(726\) 0 0
\(727\) 3.79275e11i 1.35774i 0.734259 + 0.678870i \(0.237530\pi\)
−0.734259 + 0.678870i \(0.762470\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.40948e11i 0.843829i
\(732\) 0 0
\(733\) 2.28187e11 0.790452 0.395226 0.918584i \(-0.370666\pi\)
0.395226 + 0.918584i \(0.370666\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.77372e11 2.29592
\(738\) 0 0
\(739\) − 4.39440e11i − 1.47340i −0.676218 0.736702i \(-0.736382\pi\)
0.676218 0.736702i \(-0.263618\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 3.99231e11i − 1.30999i −0.755632 0.654996i \(-0.772670\pi\)
0.755632 0.654996i \(-0.227330\pi\)
\(744\) 0 0
\(745\) 2.30243e11 0.747415
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.25851e9 −0.0103536
\(750\) 0 0
\(751\) 3.65748e11i 1.14980i 0.818224 + 0.574900i \(0.194959\pi\)
−0.818224 + 0.574900i \(0.805041\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 3.79522e10i − 0.116802i
\(756\) 0 0
\(757\) 4.43728e11 1.35124 0.675621 0.737249i \(-0.263875\pi\)
0.675621 + 0.737249i \(0.263875\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.25382e11 1.56652 0.783261 0.621694i \(-0.213555\pi\)
0.783261 + 0.621694i \(0.213555\pi\)
\(762\) 0 0
\(763\) 1.94930e9i 0.00575150i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 7.89130e9i − 0.0228017i
\(768\) 0 0
\(769\) 3.30392e11 0.944767 0.472383 0.881393i \(-0.343394\pi\)
0.472383 + 0.881393i \(0.343394\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.39513e11 −1.23099 −0.615494 0.788142i \(-0.711043\pi\)
−0.615494 + 0.788142i \(0.711043\pi\)
\(774\) 0 0
\(775\) 1.23012e11i 0.340988i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.37455e11i 0.644808i
\(780\) 0 0
\(781\) −1.91822e11 −0.515579
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.42261e11 0.374635
\(786\) 0 0
\(787\) 2.54826e11i 0.664269i 0.943232 + 0.332135i \(0.107769\pi\)
−0.943232 + 0.332135i \(0.892231\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 6.90131e9i − 0.0176289i
\(792\) 0 0
\(793\) 6.13590e11 1.55162
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.50959e11 0.374133 0.187066 0.982347i \(-0.440102\pi\)
0.187066 + 0.982347i \(0.440102\pi\)
\(798\) 0 0
\(799\) 6.80192e11i 1.66895i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 2.35341e11i − 0.566024i
\(804\) 0 0
\(805\) 3.30200e9 0.00786310
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 5.70448e10 0.133175 0.0665874 0.997781i \(-0.478789\pi\)
0.0665874 + 0.997781i \(0.478789\pi\)
\(810\) 0 0
\(811\) − 6.34392e11i − 1.46647i −0.679973 0.733237i \(-0.738009\pi\)
0.679973 0.733237i \(-0.261991\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.96129e11i 0.444540i
\(816\) 0 0
\(817\) 1.99332e11 0.447393
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.90988e11 −0.420372 −0.210186 0.977661i \(-0.567407\pi\)
−0.210186 + 0.977661i \(0.567407\pi\)
\(822\) 0 0
\(823\) 3.46201e11i 0.754622i 0.926087 + 0.377311i \(0.123151\pi\)
−0.926087 + 0.377311i \(0.876849\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.59159e11i 1.19540i 0.801720 + 0.597700i \(0.203919\pi\)
−0.801720 + 0.597700i \(0.796081\pi\)
\(828\) 0 0
\(829\) 5.07979e11 1.07554 0.537771 0.843091i \(-0.319266\pi\)
0.537771 + 0.843091i \(0.319266\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.43882e11 1.12960
\(834\) 0 0
\(835\) 2.59986e11i 0.534815i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 4.60725e11i − 0.929809i −0.885361 0.464905i \(-0.846089\pi\)
0.885361 0.464905i \(-0.153911\pi\)
\(840\) 0 0
\(841\) −9.41611e10 −0.188229
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.34708e11 0.656506
\(846\) 0 0
\(847\) − 2.93561e9i − 0.00570381i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 5.07460e11i − 0.967572i
\(852\) 0 0
\(853\) −6.53220e11 −1.23385 −0.616926 0.787021i \(-0.711622\pi\)
−0.616926 + 0.787021i \(0.711622\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.24697e10 −0.115810 −0.0579050 0.998322i \(-0.518442\pi\)
−0.0579050 + 0.998322i \(0.518442\pi\)
\(858\) 0 0
\(859\) − 8.00732e11i − 1.47067i −0.677706 0.735333i \(-0.737026\pi\)
0.677706 0.735333i \(-0.262974\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 8.00083e11i − 1.44242i −0.692716 0.721210i \(-0.743586\pi\)
0.692716 0.721210i \(-0.256414\pi\)
\(864\) 0 0
\(865\) −4.69991e10 −0.0839508
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −8.35545e11 −1.46518
\(870\) 0 0
\(871\) 1.64522e12i 2.85858i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 4.62118e9i − 0.00788354i
\(876\) 0 0
\(877\) 9.95688e11 1.68316 0.841579 0.540133i \(-0.181626\pi\)
0.841579 + 0.540133i \(0.181626\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.11519e12 −1.85117 −0.925586 0.378536i \(-0.876428\pi\)
−0.925586 + 0.378536i \(0.876428\pi\)
\(882\) 0 0
\(883\) − 8.38877e11i − 1.37992i −0.723845 0.689962i \(-0.757627\pi\)
0.723845 0.689962i \(-0.242373\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.54412e11i 1.54185i 0.636928 + 0.770923i \(0.280205\pi\)
−0.636928 + 0.770923i \(0.719795\pi\)
\(888\) 0 0
\(889\) 1.15506e9 0.00184926
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.62711e11 0.884869
\(894\) 0 0
\(895\) 1.40818e11i 0.219465i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 2.51719e11i − 0.385370i
\(900\) 0 0
\(901\) 1.42499e12 2.16228
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.23472e11 0.482217
\(906\) 0 0
\(907\) 9.64332e11i 1.42494i 0.701701 + 0.712472i \(0.252424\pi\)
−0.701701 + 0.712472i \(0.747576\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1.24511e12i 1.80774i 0.427808 + 0.903870i \(0.359286\pi\)
−0.427808 + 0.903870i \(0.640714\pi\)
\(912\) 0 0
\(913\) 1.16178e12 1.67201
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.33068e9 −0.00612462
\(918\) 0 0
\(919\) 3.83262e11i 0.537321i 0.963235 + 0.268660i \(0.0865809\pi\)
−0.963235 + 0.268660i \(0.913419\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 4.65903e11i − 0.641931i
\(924\) 0 0
\(925\) −3.15032e11 −0.430316
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.00117e11 −0.537185 −0.268592 0.963254i \(-0.586558\pi\)
−0.268592 + 0.963254i \(0.586558\pi\)
\(930\) 0 0
\(931\) − 4.49944e11i − 0.598908i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.89568e11i 0.640570i
\(936\) 0 0
\(937\) 1.10143e12 1.42889 0.714446 0.699691i \(-0.246679\pi\)
0.714446 + 0.699691i \(0.246679\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.39883e11 0.178404 0.0892022 0.996014i \(-0.471568\pi\)
0.0892022 + 0.996014i \(0.471568\pi\)
\(942\) 0 0
\(943\) 1.52599e12i 1.92976i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.60667e11i 0.324105i 0.986782 + 0.162053i \(0.0518115\pi\)
−0.986782 + 0.162053i \(0.948189\pi\)
\(948\) 0 0
\(949\) 5.71601e11 0.704739
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −7.51963e11 −0.911643 −0.455822 0.890071i \(-0.650655\pi\)
−0.455822 + 0.890071i \(0.650655\pi\)
\(954\) 0 0
\(955\) − 8.68173e10i − 0.104374i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.30094e9i 0.00153809i
\(960\) 0 0
\(961\) 6.96858e11 0.817054
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.63222e11 0.418854
\(966\) 0 0
\(967\) − 4.17530e10i − 0.0477509i −0.999715 0.0238754i \(-0.992399\pi\)
0.999715 0.0238754i \(-0.00760051\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 3.96128e11i − 0.445614i −0.974863 0.222807i \(-0.928478\pi\)
0.974863 0.222807i \(-0.0715220\pi\)
\(972\) 0 0
\(973\) −8.69016e9 −0.00969563
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.41869e11 −0.704479 −0.352239 0.935910i \(-0.614580\pi\)
−0.352239 + 0.935910i \(0.614580\pi\)
\(978\) 0 0
\(979\) 7.00099e11i 0.762129i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1.01844e12i − 1.09074i −0.838195 0.545371i \(-0.816389\pi\)
0.838195 0.545371i \(-0.183611\pi\)
\(984\) 0 0
\(985\) −2.52519e11 −0.268255
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.28100e12 1.33895
\(990\) 0 0
\(991\) − 1.56768e11i − 0.162540i −0.996692 0.0812702i \(-0.974102\pi\)
0.996692 0.0812702i \(-0.0258977\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 7.88552e10i − 0.0804523i
\(996\) 0 0
\(997\) 2.78658e11 0.282027 0.141014 0.990008i \(-0.454964\pi\)
0.141014 + 0.990008i \(0.454964\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.g.h.271.8 yes 12
3.2 odd 2 inner 432.9.g.h.271.6 yes 12
4.3 odd 2 inner 432.9.g.h.271.7 yes 12
12.11 even 2 inner 432.9.g.h.271.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
432.9.g.h.271.5 12 12.11 even 2 inner
432.9.g.h.271.6 yes 12 3.2 odd 2 inner
432.9.g.h.271.7 yes 12 4.3 odd 2 inner
432.9.g.h.271.8 yes 12 1.1 even 1 trivial