Properties

Label 432.9.g.h.271.10
Level $432$
Weight $9$
Character 432.271
Analytic conductor $175.988$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(271,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.271"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,57036] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 3658 x^{10} + 10323672 x^{8} + 10806771976 x^{6} + 8657863222624 x^{4} + 575997114675360 x^{2} + 35\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{40}\cdot 3^{25} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.10
Root \(24.6650 - 42.7211i\) of defining polynomial
Character \(\chi\) \(=\) 432.271
Dual form 432.9.g.h.271.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+612.710 q^{5} +3291.22i q^{7} +5149.41i q^{11} +26243.0 q^{13} +155584. q^{17} -121189. i q^{19} -497151. i q^{23} -15211.9 q^{25} -1.00912e6 q^{29} -1.51605e6i q^{31} +2.01656e6i q^{35} -2.43964e6 q^{37} +5.45730e6 q^{41} -2.74696e6i q^{43} -8.83959e6i q^{47} -5.06734e6 q^{49} +7.85231e6 q^{53} +3.15509e6i q^{55} -1.93978e6i q^{59} +1.59520e7 q^{61} +1.60793e7 q^{65} -1.93864e7i q^{67} -2.01068e6i q^{71} -9.41414e6 q^{73} -1.69478e7 q^{77} +6.11984e7i q^{79} +2.44137e7i q^{83} +9.53278e7 q^{85} -3.51750e7 q^{89} +8.63715e7i q^{91} -7.42535e7i q^{95} -3.81118e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 57036 q^{13} + 306996 q^{25} - 2032140 q^{37} - 6810648 q^{49} + 28116276 q^{61} + 33515148 q^{73} + 95803200 q^{85} + 90106572 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 612.710 0.980335 0.490168 0.871628i \(-0.336936\pi\)
0.490168 + 0.871628i \(0.336936\pi\)
\(6\) 0 0
\(7\) 3291.22i 1.37077i 0.728180 + 0.685386i \(0.240366\pi\)
−0.728180 + 0.685386i \(0.759634\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5149.41i 0.351712i 0.984416 + 0.175856i \(0.0562692\pi\)
−0.984416 + 0.175856i \(0.943731\pi\)
\(12\) 0 0
\(13\) 26243.0 0.918840 0.459420 0.888219i \(-0.348057\pi\)
0.459420 + 0.888219i \(0.348057\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 155584. 1.86281 0.931406 0.363982i \(-0.118583\pi\)
0.931406 + 0.363982i \(0.118583\pi\)
\(18\) 0 0
\(19\) − 121189.i − 0.929924i −0.885331 0.464962i \(-0.846068\pi\)
0.885331 0.464962i \(-0.153932\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 497151.i − 1.77655i −0.459314 0.888274i \(-0.651905\pi\)
0.459314 0.888274i \(-0.348095\pi\)
\(24\) 0 0
\(25\) −15211.9 −0.0389424
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00912e6 −1.42676 −0.713380 0.700778i \(-0.752836\pi\)
−0.713380 + 0.700778i \(0.752836\pi\)
\(30\) 0 0
\(31\) − 1.51605e6i − 1.64160i −0.571214 0.820801i \(-0.693527\pi\)
0.571214 0.820801i \(-0.306473\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.01656e6i 1.34382i
\(36\) 0 0
\(37\) −2.43964e6 −1.30172 −0.650861 0.759197i \(-0.725592\pi\)
−0.650861 + 0.759197i \(0.725592\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.45730e6 1.93127 0.965634 0.259904i \(-0.0836911\pi\)
0.965634 + 0.259904i \(0.0836911\pi\)
\(42\) 0 0
\(43\) − 2.74696e6i − 0.803487i −0.915752 0.401743i \(-0.868404\pi\)
0.915752 0.401743i \(-0.131596\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 8.83959e6i − 1.81151i −0.423802 0.905755i \(-0.639305\pi\)
0.423802 0.905755i \(-0.360695\pi\)
\(48\) 0 0
\(49\) −5.06734e6 −0.879014
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.85231e6 0.995163 0.497581 0.867417i \(-0.334222\pi\)
0.497581 + 0.867417i \(0.334222\pi\)
\(54\) 0 0
\(55\) 3.15509e6i 0.344795i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 1.93978e6i − 0.160082i −0.996792 0.0800412i \(-0.974495\pi\)
0.996792 0.0800412i \(-0.0255052\pi\)
\(60\) 0 0
\(61\) 1.59520e7 1.15212 0.576058 0.817409i \(-0.304590\pi\)
0.576058 + 0.817409i \(0.304590\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.60793e7 0.900771
\(66\) 0 0
\(67\) − 1.93864e7i − 0.962050i −0.876707 0.481025i \(-0.840265\pi\)
0.876707 0.481025i \(-0.159735\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 2.01068e6i − 0.0791243i −0.999217 0.0395621i \(-0.987404\pi\)
0.999217 0.0395621i \(-0.0125963\pi\)
\(72\) 0 0
\(73\) −9.41414e6 −0.331504 −0.165752 0.986167i \(-0.553005\pi\)
−0.165752 + 0.986167i \(0.553005\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.69478e7 −0.482116
\(78\) 0 0
\(79\) 6.11984e7i 1.57120i 0.618734 + 0.785601i \(0.287646\pi\)
−0.618734 + 0.785601i \(0.712354\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.44137e7i 0.514424i 0.966355 + 0.257212i \(0.0828039\pi\)
−0.966355 + 0.257212i \(0.917196\pi\)
\(84\) 0 0
\(85\) 9.53278e7 1.82618
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.51750e7 −0.560627 −0.280313 0.959909i \(-0.590438\pi\)
−0.280313 + 0.959909i \(0.590438\pi\)
\(90\) 0 0
\(91\) 8.63715e7i 1.25952i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 7.42535e7i − 0.911638i
\(96\) 0 0
\(97\) −3.81118e7 −0.430500 −0.215250 0.976559i \(-0.569057\pi\)
−0.215250 + 0.976559i \(0.569057\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.24287e7 0.407732 0.203866 0.978999i \(-0.434649\pi\)
0.203866 + 0.978999i \(0.434649\pi\)
\(102\) 0 0
\(103\) − 5.30917e7i − 0.471713i −0.971788 0.235856i \(-0.924211\pi\)
0.971788 0.235856i \(-0.0757895\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.31590e6i − 0.0329258i −0.999864 0.0164629i \(-0.994759\pi\)
0.999864 0.0164629i \(-0.00524054\pi\)
\(108\) 0 0
\(109\) −1.66924e8 −1.18253 −0.591267 0.806476i \(-0.701372\pi\)
−0.591267 + 0.806476i \(0.701372\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.37562e7 −0.575024 −0.287512 0.957777i \(-0.592828\pi\)
−0.287512 + 0.957777i \(0.592828\pi\)
\(114\) 0 0
\(115\) − 3.04609e8i − 1.74161i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.12061e8i 2.55349i
\(120\) 0 0
\(121\) 1.87842e8 0.876299
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.48660e8 −1.01851
\(126\) 0 0
\(127\) − 1.25168e8i − 0.481148i −0.970631 0.240574i \(-0.922664\pi\)
0.970631 0.240574i \(-0.0773357\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 2.33675e8i − 0.793465i −0.917934 0.396732i \(-0.870144\pi\)
0.917934 0.396732i \(-0.129856\pi\)
\(132\) 0 0
\(133\) 3.98859e8 1.27471
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.03282e8 −0.577054 −0.288527 0.957472i \(-0.593166\pi\)
−0.288527 + 0.957472i \(0.593166\pi\)
\(138\) 0 0
\(139\) − 2.65268e8i − 0.710600i −0.934752 0.355300i \(-0.884379\pi\)
0.934752 0.355300i \(-0.115621\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.35136e8i 0.323166i
\(144\) 0 0
\(145\) −6.18297e8 −1.39870
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.75140e8 −0.558224 −0.279112 0.960259i \(-0.590040\pi\)
−0.279112 + 0.960259i \(0.590040\pi\)
\(150\) 0 0
\(151\) − 3.30226e8i − 0.635190i −0.948227 0.317595i \(-0.897125\pi\)
0.948227 0.317595i \(-0.102875\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 9.28901e8i − 1.60932i
\(156\) 0 0
\(157\) 1.14620e9 1.88653 0.943264 0.332044i \(-0.107738\pi\)
0.943264 + 0.332044i \(0.107738\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.63623e9 2.43524
\(162\) 0 0
\(163\) 6.30361e8i 0.892974i 0.894790 + 0.446487i \(0.147325\pi\)
−0.894790 + 0.446487i \(0.852675\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 3.67526e8i − 0.472522i −0.971690 0.236261i \(-0.924078\pi\)
0.971690 0.236261i \(-0.0759220\pi\)
\(168\) 0 0
\(169\) −1.27037e8 −0.155734
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.40226e9 1.56547 0.782735 0.622355i \(-0.213824\pi\)
0.782735 + 0.622355i \(0.213824\pi\)
\(174\) 0 0
\(175\) − 5.00656e7i − 0.0533811i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.79989e8i 0.662353i 0.943569 + 0.331177i \(0.107446\pi\)
−0.943569 + 0.331177i \(0.892554\pi\)
\(180\) 0 0
\(181\) 2.02898e9 1.89044 0.945219 0.326437i \(-0.105848\pi\)
0.945219 + 0.326437i \(0.105848\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.49479e9 −1.27612
\(186\) 0 0
\(187\) 8.01165e8i 0.655173i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.78138e9i 1.33851i 0.743031 + 0.669257i \(0.233387\pi\)
−0.743031 + 0.669257i \(0.766613\pi\)
\(192\) 0 0
\(193\) −6.58917e6 −0.00474899 −0.00237450 0.999997i \(-0.500756\pi\)
−0.00237450 + 0.999997i \(0.500756\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.39585e9 −0.926777 −0.463388 0.886155i \(-0.653367\pi\)
−0.463388 + 0.886155i \(0.653367\pi\)
\(198\) 0 0
\(199\) − 1.55647e9i − 0.992493i −0.868182 0.496246i \(-0.834711\pi\)
0.868182 0.496246i \(-0.165289\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 3.32124e9i − 1.95576i
\(204\) 0 0
\(205\) 3.34374e9 1.89329
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.24050e8 0.327065
\(210\) 0 0
\(211\) − 1.29163e9i − 0.651641i −0.945432 0.325821i \(-0.894359\pi\)
0.945432 0.325821i \(-0.105641\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 1.68309e9i − 0.787686i
\(216\) 0 0
\(217\) 4.98967e9 2.25026
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.08299e9 1.71163
\(222\) 0 0
\(223\) − 1.11728e9i − 0.451797i −0.974151 0.225899i \(-0.927468\pi\)
0.974151 0.225899i \(-0.0725318\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.41579e9i 1.66305i 0.555488 + 0.831525i \(0.312532\pi\)
−0.555488 + 0.831525i \(0.687468\pi\)
\(228\) 0 0
\(229\) −1.35159e9 −0.491478 −0.245739 0.969336i \(-0.579031\pi\)
−0.245739 + 0.969336i \(0.579031\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.28517e9 −0.436050 −0.218025 0.975943i \(-0.569961\pi\)
−0.218025 + 0.975943i \(0.569961\pi\)
\(234\) 0 0
\(235\) − 5.41610e9i − 1.77589i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.93925e9i 0.900836i 0.892818 + 0.450418i \(0.148725\pi\)
−0.892818 + 0.450418i \(0.851275\pi\)
\(240\) 0 0
\(241\) −7.50002e8 −0.222328 −0.111164 0.993802i \(-0.535458\pi\)
−0.111164 + 0.993802i \(0.535458\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.10481e9 −0.861728
\(246\) 0 0
\(247\) − 3.18035e9i − 0.854451i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 2.57131e9i − 0.647827i −0.946087 0.323914i \(-0.895001\pi\)
0.946087 0.323914i \(-0.104999\pi\)
\(252\) 0 0
\(253\) 2.56003e9 0.624832
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.76328e9 −1.55033 −0.775166 0.631758i \(-0.782334\pi\)
−0.775166 + 0.631758i \(0.782334\pi\)
\(258\) 0 0
\(259\) − 8.02939e9i − 1.78436i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 3.65031e9i − 0.762968i −0.924375 0.381484i \(-0.875413\pi\)
0.924375 0.381484i \(-0.124587\pi\)
\(264\) 0 0
\(265\) 4.81119e9 0.975593
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.47857e9 −0.664342 −0.332171 0.943219i \(-0.607781\pi\)
−0.332171 + 0.943219i \(0.607781\pi\)
\(270\) 0 0
\(271\) − 1.28427e9i − 0.238110i −0.992888 0.119055i \(-0.962014\pi\)
0.992888 0.119055i \(-0.0379865\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 7.83321e7i − 0.0136965i
\(276\) 0 0
\(277\) 5.23359e9 0.888957 0.444479 0.895789i \(-0.353389\pi\)
0.444479 + 0.895789i \(0.353389\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.05516e9 0.329625 0.164812 0.986325i \(-0.447298\pi\)
0.164812 + 0.986325i \(0.447298\pi\)
\(282\) 0 0
\(283\) 6.47858e9i 1.01003i 0.863111 + 0.505015i \(0.168513\pi\)
−0.863111 + 0.505015i \(0.831487\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.79612e10i 2.64733i
\(288\) 0 0
\(289\) 1.72306e10 2.47007
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.18836e9 −0.296926 −0.148463 0.988918i \(-0.547433\pi\)
−0.148463 + 0.988918i \(0.547433\pi\)
\(294\) 0 0
\(295\) − 1.18852e9i − 0.156934i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 1.30467e10i − 1.63236i
\(300\) 0 0
\(301\) 9.04086e9 1.10140
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.77396e9 1.12946
\(306\) 0 0
\(307\) − 2.47814e9i − 0.278980i −0.990224 0.139490i \(-0.955454\pi\)
0.990224 0.139490i \(-0.0445462\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.00671e10i 1.07613i 0.842905 + 0.538063i \(0.180844\pi\)
−0.842905 + 0.538063i \(0.819156\pi\)
\(312\) 0 0
\(313\) 1.53438e10 1.59866 0.799331 0.600891i \(-0.205187\pi\)
0.799331 + 0.600891i \(0.205187\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.82308e9 −0.180538 −0.0902690 0.995917i \(-0.528773\pi\)
−0.0902690 + 0.995917i \(0.528773\pi\)
\(318\) 0 0
\(319\) − 5.19637e9i − 0.501808i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 1.88550e10i − 1.73227i
\(324\) 0 0
\(325\) −3.99205e8 −0.0357818
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.90930e10 2.48316
\(330\) 0 0
\(331\) − 1.12382e10i − 0.936232i −0.883667 0.468116i \(-0.844933\pi\)
0.883667 0.468116i \(-0.155067\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 1.18782e10i − 0.943132i
\(336\) 0 0
\(337\) 1.78276e10 1.38220 0.691102 0.722757i \(-0.257125\pi\)
0.691102 + 0.722757i \(0.257125\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.80678e9 0.577370
\(342\) 0 0
\(343\) 2.29550e9i 0.165844i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.35915e10i 0.937454i 0.883343 + 0.468727i \(0.155287\pi\)
−0.883343 + 0.468727i \(0.844713\pi\)
\(348\) 0 0
\(349\) −5.02047e9 −0.338410 −0.169205 0.985581i \(-0.554120\pi\)
−0.169205 + 0.985581i \(0.554120\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.58668e10 −1.66588 −0.832939 0.553365i \(-0.813343\pi\)
−0.832939 + 0.553365i \(0.813343\pi\)
\(354\) 0 0
\(355\) − 1.23196e9i − 0.0775683i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 2.48530e10i − 1.49624i −0.663564 0.748119i \(-0.730957\pi\)
0.663564 0.748119i \(-0.269043\pi\)
\(360\) 0 0
\(361\) 2.29688e9 0.135241
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.76814e9 −0.324985
\(366\) 0 0
\(367\) 2.82782e9i 0.155879i 0.996958 + 0.0779395i \(0.0248341\pi\)
−0.996958 + 0.0779395i \(0.975166\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.58437e10i 1.36414i
\(372\) 0 0
\(373\) 9.32666e9 0.481827 0.240913 0.970547i \(-0.422553\pi\)
0.240913 + 0.970547i \(0.422553\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.64823e10 −1.31096
\(378\) 0 0
\(379\) 1.37528e10i 0.666555i 0.942829 + 0.333277i \(0.108155\pi\)
−0.942829 + 0.333277i \(0.891845\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 1.40154e10i − 0.651346i −0.945483 0.325673i \(-0.894409\pi\)
0.945483 0.325673i \(-0.105591\pi\)
\(384\) 0 0
\(385\) −1.03841e10 −0.472635
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.17057e10 1.82136 0.910682 0.413109i \(-0.135557\pi\)
0.910682 + 0.413109i \(0.135557\pi\)
\(390\) 0 0
\(391\) − 7.73487e10i − 3.30938i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.74969e10i 1.54030i
\(396\) 0 0
\(397\) −1.51045e10 −0.608058 −0.304029 0.952663i \(-0.598332\pi\)
−0.304029 + 0.952663i \(0.598332\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.94580e9 0.191275 0.0956377 0.995416i \(-0.469511\pi\)
0.0956377 + 0.995416i \(0.469511\pi\)
\(402\) 0 0
\(403\) − 3.97858e10i − 1.50837i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1.25627e10i − 0.457831i
\(408\) 0 0
\(409\) 2.39277e10 0.855084 0.427542 0.903996i \(-0.359380\pi\)
0.427542 + 0.903996i \(0.359380\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.38424e9 0.219436
\(414\) 0 0
\(415\) 1.49585e10i 0.504308i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.98719e9i 0.259142i 0.991570 + 0.129571i \(0.0413600\pi\)
−0.991570 + 0.129571i \(0.958640\pi\)
\(420\) 0 0
\(421\) 2.96141e10 0.942691 0.471346 0.881949i \(-0.343768\pi\)
0.471346 + 0.881949i \(0.343768\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.36672e9 −0.0725424
\(426\) 0 0
\(427\) 5.25016e10i 1.57929i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 3.32904e10i − 0.964740i −0.875968 0.482370i \(-0.839776\pi\)
0.875968 0.482370i \(-0.160224\pi\)
\(432\) 0 0
\(433\) −4.61419e10 −1.31264 −0.656318 0.754484i \(-0.727887\pi\)
−0.656318 + 0.754484i \(0.727887\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.02490e10 −1.65205
\(438\) 0 0
\(439\) 7.01864e8i 0.0188971i 0.999955 + 0.00944855i \(0.00300761\pi\)
−0.999955 + 0.00944855i \(0.996992\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 1.68426e10i − 0.437315i −0.975802 0.218658i \(-0.929832\pi\)
0.975802 0.218658i \(-0.0701678\pi\)
\(444\) 0 0
\(445\) −2.15520e10 −0.549602
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.24578e9 0.0552564 0.0276282 0.999618i \(-0.491205\pi\)
0.0276282 + 0.999618i \(0.491205\pi\)
\(450\) 0 0
\(451\) 2.81019e10i 0.679249i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.29206e10i 1.23475i
\(456\) 0 0
\(457\) 7.04798e9 0.161585 0.0807923 0.996731i \(-0.474255\pi\)
0.0807923 + 0.996731i \(0.474255\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6.84734e10 −1.51607 −0.758033 0.652216i \(-0.773839\pi\)
−0.758033 + 0.652216i \(0.773839\pi\)
\(462\) 0 0
\(463\) 4.15997e10i 0.905245i 0.891702 + 0.452622i \(0.149511\pi\)
−0.891702 + 0.452622i \(0.850489\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 6.11460e10i 1.28558i 0.766041 + 0.642792i \(0.222224\pi\)
−0.766041 + 0.642792i \(0.777776\pi\)
\(468\) 0 0
\(469\) 6.38049e10 1.31875
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.41452e10 0.282596
\(474\) 0 0
\(475\) 1.84351e9i 0.0362135i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.95726e10i 0.561756i 0.959743 + 0.280878i \(0.0906256\pi\)
−0.959743 + 0.280878i \(0.909374\pi\)
\(480\) 0 0
\(481\) −6.40233e10 −1.19607
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.33515e10 −0.422034
\(486\) 0 0
\(487\) 1.03670e11i 1.84306i 0.388308 + 0.921530i \(0.373060\pi\)
−0.388308 + 0.921530i \(0.626940\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 5.09520e10i − 0.876668i −0.898812 0.438334i \(-0.855569\pi\)
0.898812 0.438334i \(-0.144431\pi\)
\(492\) 0 0
\(493\) −1.57003e11 −2.65778
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.61760e9 0.108461
\(498\) 0 0
\(499\) 1.01548e11i 1.63784i 0.573909 + 0.818919i \(0.305426\pi\)
−0.573909 + 0.818919i \(0.694574\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.11264e10i 0.173813i 0.996216 + 0.0869064i \(0.0276981\pi\)
−0.996216 + 0.0869064i \(0.972302\pi\)
\(504\) 0 0
\(505\) 2.59965e10 0.399714
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.07735e11 1.60504 0.802521 0.596623i \(-0.203491\pi\)
0.802521 + 0.596623i \(0.203491\pi\)
\(510\) 0 0
\(511\) − 3.09840e10i − 0.454417i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 3.25298e10i − 0.462437i
\(516\) 0 0
\(517\) 4.55186e10 0.637129
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 4.84664e10 0.657794 0.328897 0.944366i \(-0.393323\pi\)
0.328897 + 0.944366i \(0.393323\pi\)
\(522\) 0 0
\(523\) − 3.15532e10i − 0.421732i −0.977515 0.210866i \(-0.932372\pi\)
0.977515 0.210866i \(-0.0676284\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 2.35874e11i − 3.05800i
\(528\) 0 0
\(529\) −1.68848e11 −2.15612
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.43216e11 1.77453
\(534\) 0 0
\(535\) − 2.64439e9i − 0.0322783i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 2.60938e10i − 0.309159i
\(540\) 0 0
\(541\) 4.36968e10 0.510107 0.255053 0.966927i \(-0.417907\pi\)
0.255053 + 0.966927i \(0.417907\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.02276e11 −1.15928
\(546\) 0 0
\(547\) − 1.09757e11i − 1.22598i −0.790089 0.612992i \(-0.789966\pi\)
0.790089 0.612992i \(-0.210034\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.22294e11i 1.32678i
\(552\) 0 0
\(553\) −2.01418e11 −2.15376
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.22551e8 −0.00231211 −0.00115606 0.999999i \(-0.500368\pi\)
−0.00115606 + 0.999999i \(0.500368\pi\)
\(558\) 0 0
\(559\) − 7.20884e10i − 0.738275i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.82950e10i 0.779292i 0.920965 + 0.389646i \(0.127403\pi\)
−0.920965 + 0.389646i \(0.872597\pi\)
\(564\) 0 0
\(565\) −5.74453e10 −0.563717
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.90607e9 −0.0372641 −0.0186321 0.999826i \(-0.505931\pi\)
−0.0186321 + 0.999826i \(0.505931\pi\)
\(570\) 0 0
\(571\) 9.58527e10i 0.901695i 0.892601 + 0.450848i \(0.148878\pi\)
−0.892601 + 0.450848i \(0.851122\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.56260e9i 0.0691830i
\(576\) 0 0
\(577\) −5.40624e10 −0.487744 −0.243872 0.969807i \(-0.578418\pi\)
−0.243872 + 0.969807i \(0.578418\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.03509e10 −0.705158
\(582\) 0 0
\(583\) 4.04348e10i 0.350010i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.44039e11i 1.21319i 0.795012 + 0.606594i \(0.207465\pi\)
−0.795012 + 0.606594i \(0.792535\pi\)
\(588\) 0 0
\(589\) −1.83729e11 −1.52657
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.76145e11 1.42447 0.712233 0.701943i \(-0.247684\pi\)
0.712233 + 0.701943i \(0.247684\pi\)
\(594\) 0 0
\(595\) 3.13745e11i 2.50328i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.62362e10i 0.592180i 0.955160 + 0.296090i \(0.0956829\pi\)
−0.955160 + 0.296090i \(0.904317\pi\)
\(600\) 0 0
\(601\) −9.18734e10 −0.704193 −0.352096 0.935964i \(-0.614531\pi\)
−0.352096 + 0.935964i \(0.614531\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.15093e11 0.859067
\(606\) 0 0
\(607\) − 1.40049e10i − 0.103163i −0.998669 0.0515816i \(-0.983574\pi\)
0.998669 0.0515816i \(-0.0164262\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 2.31977e11i − 1.66449i
\(612\) 0 0
\(613\) 1.95047e10 0.138133 0.0690664 0.997612i \(-0.477998\pi\)
0.0690664 + 0.997612i \(0.477998\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.02420e11 −0.706717 −0.353359 0.935488i \(-0.614960\pi\)
−0.353359 + 0.935488i \(0.614960\pi\)
\(618\) 0 0
\(619\) − 1.34870e11i − 0.918659i −0.888266 0.459329i \(-0.848090\pi\)
0.888266 0.459329i \(-0.151910\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 1.15769e11i − 0.768491i
\(624\) 0 0
\(625\) −1.46414e11 −0.959541
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3.79568e11 −2.42486
\(630\) 0 0
\(631\) 1.03098e11i 0.650331i 0.945657 + 0.325166i \(0.105420\pi\)
−0.945657 + 0.325166i \(0.894580\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 7.66917e10i − 0.471687i
\(636\) 0 0
\(637\) −1.32982e11 −0.807673
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.66304e11 −0.985075 −0.492538 0.870291i \(-0.663931\pi\)
−0.492538 + 0.870291i \(0.663931\pi\)
\(642\) 0 0
\(643\) 1.90065e11i 1.11188i 0.831223 + 0.555940i \(0.187641\pi\)
−0.831223 + 0.555940i \(0.812359\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.30909e11i 0.747056i 0.927619 + 0.373528i \(0.121852\pi\)
−0.927619 + 0.373528i \(0.878148\pi\)
\(648\) 0 0
\(649\) 9.98870e9 0.0563028
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.43274e10 0.0787981 0.0393991 0.999224i \(-0.487456\pi\)
0.0393991 + 0.999224i \(0.487456\pi\)
\(654\) 0 0
\(655\) − 1.43175e11i − 0.777862i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.63518e10i 0.245768i 0.992421 + 0.122884i \(0.0392143\pi\)
−0.992421 + 0.122884i \(0.960786\pi\)
\(660\) 0 0
\(661\) 4.00756e10 0.209930 0.104965 0.994476i \(-0.466527\pi\)
0.104965 + 0.994476i \(0.466527\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.44385e11 1.24965
\(666\) 0 0
\(667\) 5.01685e11i 2.53471i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.21435e10i 0.405213i
\(672\) 0 0
\(673\) −2.04071e10 −0.0994765 −0.0497382 0.998762i \(-0.515839\pi\)
−0.0497382 + 0.998762i \(0.515839\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.23384e11 0.587359 0.293679 0.955904i \(-0.405120\pi\)
0.293679 + 0.955904i \(0.405120\pi\)
\(678\) 0 0
\(679\) − 1.25434e11i − 0.590116i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.36674e11i 1.08760i 0.839215 + 0.543799i \(0.183015\pi\)
−0.839215 + 0.543799i \(0.816985\pi\)
\(684\) 0 0
\(685\) −1.24553e11 −0.565707
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.06068e11 0.914395
\(690\) 0 0
\(691\) 8.80842e9i 0.0386354i 0.999813 + 0.0193177i \(0.00614940\pi\)
−0.999813 + 0.0193177i \(0.993851\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1.62532e11i − 0.696626i
\(696\) 0 0
\(697\) 8.49069e11 3.59759
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.98395e11 −0.821599 −0.410799 0.911726i \(-0.634750\pi\)
−0.410799 + 0.911726i \(0.634750\pi\)
\(702\) 0 0
\(703\) 2.95656e11i 1.21050i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.39642e11i 0.558907i
\(708\) 0 0
\(709\) −3.83136e11 −1.51624 −0.758120 0.652116i \(-0.773882\pi\)
−0.758120 + 0.652116i \(0.773882\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.53708e11 −2.91639
\(714\) 0 0
\(715\) 8.27990e10i 0.316812i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.23592e11i 0.836644i 0.908299 + 0.418322i \(0.137382\pi\)
−0.908299 + 0.418322i \(0.862618\pi\)
\(720\) 0 0
\(721\) 1.74736e11 0.646610
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.53506e10 0.0555614
\(726\) 0 0
\(727\) − 5.07241e11i − 1.81583i −0.419149 0.907917i \(-0.637672\pi\)
0.419149 0.907917i \(-0.362328\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 4.27383e11i − 1.49674i
\(732\) 0 0
\(733\) −2.23500e11 −0.774216 −0.387108 0.922034i \(-0.626526\pi\)
−0.387108 + 0.922034i \(0.626526\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.98285e10 0.338364
\(738\) 0 0
\(739\) 3.46124e9i 0.0116052i 0.999983 + 0.00580261i \(0.00184704\pi\)
−0.999983 + 0.00580261i \(0.998153\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.33286e11i 1.42174i 0.703325 + 0.710869i \(0.251698\pi\)
−0.703325 + 0.710869i \(0.748302\pi\)
\(744\) 0 0
\(745\) −1.68581e11 −0.547247
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.42046e10 0.0451338
\(750\) 0 0
\(751\) − 3.23570e11i − 1.01720i −0.861002 0.508602i \(-0.830163\pi\)
0.861002 0.508602i \(-0.169837\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 2.02333e11i − 0.622699i
\(756\) 0 0
\(757\) −2.00734e11 −0.611276 −0.305638 0.952148i \(-0.598870\pi\)
−0.305638 + 0.952148i \(0.598870\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.48440e11 1.33710 0.668552 0.743665i \(-0.266914\pi\)
0.668552 + 0.743665i \(0.266914\pi\)
\(762\) 0 0
\(763\) − 5.49385e11i − 1.62098i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 5.09055e10i − 0.147090i
\(768\) 0 0
\(769\) −3.40762e11 −0.974418 −0.487209 0.873285i \(-0.661985\pi\)
−0.487209 + 0.873285i \(0.661985\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.90199e11 0.812788 0.406394 0.913698i \(-0.366786\pi\)
0.406394 + 0.913698i \(0.366786\pi\)
\(774\) 0 0
\(775\) 2.30620e10i 0.0639279i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 6.61363e11i − 1.79593i
\(780\) 0 0
\(781\) 1.03538e10 0.0278289
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.02290e11 1.84943
\(786\) 0 0
\(787\) 4.36682e11i 1.13832i 0.822225 + 0.569162i \(0.192732\pi\)
−0.822225 + 0.569162i \(0.807268\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 3.08572e11i − 0.788227i
\(792\) 0 0
\(793\) 4.18628e11 1.05861
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.76639e11 0.685614 0.342807 0.939406i \(-0.388622\pi\)
0.342807 + 0.939406i \(0.388622\pi\)
\(798\) 0 0
\(799\) − 1.37530e12i − 3.37450i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 4.84773e10i − 0.116594i
\(804\) 0 0
\(805\) 1.00254e12 2.38735
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.22838e11 −0.753686 −0.376843 0.926277i \(-0.622990\pi\)
−0.376843 + 0.926277i \(0.622990\pi\)
\(810\) 0 0
\(811\) 5.78580e11i 1.33746i 0.743506 + 0.668729i \(0.233161\pi\)
−0.743506 + 0.668729i \(0.766839\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.86228e11i 0.875414i
\(816\) 0 0
\(817\) −3.32900e11 −0.747182
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.83753e11 1.28486 0.642432 0.766343i \(-0.277926\pi\)
0.642432 + 0.766343i \(0.277926\pi\)
\(822\) 0 0
\(823\) 3.21624e10i 0.0701049i 0.999385 + 0.0350525i \(0.0111598\pi\)
−0.999385 + 0.0350525i \(0.988840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 6.95669e11i − 1.48724i −0.668603 0.743620i \(-0.733107\pi\)
0.668603 0.743620i \(-0.266893\pi\)
\(828\) 0 0
\(829\) 5.89574e11 1.24830 0.624152 0.781303i \(-0.285445\pi\)
0.624152 + 0.781303i \(0.285445\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.88397e11 −1.63744
\(834\) 0 0
\(835\) − 2.25187e11i − 0.463230i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 8.12279e11i 1.63930i 0.572868 + 0.819648i \(0.305831\pi\)
−0.572868 + 0.819648i \(0.694169\pi\)
\(840\) 0 0
\(841\) 5.18076e11 1.03564
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.78367e10 −0.152671
\(846\) 0 0
\(847\) 6.18231e11i 1.20121i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.21287e12i 2.31257i
\(852\) 0 0
\(853\) 4.85715e11 0.917456 0.458728 0.888577i \(-0.348305\pi\)
0.458728 + 0.888577i \(0.348305\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.71818e11 −0.503912 −0.251956 0.967739i \(-0.581074\pi\)
−0.251956 + 0.967739i \(0.581074\pi\)
\(858\) 0 0
\(859\) − 8.01412e11i − 1.47192i −0.677027 0.735958i \(-0.736732\pi\)
0.677027 0.735958i \(-0.263268\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 3.81770e11i − 0.688269i −0.938920 0.344135i \(-0.888172\pi\)
0.938920 0.344135i \(-0.111828\pi\)
\(864\) 0 0
\(865\) 8.59180e11 1.53469
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.15136e11 −0.552610
\(870\) 0 0
\(871\) − 5.08757e11i − 0.883970i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 8.18396e11i − 1.39615i
\(876\) 0 0
\(877\) −8.40735e10 −0.142122 −0.0710609 0.997472i \(-0.522638\pi\)
−0.0710609 + 0.997472i \(0.522638\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −5.14435e11 −0.853939 −0.426970 0.904266i \(-0.640419\pi\)
−0.426970 + 0.904266i \(0.640419\pi\)
\(882\) 0 0
\(883\) 6.56953e10i 0.108067i 0.998539 + 0.0540333i \(0.0172077\pi\)
−0.998539 + 0.0540333i \(0.982792\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1.09769e12i − 1.77331i −0.462435 0.886653i \(-0.653024\pi\)
0.462435 0.886653i \(-0.346976\pi\)
\(888\) 0 0
\(889\) 4.11956e11 0.659544
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.07126e12 −1.68457
\(894\) 0 0
\(895\) 4.16636e11i 0.649329i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.52988e12i 2.34217i
\(900\) 0 0
\(901\) 1.22169e12 1.85380
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.24317e12 1.85326
\(906\) 0 0
\(907\) 9.23663e11i 1.36485i 0.730956 + 0.682424i \(0.239074\pi\)
−0.730956 + 0.682424i \(0.760926\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 2.79308e11i − 0.405517i −0.979229 0.202759i \(-0.935009\pi\)
0.979229 0.202759i \(-0.0649906\pi\)
\(912\) 0 0
\(913\) −1.25716e11 −0.180929
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.69077e11 1.08766
\(918\) 0 0
\(919\) − 5.33058e11i − 0.747330i −0.927564 0.373665i \(-0.878101\pi\)
0.927564 0.373665i \(-0.121899\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 5.27662e10i − 0.0727025i
\(924\) 0 0
\(925\) 3.71114e10 0.0506922
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.77797e11 −0.372961 −0.186481 0.982459i \(-0.559708\pi\)
−0.186481 + 0.982459i \(0.559708\pi\)
\(930\) 0 0
\(931\) 6.14104e11i 0.817416i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.90882e11i 0.642289i
\(936\) 0 0
\(937\) 1.47588e12 1.91467 0.957335 0.288981i \(-0.0933163\pi\)
0.957335 + 0.288981i \(0.0933163\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −5.85392e11 −0.746601 −0.373301 0.927710i \(-0.621774\pi\)
−0.373301 + 0.927710i \(0.621774\pi\)
\(942\) 0 0
\(943\) − 2.71310e12i − 3.43099i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.56825e12i 1.94991i 0.222406 + 0.974954i \(0.428609\pi\)
−0.222406 + 0.974954i \(0.571391\pi\)
\(948\) 0 0
\(949\) −2.47055e11 −0.304599
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.00177e12 1.21450 0.607250 0.794511i \(-0.292273\pi\)
0.607250 + 0.794511i \(0.292273\pi\)
\(954\) 0 0
\(955\) 1.09147e12i 1.31219i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 6.69046e11i − 0.791010i
\(960\) 0 0
\(961\) −1.44553e12 −1.69486
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.03725e9 −0.00465560
\(966\) 0 0
\(967\) − 3.46931e11i − 0.396769i −0.980124 0.198384i \(-0.936431\pi\)
0.980124 0.198384i \(-0.0635694\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.73571e11i 0.532731i 0.963872 + 0.266366i \(0.0858229\pi\)
−0.963872 + 0.266366i \(0.914177\pi\)
\(972\) 0 0
\(973\) 8.73055e11 0.974070
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.30375e11 −0.691864 −0.345932 0.938260i \(-0.612437\pi\)
−0.345932 + 0.938260i \(0.612437\pi\)
\(978\) 0 0
\(979\) − 1.81130e11i − 0.197179i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 7.46792e11i − 0.799808i −0.916557 0.399904i \(-0.869043\pi\)
0.916557 0.399904i \(-0.130957\pi\)
\(984\) 0 0
\(985\) −8.55254e11 −0.908552
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.36565e12 −1.42743
\(990\) 0 0
\(991\) − 1.18922e12i − 1.23301i −0.787352 0.616504i \(-0.788548\pi\)
0.787352 0.616504i \(-0.211452\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 9.53662e11i − 0.972976i
\(996\) 0 0
\(997\) 6.58941e11 0.666907 0.333454 0.942766i \(-0.391786\pi\)
0.333454 + 0.942766i \(0.391786\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.g.h.271.10 yes 12
3.2 odd 2 inner 432.9.g.h.271.4 yes 12
4.3 odd 2 inner 432.9.g.h.271.9 yes 12
12.11 even 2 inner 432.9.g.h.271.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
432.9.g.h.271.3 12 12.11 even 2 inner
432.9.g.h.271.4 yes 12 3.2 odd 2 inner
432.9.g.h.271.9 yes 12 4.3 odd 2 inner
432.9.g.h.271.10 yes 12 1.1 even 1 trivial