Properties

Label 432.9.g.c
Level $432$
Weight $9$
Character orbit 432.g
Analytic conductor $175.988$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(271,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.271"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,-74056] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 224x^{6} + 41668x^{4} - 1905792x^{2} + 72386064 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{11}\cdot 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{5} + ( - 7 \beta_{5} + 637 \beta_1) q^{7} - \beta_{7} q^{11} + ( - 17 \beta_{4} - 9257) q^{13} + ( - \beta_{6} - 16 \beta_{2}) q^{17} + (164 \beta_{5} + 54521 \beta_1) q^{19} + ( - 14 \beta_{7} + 35 \beta_{3}) q^{23}+ \cdots + (4700 \beta_{4} - 60709655) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 74056 q^{13} + 1300696 q^{25} - 10984184 q^{37} - 6337072 q^{49} - 4523096 q^{61} + 126452456 q^{73} - 70946784 q^{85} - 485677240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 224x^{6} + 41668x^{4} - 1905792x^{2} + 72386064 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 56\nu^{6} - 10417\nu^{4} + 2333408\nu^{2} - 62410434 ) / 44313918 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -281\nu^{7} + 447931\nu^{5} - 56022626\nu^{3} + 4346524500\nu ) / 88627836 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2408\nu^{7} + 447931\nu^{5} - 56022626\nu^{3} + 778150188\nu ) / 29542612 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -9\nu^{6} - 24849216 ) / 41668 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} + 224\nu^{4} - 33160\nu^{2} + 952896 ) / 2836 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -5617\nu^{7} + 1728275\nu^{5} - 310591378\nu^{3} + 25408997364\nu ) / 2685692 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -102200\nu^{7} + 19011025\nu^{5} - 3416505158\nu^{3} + 33026141700\nu ) / 29542612 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{7} + \beta_{6} + 19\beta_{3} - 57\beta_{2} ) / 6048 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{5} + \beta_{4} + 1008\beta _1 + 1008 ) / 18 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -43\beta_{7} + 1825\beta_{3} ) / 1512 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 336\beta_{5} - 112\beta_{4} + 74610\beta _1 - 74610 ) / 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -2689\beta_{7} - 2689\beta_{6} + 163987\beta_{3} + 491961\beta_{2} ) / 1512 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -41668\beta_{4} - 24849216 ) / 9 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 209707\beta_{7} - 209707\beta_{6} - 14484769\beta_{3} + 43454307\beta_{2} ) / 756 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
11.4738 + 6.62438i
11.4738 6.62438i
−6.02933 + 3.48104i
−6.02933 3.48104i
6.02933 3.48104i
6.02933 + 3.48104i
−11.4738 6.62438i
−11.4738 + 6.62438i
0 0 0 −1027.24 0 1207.45i 0 0 0
271.2 0 0 0 −1027.24 0 1207.45i 0 0 0
271.3 0 0 0 −226.278 0 3414.08i 0 0 0
271.4 0 0 0 −226.278 0 3414.08i 0 0 0
271.5 0 0 0 226.278 0 3414.08i 0 0 0
271.6 0 0 0 226.278 0 3414.08i 0 0 0
271.7 0 0 0 1027.24 0 1207.45i 0 0 0
271.8 0 0 0 1027.24 0 1207.45i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 271.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.9.g.c 8
3.b odd 2 1 inner 432.9.g.c 8
4.b odd 2 1 inner 432.9.g.c 8
12.b even 2 1 inner 432.9.g.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
432.9.g.c 8 1.a even 1 1 trivial
432.9.g.c 8 3.b odd 2 1 inner
432.9.g.c 8 4.b odd 2 1 inner
432.9.g.c 8 12.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{9}^{\mathrm{new}}(432, [\chi])\):

\( T_{5}^{4} - 1106424T_{5}^{2} + 54029203200 \) Copy content Toggle raw display
\( T_{7}^{4} + 13113870T_{7}^{2} + 16993530427041 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 1106424 T^{2} + 54029203200)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + \cdots + 16993530427041)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + \cdots + 31\!\cdots\!32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 18514 T - 8786675)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 87\!\cdots\!12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 35\!\cdots\!21)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + \cdots + 33\!\cdots\!52)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + \cdots + 94\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 52\!\cdots\!16)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots + 1393010639965)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 36\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 46\!\cdots\!84)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + \cdots + 72\!\cdots\!52)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + \cdots + 17\!\cdots\!12)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 60\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 8200103589131)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 11\!\cdots\!49)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 56\!\cdots\!28)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots + 6663887512633)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 78\!\cdots\!01)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 36\!\cdots\!12)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 36\!\cdots\!25)^{4} \) Copy content Toggle raw display
show more
show less