Properties

Label 432.9.e.l.161.5
Level $432$
Weight $9$
Character 432.161
Analytic conductor $175.988$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [432,9,Mod(161,432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("432.161"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 432.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-456] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(175.987559546\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 6x^{6} + 264x^{5} - 1872x^{4} + 360x^{3} + 12062x^{2} - 106892x + 822753 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{47}\cdot 3^{12}\cdot 19^{2} \)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.5
Root \(-5.69537 - 0.664009i\) of defining polynomial
Character \(\chi\) \(=\) 432.161
Dual form 432.9.e.l.161.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+383.685i q^{5} +1056.61 q^{7} +21019.0i q^{11} -44547.1 q^{13} -49959.5i q^{17} -195658. q^{19} -443798. i q^{23} +243411. q^{25} -876037. i q^{29} -131242. q^{31} +405405. i q^{35} +1.91241e6 q^{37} +1.42112e6i q^{41} +5.05657e6 q^{43} -5.53056e6i q^{47} -4.64838e6 q^{49} +4.70100e6i q^{53} -8.06468e6 q^{55} +1.25330e7i q^{59} +1.18239e7 q^{61} -1.70921e7i q^{65} +1.42031e7 q^{67} -3.83376e7i q^{71} -4.03426e7 q^{73} +2.22088e7i q^{77} -2.04301e7 q^{79} -4.39231e7i q^{83} +1.91687e7 q^{85} +2.15810e7i q^{89} -4.70688e7 q^{91} -7.50712e7i q^{95} +6.36854e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 456 q^{7} - 75016 q^{13} + 132536 q^{19} - 1187768 q^{25} + 1301072 q^{31} - 2559432 q^{37} + 2958544 q^{43} + 18410368 q^{49} - 10936256 q^{55} + 20663672 q^{61} - 59168392 q^{67} - 98757640 q^{73}+ \cdots - 103615304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 383.685i 0.613896i 0.951726 + 0.306948i \(0.0993078\pi\)
−0.951726 + 0.306948i \(0.900692\pi\)
\(6\) 0 0
\(7\) 1056.61 0.440070 0.220035 0.975492i \(-0.429383\pi\)
0.220035 + 0.975492i \(0.429383\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 21019.0i 1.43563i 0.696236 + 0.717813i \(0.254857\pi\)
−0.696236 + 0.717813i \(0.745143\pi\)
\(12\) 0 0
\(13\) −44547.1 −1.55972 −0.779859 0.625955i \(-0.784709\pi\)
−0.779859 + 0.625955i \(0.784709\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 49959.5i − 0.598167i −0.954227 0.299083i \(-0.903319\pi\)
0.954227 0.299083i \(-0.0966809\pi\)
\(18\) 0 0
\(19\) −195658. −1.50136 −0.750679 0.660667i \(-0.770274\pi\)
−0.750679 + 0.660667i \(0.770274\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 443798.i − 1.58589i −0.609290 0.792947i \(-0.708545\pi\)
0.609290 0.792947i \(-0.291455\pi\)
\(24\) 0 0
\(25\) 243411. 0.623132
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 876037.i − 1.23860i −0.785155 0.619299i \(-0.787417\pi\)
0.785155 0.619299i \(-0.212583\pi\)
\(30\) 0 0
\(31\) −131242. −0.142110 −0.0710552 0.997472i \(-0.522637\pi\)
−0.0710552 + 0.997472i \(0.522637\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 405405.i 0.270157i
\(36\) 0 0
\(37\) 1.91241e6 1.02041 0.510203 0.860054i \(-0.329570\pi\)
0.510203 + 0.860054i \(0.329570\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.42112e6i 0.502916i 0.967868 + 0.251458i \(0.0809100\pi\)
−0.967868 + 0.251458i \(0.919090\pi\)
\(42\) 0 0
\(43\) 5.05657e6 1.47905 0.739524 0.673130i \(-0.235050\pi\)
0.739524 + 0.673130i \(0.235050\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 5.53056e6i − 1.13339i −0.823929 0.566693i \(-0.808223\pi\)
0.823929 0.566693i \(-0.191777\pi\)
\(48\) 0 0
\(49\) −4.64838e6 −0.806338
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.70100e6i 0.595781i 0.954600 + 0.297890i \(0.0962830\pi\)
−0.954600 + 0.297890i \(0.903717\pi\)
\(54\) 0 0
\(55\) −8.06468e6 −0.881325
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.25330e7i 1.03430i 0.855894 + 0.517151i \(0.173007\pi\)
−0.855894 + 0.517151i \(0.826993\pi\)
\(60\) 0 0
\(61\) 1.18239e7 0.853964 0.426982 0.904260i \(-0.359577\pi\)
0.426982 + 0.904260i \(0.359577\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 1.70921e7i − 0.957505i
\(66\) 0 0
\(67\) 1.42031e7 0.704828 0.352414 0.935844i \(-0.385361\pi\)
0.352414 + 0.935844i \(0.385361\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 3.83376e7i − 1.50866i −0.656496 0.754329i \(-0.727962\pi\)
0.656496 0.754329i \(-0.272038\pi\)
\(72\) 0 0
\(73\) −4.03426e7 −1.42060 −0.710301 0.703898i \(-0.751441\pi\)
−0.710301 + 0.703898i \(0.751441\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.22088e7i 0.631776i
\(78\) 0 0
\(79\) −2.04301e7 −0.524519 −0.262259 0.964997i \(-0.584468\pi\)
−0.262259 + 0.964997i \(0.584468\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 4.39231e7i − 0.925509i −0.886487 0.462754i \(-0.846861\pi\)
0.886487 0.462754i \(-0.153139\pi\)
\(84\) 0 0
\(85\) 1.91687e7 0.367212
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.15810e7i 0.343963i 0.985100 + 0.171982i \(0.0550169\pi\)
−0.985100 + 0.171982i \(0.944983\pi\)
\(90\) 0 0
\(91\) −4.70688e7 −0.686385
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 7.50712e7i − 0.921678i
\(96\) 0 0
\(97\) 6.36854e7 0.719371 0.359685 0.933074i \(-0.382884\pi\)
0.359685 + 0.933074i \(0.382884\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.10700e8i 1.06380i 0.846806 + 0.531901i \(0.178522\pi\)
−0.846806 + 0.531901i \(0.821478\pi\)
\(102\) 0 0
\(103\) 5.92788e7 0.526685 0.263342 0.964702i \(-0.415175\pi\)
0.263342 + 0.964702i \(0.415175\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.74525e7i 0.590882i 0.955361 + 0.295441i \(0.0954665\pi\)
−0.955361 + 0.295441i \(0.904534\pi\)
\(108\) 0 0
\(109\) 1.64242e8 1.16353 0.581766 0.813356i \(-0.302362\pi\)
0.581766 + 0.813356i \(0.302362\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.57156e8i 1.57719i 0.614916 + 0.788593i \(0.289190\pi\)
−0.614916 + 0.788593i \(0.710810\pi\)
\(114\) 0 0
\(115\) 1.70279e8 0.973575
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 5.27876e7i − 0.263235i
\(120\) 0 0
\(121\) −2.27440e8 −1.06102
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.43270e8i 0.996434i
\(126\) 0 0
\(127\) 1.54595e8 0.594267 0.297133 0.954836i \(-0.403969\pi\)
0.297133 + 0.954836i \(0.403969\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1.85589e8i − 0.630184i −0.949061 0.315092i \(-0.897965\pi\)
0.949061 0.315092i \(-0.102035\pi\)
\(132\) 0 0
\(133\) −2.06734e8 −0.660703
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.58751e8i 1.01838i 0.860654 + 0.509191i \(0.170055\pi\)
−0.860654 + 0.509191i \(0.829945\pi\)
\(138\) 0 0
\(139\) −2.76495e8 −0.740674 −0.370337 0.928897i \(-0.620758\pi\)
−0.370337 + 0.928897i \(0.620758\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 9.36336e8i − 2.23917i
\(144\) 0 0
\(145\) 3.36122e8 0.760371
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.98480e7i 0.0605578i 0.999541 + 0.0302789i \(0.00963955\pi\)
−0.999541 + 0.0302789i \(0.990360\pi\)
\(150\) 0 0
\(151\) −1.28363e8 −0.246906 −0.123453 0.992350i \(-0.539397\pi\)
−0.123453 + 0.992350i \(0.539397\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 5.03556e7i − 0.0872410i
\(156\) 0 0
\(157\) 5.83413e8 0.960236 0.480118 0.877204i \(-0.340594\pi\)
0.480118 + 0.877204i \(0.340594\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 4.68921e8i − 0.697905i
\(162\) 0 0
\(163\) 1.06572e9 1.50971 0.754854 0.655892i \(-0.227707\pi\)
0.754854 + 0.655892i \(0.227707\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 6.65775e8i − 0.855976i −0.903784 0.427988i \(-0.859223\pi\)
0.903784 0.427988i \(-0.140777\pi\)
\(168\) 0 0
\(169\) 1.16871e9 1.43272
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.56305e9i 1.74497i 0.488640 + 0.872485i \(0.337493\pi\)
−0.488640 + 0.872485i \(0.662507\pi\)
\(174\) 0 0
\(175\) 2.57190e8 0.274222
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 1.55656e9i − 1.51619i −0.652143 0.758096i \(-0.726130\pi\)
0.652143 0.758096i \(-0.273870\pi\)
\(180\) 0 0
\(181\) −9.14872e8 −0.852405 −0.426202 0.904628i \(-0.640149\pi\)
−0.426202 + 0.904628i \(0.640149\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.33762e8i 0.626424i
\(186\) 0 0
\(187\) 1.05010e9 0.858744
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1.62389e9i 1.22018i 0.792332 + 0.610090i \(0.208867\pi\)
−0.792332 + 0.610090i \(0.791133\pi\)
\(192\) 0 0
\(193\) 1.41342e9 1.01869 0.509347 0.860561i \(-0.329887\pi\)
0.509347 + 0.860561i \(0.329887\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 3.77963e7i − 0.0250948i −0.999921 0.0125474i \(-0.996006\pi\)
0.999921 0.0125474i \(-0.00399407\pi\)
\(198\) 0 0
\(199\) −1.66396e9 −1.06104 −0.530518 0.847673i \(-0.678003\pi\)
−0.530518 + 0.847673i \(0.678003\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 9.25628e8i − 0.545070i
\(204\) 0 0
\(205\) −5.45262e8 −0.308738
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 4.11255e9i − 2.15539i
\(210\) 0 0
\(211\) 1.40054e9 0.706586 0.353293 0.935513i \(-0.385062\pi\)
0.353293 + 0.935513i \(0.385062\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.94013e9i 0.907982i
\(216\) 0 0
\(217\) −1.38671e8 −0.0625385
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.22555e9i 0.932972i
\(222\) 0 0
\(223\) 1.61380e9 0.652574 0.326287 0.945271i \(-0.394202\pi\)
0.326287 + 0.945271i \(0.394202\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 9.59192e8i − 0.361245i −0.983552 0.180623i \(-0.942189\pi\)
0.983552 0.180623i \(-0.0578112\pi\)
\(228\) 0 0
\(229\) 2.43698e9 0.886156 0.443078 0.896483i \(-0.353887\pi\)
0.443078 + 0.896483i \(0.353887\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.84126e9i 1.30332i 0.758512 + 0.651659i \(0.225926\pi\)
−0.758512 + 0.651659i \(0.774074\pi\)
\(234\) 0 0
\(235\) 2.12199e9 0.695781
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.11611e9i 0.648555i 0.945962 + 0.324278i \(0.105121\pi\)
−0.945962 + 0.324278i \(0.894879\pi\)
\(240\) 0 0
\(241\) 2.38434e9 0.706804 0.353402 0.935471i \(-0.385025\pi\)
0.353402 + 0.935471i \(0.385025\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1.78351e9i − 0.495008i
\(246\) 0 0
\(247\) 8.71602e9 2.34170
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.77080e8i 0.220976i 0.993877 + 0.110488i \(0.0352413\pi\)
−0.993877 + 0.110488i \(0.964759\pi\)
\(252\) 0 0
\(253\) 9.32820e9 2.27675
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 6.09444e9i − 1.39702i −0.715603 0.698508i \(-0.753848\pi\)
0.715603 0.698508i \(-0.246152\pi\)
\(258\) 0 0
\(259\) 2.02066e9 0.449050
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.15154e9i 0.658719i 0.944205 + 0.329360i \(0.106833\pi\)
−0.944205 + 0.329360i \(0.893167\pi\)
\(264\) 0 0
\(265\) −1.80370e9 −0.365747
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 8.90106e9i − 1.69994i −0.526835 0.849968i \(-0.676621\pi\)
0.526835 0.849968i \(-0.323379\pi\)
\(270\) 0 0
\(271\) 4.11284e9 0.762543 0.381271 0.924463i \(-0.375486\pi\)
0.381271 + 0.924463i \(0.375486\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.11625e9i 0.894584i
\(276\) 0 0
\(277\) 5.38125e9 0.914038 0.457019 0.889457i \(-0.348917\pi\)
0.457019 + 0.889457i \(0.348917\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 8.09671e9i − 1.29862i −0.760522 0.649312i \(-0.775057\pi\)
0.760522 0.649312i \(-0.224943\pi\)
\(282\) 0 0
\(283\) −9.74985e9 −1.52003 −0.760015 0.649905i \(-0.774809\pi\)
−0.760015 + 0.649905i \(0.774809\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.50157e9i 0.221318i
\(288\) 0 0
\(289\) 4.47981e9 0.642196
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.31046e10i 1.77809i 0.457815 + 0.889047i \(0.348632\pi\)
−0.457815 + 0.889047i \(0.651368\pi\)
\(294\) 0 0
\(295\) −4.80873e9 −0.634954
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.97699e10i 2.47355i
\(300\) 0 0
\(301\) 5.34282e9 0.650885
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.53664e9i 0.524245i
\(306\) 0 0
\(307\) 1.40665e10 1.58355 0.791775 0.610812i \(-0.209157\pi\)
0.791775 + 0.610812i \(0.209157\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 1.05439e10i − 1.12709i −0.826086 0.563544i \(-0.809438\pi\)
0.826086 0.563544i \(-0.190562\pi\)
\(312\) 0 0
\(313\) −7.59473e9 −0.791288 −0.395644 0.918404i \(-0.629479\pi\)
−0.395644 + 0.918404i \(0.629479\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1.29322e10i − 1.28067i −0.768098 0.640333i \(-0.778797\pi\)
0.768098 0.640333i \(-0.221203\pi\)
\(318\) 0 0
\(319\) 1.84134e10 1.77816
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.77500e9i 0.898063i
\(324\) 0 0
\(325\) −1.08432e10 −0.971910
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 5.84363e9i − 0.498769i
\(330\) 0 0
\(331\) 6.48342e9 0.540123 0.270061 0.962843i \(-0.412956\pi\)
0.270061 + 0.962843i \(0.412956\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.44950e9i 0.432691i
\(336\) 0 0
\(337\) 1.40148e10 1.08660 0.543298 0.839540i \(-0.317175\pi\)
0.543298 + 0.839540i \(0.317175\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.75857e9i − 0.204017i
\(342\) 0 0
\(343\) −1.10027e10 −0.794915
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.16873e10i − 1.49585i −0.663785 0.747924i \(-0.731051\pi\)
0.663785 0.747924i \(-0.268949\pi\)
\(348\) 0 0
\(349\) 2.13901e10 1.44182 0.720911 0.693027i \(-0.243724\pi\)
0.720911 + 0.693027i \(0.243724\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 2.47496e10i − 1.59393i −0.604026 0.796964i \(-0.706438\pi\)
0.604026 0.796964i \(-0.293562\pi\)
\(354\) 0 0
\(355\) 1.47095e10 0.926160
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 2.03107e10i − 1.22278i −0.791331 0.611388i \(-0.790612\pi\)
0.791331 0.611388i \(-0.209388\pi\)
\(360\) 0 0
\(361\) 2.12987e10 1.25408
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 1.54788e10i − 0.872102i
\(366\) 0 0
\(367\) 2.43749e10 1.34363 0.671813 0.740721i \(-0.265516\pi\)
0.671813 + 0.740721i \(0.265516\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.96711e9i 0.262185i
\(372\) 0 0
\(373\) 3.24806e9 0.167799 0.0838994 0.996474i \(-0.473263\pi\)
0.0838994 + 0.996474i \(0.473263\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.90249e10i 1.93186i
\(378\) 0 0
\(379\) −1.53147e10 −0.742251 −0.371125 0.928583i \(-0.621028\pi\)
−0.371125 + 0.928583i \(0.621028\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.17685e9i 0.194113i 0.995279 + 0.0970563i \(0.0309427\pi\)
−0.995279 + 0.0970563i \(0.969057\pi\)
\(384\) 0 0
\(385\) −8.52120e9 −0.387845
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.11838e9i 0.223529i 0.993735 + 0.111765i \(0.0356503\pi\)
−0.993735 + 0.111765i \(0.964350\pi\)
\(390\) 0 0
\(391\) −2.21719e10 −0.948630
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 7.83871e9i − 0.322000i
\(396\) 0 0
\(397\) −2.88076e10 −1.15970 −0.579849 0.814724i \(-0.696889\pi\)
−0.579849 + 0.814724i \(0.696889\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.20349e10i 1.23893i 0.785025 + 0.619464i \(0.212650\pi\)
−0.785025 + 0.619464i \(0.787350\pi\)
\(402\) 0 0
\(403\) 5.84645e9 0.221652
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.01969e10i 1.46492i
\(408\) 0 0
\(409\) 3.16750e10 1.13194 0.565969 0.824426i \(-0.308502\pi\)
0.565969 + 0.824426i \(0.308502\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.32425e10i 0.455165i
\(414\) 0 0
\(415\) 1.68526e10 0.568166
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 5.42311e10i − 1.75951i −0.475424 0.879757i \(-0.657705\pi\)
0.475424 0.879757i \(-0.342295\pi\)
\(420\) 0 0
\(421\) 9.30916e9 0.296334 0.148167 0.988962i \(-0.452663\pi\)
0.148167 + 0.988962i \(0.452663\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 1.21607e10i − 0.372737i
\(426\) 0 0
\(427\) 1.24932e10 0.375804
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 1.90914e10i − 0.553260i −0.960976 0.276630i \(-0.910782\pi\)
0.960976 0.276630i \(-0.0892177\pi\)
\(432\) 0 0
\(433\) −2.94043e10 −0.836486 −0.418243 0.908335i \(-0.637354\pi\)
−0.418243 + 0.908335i \(0.637354\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.68329e10i 2.38100i
\(438\) 0 0
\(439\) −2.10343e10 −0.566332 −0.283166 0.959071i \(-0.591385\pi\)
−0.283166 + 0.959071i \(0.591385\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.52740e10i 0.656234i 0.944637 + 0.328117i \(0.106414\pi\)
−0.944637 + 0.328117i \(0.893586\pi\)
\(444\) 0 0
\(445\) −8.28031e9 −0.211158
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.33057e10i 0.327380i 0.986512 + 0.163690i \(0.0523397\pi\)
−0.986512 + 0.163690i \(0.947660\pi\)
\(450\) 0 0
\(451\) −2.98705e10 −0.721999
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 1.80596e10i − 0.421369i
\(456\) 0 0
\(457\) −2.06957e9 −0.0474477 −0.0237238 0.999719i \(-0.507552\pi\)
−0.0237238 + 0.999719i \(0.507552\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 4.44364e10i − 0.983864i −0.870634 0.491932i \(-0.836291\pi\)
0.870634 0.491932i \(-0.163709\pi\)
\(462\) 0 0
\(463\) −5.02008e9 −0.109241 −0.0546207 0.998507i \(-0.517395\pi\)
−0.0546207 + 0.998507i \(0.517395\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 3.91015e10i − 0.822102i −0.911612 0.411051i \(-0.865162\pi\)
0.911612 0.411051i \(-0.134838\pi\)
\(468\) 0 0
\(469\) 1.50071e10 0.310174
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.06284e11i 2.12336i
\(474\) 0 0
\(475\) −4.76254e10 −0.935544
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 7.40399e10i − 1.40645i −0.710969 0.703224i \(-0.751743\pi\)
0.710969 0.703224i \(-0.248257\pi\)
\(480\) 0 0
\(481\) −8.51922e10 −1.59155
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.44351e10i 0.441619i
\(486\) 0 0
\(487\) 2.90300e10 0.516097 0.258049 0.966132i \(-0.416921\pi\)
0.258049 + 0.966132i \(0.416921\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 2.93492e10i − 0.504976i −0.967600 0.252488i \(-0.918751\pi\)
0.967600 0.252488i \(-0.0812488\pi\)
\(492\) 0 0
\(493\) −4.37664e10 −0.740888
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 4.05078e10i − 0.663916i
\(498\) 0 0
\(499\) 5.62186e10 0.906729 0.453365 0.891325i \(-0.350224\pi\)
0.453365 + 0.891325i \(0.350224\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.85472e10i 0.289739i 0.989451 + 0.144870i \(0.0462763\pi\)
−0.989451 + 0.144870i \(0.953724\pi\)
\(504\) 0 0
\(505\) −4.24738e10 −0.653064
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 9.62814e10i − 1.43440i −0.696866 0.717202i \(-0.745423\pi\)
0.696866 0.717202i \(-0.254577\pi\)
\(510\) 0 0
\(511\) −4.26263e10 −0.625164
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.27444e10i 0.323330i
\(516\) 0 0
\(517\) 1.16247e11 1.62712
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 1.76457e10i − 0.239490i −0.992805 0.119745i \(-0.961792\pi\)
0.992805 0.119745i \(-0.0382078\pi\)
\(522\) 0 0
\(523\) −9.05572e10 −1.21036 −0.605182 0.796087i \(-0.706900\pi\)
−0.605182 + 0.796087i \(0.706900\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.55678e9i 0.0850057i
\(528\) 0 0
\(529\) −1.18646e11 −1.51506
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 6.33068e10i − 0.784407i
\(534\) 0 0
\(535\) −2.97174e10 −0.362740
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 9.77043e10i − 1.15760i
\(540\) 0 0
\(541\) 2.88132e10 0.336359 0.168180 0.985756i \(-0.446211\pi\)
0.168180 + 0.985756i \(0.446211\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.30172e10i 0.714288i
\(546\) 0 0
\(547\) −9.13910e10 −1.02083 −0.510416 0.859928i \(-0.670508\pi\)
−0.510416 + 0.859928i \(0.670508\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.71404e11i 1.85958i
\(552\) 0 0
\(553\) −2.15866e10 −0.230825
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.05061e10i 0.940280i 0.882592 + 0.470140i \(0.155797\pi\)
−0.882592 + 0.470140i \(0.844203\pi\)
\(558\) 0 0
\(559\) −2.25256e11 −2.30690
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 4.53503e10i − 0.451385i −0.974199 0.225692i \(-0.927536\pi\)
0.974199 0.225692i \(-0.0724644\pi\)
\(564\) 0 0
\(565\) −9.86669e10 −0.968228
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.12610e11i 1.07430i 0.843485 + 0.537152i \(0.180500\pi\)
−0.843485 + 0.537152i \(0.819500\pi\)
\(570\) 0 0
\(571\) 1.59157e11 1.49721 0.748605 0.663017i \(-0.230724\pi\)
0.748605 + 0.663017i \(0.230724\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 1.08025e11i − 0.988221i
\(576\) 0 0
\(577\) −7.23141e10 −0.652409 −0.326205 0.945299i \(-0.605770\pi\)
−0.326205 + 0.945299i \(0.605770\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 4.64095e10i − 0.407289i
\(582\) 0 0
\(583\) −9.88103e10 −0.855318
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.14664e11i 1.80804i 0.427495 + 0.904018i \(0.359396\pi\)
−0.427495 + 0.904018i \(0.640604\pi\)
\(588\) 0 0
\(589\) 2.56786e10 0.213359
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 2.24928e11i − 1.81896i −0.415743 0.909482i \(-0.636478\pi\)
0.415743 0.909482i \(-0.363522\pi\)
\(594\) 0 0
\(595\) 2.02538e10 0.161599
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 1.40038e10i − 0.108778i −0.998520 0.0543889i \(-0.982679\pi\)
0.998520 0.0543889i \(-0.0173211\pi\)
\(600\) 0 0
\(601\) −2.01335e10 −0.154320 −0.0771600 0.997019i \(-0.524585\pi\)
−0.0771600 + 0.997019i \(0.524585\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 8.72652e10i − 0.651357i
\(606\) 0 0
\(607\) −3.32218e10 −0.244720 −0.122360 0.992486i \(-0.539046\pi\)
−0.122360 + 0.992486i \(0.539046\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.46370e11i 1.76776i
\(612\) 0 0
\(613\) −2.64787e11 −1.87523 −0.937614 0.347678i \(-0.886970\pi\)
−0.937614 + 0.347678i \(0.886970\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 2.32856e11i − 1.60675i −0.595475 0.803374i \(-0.703036\pi\)
0.595475 0.803374i \(-0.296964\pi\)
\(618\) 0 0
\(619\) 7.41619e10 0.505147 0.252574 0.967578i \(-0.418723\pi\)
0.252574 + 0.967578i \(0.418723\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.28027e10i 0.151368i
\(624\) 0 0
\(625\) 1.74323e9 0.0114245
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 9.55429e10i − 0.610373i
\(630\) 0 0
\(631\) 1.79703e11 1.13354 0.566772 0.823875i \(-0.308192\pi\)
0.566772 + 0.823875i \(0.308192\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.93159e10i 0.364818i
\(636\) 0 0
\(637\) 2.07072e11 1.25766
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 5.38915e10i − 0.319219i −0.987180 0.159609i \(-0.948977\pi\)
0.987180 0.159609i \(-0.0510234\pi\)
\(642\) 0 0
\(643\) −1.86975e11 −1.09380 −0.546901 0.837197i \(-0.684193\pi\)
−0.546901 + 0.837197i \(0.684193\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 9.36662e10i − 0.534522i −0.963624 0.267261i \(-0.913881\pi\)
0.963624 0.267261i \(-0.0861186\pi\)
\(648\) 0 0
\(649\) −2.63431e11 −1.48487
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.39391e11i 1.31660i 0.752754 + 0.658302i \(0.228725\pi\)
−0.752754 + 0.658302i \(0.771275\pi\)
\(654\) 0 0
\(655\) 7.12078e10 0.386868
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 8.85271e10i − 0.469391i −0.972069 0.234696i \(-0.924591\pi\)
0.972069 0.234696i \(-0.0754093\pi\)
\(660\) 0 0
\(661\) 2.44646e11 1.28154 0.640771 0.767732i \(-0.278615\pi\)
0.640771 + 0.767732i \(0.278615\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 7.93209e10i − 0.405603i
\(666\) 0 0
\(667\) −3.88784e11 −1.96429
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.48526e11i 1.22597i
\(672\) 0 0
\(673\) −1.47419e11 −0.718612 −0.359306 0.933220i \(-0.616987\pi\)
−0.359306 + 0.933220i \(0.616987\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 3.76509e10i − 0.179234i −0.995976 0.0896170i \(-0.971436\pi\)
0.995976 0.0896170i \(-0.0285643\pi\)
\(678\) 0 0
\(679\) 6.72905e10 0.316573
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.50809e11i 1.61208i 0.591859 + 0.806041i \(0.298394\pi\)
−0.591859 + 0.806041i \(0.701606\pi\)
\(684\) 0 0
\(685\) −1.37647e11 −0.625180
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 2.09416e11i − 0.929250i
\(690\) 0 0
\(691\) −3.96740e11 −1.74018 −0.870090 0.492893i \(-0.835939\pi\)
−0.870090 + 0.492893i \(0.835939\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1.06087e11i − 0.454697i
\(696\) 0 0
\(697\) 7.09984e10 0.300828
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.36905e11i 0.566952i 0.958979 + 0.283476i \(0.0914877\pi\)
−0.958979 + 0.283476i \(0.908512\pi\)
\(702\) 0 0
\(703\) −3.74179e11 −1.53200
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.16966e11i 0.468148i
\(708\) 0 0
\(709\) −4.79530e11 −1.89771 −0.948857 0.315706i \(-0.897759\pi\)
−0.948857 + 0.315706i \(0.897759\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.82450e10i 0.225372i
\(714\) 0 0
\(715\) 3.59258e11 1.37462
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.09505e11i 0.409749i 0.978788 + 0.204874i \(0.0656786\pi\)
−0.978788 + 0.204874i \(0.934321\pi\)
\(720\) 0 0
\(721\) 6.26345e10 0.231778
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 2.13237e11i − 0.771810i
\(726\) 0 0
\(727\) 1.16526e11 0.417143 0.208571 0.978007i \(-0.433119\pi\)
0.208571 + 0.978007i \(0.433119\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 2.52624e11i − 0.884718i
\(732\) 0 0
\(733\) 2.19970e11 0.761986 0.380993 0.924578i \(-0.375582\pi\)
0.380993 + 0.924578i \(0.375582\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.98534e11i 1.01187i
\(738\) 0 0
\(739\) 1.88576e11 0.632277 0.316139 0.948713i \(-0.397614\pi\)
0.316139 + 0.948713i \(0.397614\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.97746e11i 0.648863i 0.945909 + 0.324431i \(0.105173\pi\)
−0.945909 + 0.324431i \(0.894827\pi\)
\(744\) 0 0
\(745\) −1.14522e10 −0.0371762
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.18370e10i 0.260029i
\(750\) 0 0
\(751\) 6.21441e11 1.95362 0.976811 0.214105i \(-0.0686835\pi\)
0.976811 + 0.214105i \(0.0686835\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 4.92508e10i − 0.151574i
\(756\) 0 0
\(757\) 4.99965e11 1.52250 0.761248 0.648461i \(-0.224587\pi\)
0.761248 + 0.648461i \(0.224587\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.81400e10i 0.232989i 0.993191 + 0.116494i \(0.0371657\pi\)
−0.993191 + 0.116494i \(0.962834\pi\)
\(762\) 0 0
\(763\) 1.73539e11 0.512036
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 5.58309e11i − 1.61322i
\(768\) 0 0
\(769\) 4.12936e11 1.18080 0.590402 0.807110i \(-0.298969\pi\)
0.590402 + 0.807110i \(0.298969\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 4.00086e10i − 0.112056i −0.998429 0.0560280i \(-0.982156\pi\)
0.998429 0.0560280i \(-0.0178436\pi\)
\(774\) 0 0
\(775\) −3.19457e10 −0.0885535
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 2.78054e11i − 0.755057i
\(780\) 0 0
\(781\) 8.05817e11 2.16587
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.23847e11i 0.589485i
\(786\) 0 0
\(787\) −6.52745e10 −0.170155 −0.0850775 0.996374i \(-0.527114\pi\)
−0.0850775 + 0.996374i \(0.527114\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.71713e11i 0.694072i
\(792\) 0 0
\(793\) −5.26719e11 −1.33194
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1.29050e11i − 0.319835i −0.987130 0.159917i \(-0.948877\pi\)
0.987130 0.159917i \(-0.0511228\pi\)
\(798\) 0 0
\(799\) −2.76304e11 −0.677953
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 8.47961e11i − 2.03945i
\(804\) 0 0
\(805\) 1.79918e11 0.428441
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 7.15122e11i − 1.66950i −0.550630 0.834750i \(-0.685612\pi\)
0.550630 0.834750i \(-0.314388\pi\)
\(810\) 0 0
\(811\) 2.61429e11 0.604325 0.302162 0.953256i \(-0.402292\pi\)
0.302162 + 0.953256i \(0.402292\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.08901e11i 0.926804i
\(816\) 0 0
\(817\) −9.89362e11 −2.22058
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.39193e11i 1.40689i 0.710750 + 0.703444i \(0.248356\pi\)
−0.710750 + 0.703444i \(0.751644\pi\)
\(822\) 0 0
\(823\) 6.82246e11 1.48710 0.743552 0.668678i \(-0.233140\pi\)
0.743552 + 0.668678i \(0.233140\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 3.96972e11i − 0.848668i −0.905506 0.424334i \(-0.860508\pi\)
0.905506 0.424334i \(-0.139492\pi\)
\(828\) 0 0
\(829\) 2.44430e11 0.517532 0.258766 0.965940i \(-0.416684\pi\)
0.258766 + 0.965940i \(0.416684\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.32231e11i 0.482325i
\(834\) 0 0
\(835\) 2.55448e11 0.525480
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.74819e10i 0.0958253i 0.998852 + 0.0479126i \(0.0152569\pi\)
−0.998852 + 0.0479126i \(0.984743\pi\)
\(840\) 0 0
\(841\) −2.67194e11 −0.534125
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.48418e11i 0.879542i
\(846\) 0 0
\(847\) −2.40314e11 −0.466924
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 8.48723e11i − 1.61826i
\(852\) 0 0
\(853\) 8.31571e11 1.57074 0.785368 0.619029i \(-0.212474\pi\)
0.785368 + 0.619029i \(0.212474\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.02068e11i 0.189220i 0.995514 + 0.0946101i \(0.0301604\pi\)
−0.995514 + 0.0946101i \(0.969840\pi\)
\(858\) 0 0
\(859\) 2.38390e11 0.437839 0.218920 0.975743i \(-0.429747\pi\)
0.218920 + 0.975743i \(0.429747\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 3.90151e11i − 0.703380i −0.936117 0.351690i \(-0.885607\pi\)
0.936117 0.351690i \(-0.114393\pi\)
\(864\) 0 0
\(865\) −5.99719e11 −1.07123
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 4.29419e11i − 0.753013i
\(870\) 0 0
\(871\) −6.32706e11 −1.09933
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.57041e11i 0.438501i
\(876\) 0 0
\(877\) 1.08094e12 1.82727 0.913635 0.406536i \(-0.133264\pi\)
0.913635 + 0.406536i \(0.133264\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 9.52799e11i 1.58160i 0.612072 + 0.790802i \(0.290336\pi\)
−0.612072 + 0.790802i \(0.709664\pi\)
\(882\) 0 0
\(883\) −1.62997e11 −0.268125 −0.134063 0.990973i \(-0.542802\pi\)
−0.134063 + 0.990973i \(0.542802\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 2.33342e11i − 0.376963i −0.982077 0.188481i \(-0.939643\pi\)
0.982077 0.188481i \(-0.0603565\pi\)
\(888\) 0 0
\(889\) 1.63347e11 0.261519
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.08210e12i 1.70162i
\(894\) 0 0
\(895\) 5.97230e11 0.930785
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.14973e11i 0.176018i
\(900\) 0 0
\(901\) 2.34859e11 0.356376
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 3.51023e11i − 0.523288i
\(906\) 0 0
\(907\) 7.28967e11 1.07716 0.538578 0.842575i \(-0.318962\pi\)
0.538578 + 0.842575i \(0.318962\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1.28380e12i − 1.86391i −0.362571 0.931956i \(-0.618101\pi\)
0.362571 0.931956i \(-0.381899\pi\)
\(912\) 0 0
\(913\) 9.23219e11 1.32868
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.96095e11i − 0.277325i
\(918\) 0 0
\(919\) −3.67453e11 −0.515158 −0.257579 0.966257i \(-0.582925\pi\)
−0.257579 + 0.966257i \(0.582925\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.70783e12i 2.35308i
\(924\) 0 0
\(925\) 4.65500e11 0.635848
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.45683e12i 1.95589i 0.208857 + 0.977946i \(0.433026\pi\)
−0.208857 + 0.977946i \(0.566974\pi\)
\(930\) 0 0
\(931\) 9.09495e11 1.21060
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.02907e11i 0.527180i
\(936\) 0 0
\(937\) −1.97945e11 −0.256795 −0.128397 0.991723i \(-0.540983\pi\)
−0.128397 + 0.991723i \(0.540983\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 7.34556e10i − 0.0936842i −0.998902 0.0468421i \(-0.985084\pi\)
0.998902 0.0468421i \(-0.0149158\pi\)
\(942\) 0 0
\(943\) 6.30691e11 0.797572
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.72305e11i 0.711586i 0.934565 + 0.355793i \(0.115789\pi\)
−0.934565 + 0.355793i \(0.884211\pi\)
\(948\) 0 0
\(949\) 1.79715e12 2.21574
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 2.21067e11i − 0.268010i −0.990981 0.134005i \(-0.957216\pi\)
0.990981 0.134005i \(-0.0427839\pi\)
\(954\) 0 0
\(955\) −6.23064e11 −0.749064
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.79059e11i 0.448159i
\(960\) 0 0
\(961\) −8.35667e11 −0.979805
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 5.42310e11i 0.625372i
\(966\) 0 0
\(967\) 1.41164e12 1.61442 0.807211 0.590263i \(-0.200976\pi\)
0.807211 + 0.590263i \(0.200976\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.48773e11i 0.504835i 0.967618 + 0.252418i \(0.0812256\pi\)
−0.967618 + 0.252418i \(0.918774\pi\)
\(972\) 0 0
\(973\) −2.92146e11 −0.325949
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 7.04915e11i − 0.773675i −0.922148 0.386837i \(-0.873568\pi\)
0.922148 0.386837i \(-0.126432\pi\)
\(978\) 0 0
\(979\) −4.53611e11 −0.493802
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 5.08211e11i − 0.544290i −0.962256 0.272145i \(-0.912267\pi\)
0.962256 0.272145i \(-0.0877330\pi\)
\(984\) 0 0
\(985\) 1.45019e10 0.0154056
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 2.24410e12i − 2.34562i
\(990\) 0 0
\(991\) 2.22910e11 0.231118 0.115559 0.993301i \(-0.463134\pi\)
0.115559 + 0.993301i \(0.463134\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 6.38436e11i − 0.651366i
\(996\) 0 0
\(997\) −1.60476e12 −1.62416 −0.812080 0.583546i \(-0.801665\pi\)
−0.812080 + 0.583546i \(0.801665\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.9.e.l.161.5 8
3.2 odd 2 inner 432.9.e.l.161.4 8
4.3 odd 2 216.9.e.b.161.5 yes 8
12.11 even 2 216.9.e.b.161.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.9.e.b.161.4 8 12.11 even 2
216.9.e.b.161.5 yes 8 4.3 odd 2
432.9.e.l.161.4 8 3.2 odd 2 inner
432.9.e.l.161.5 8 1.1 even 1 trivial