Properties

Label 4275.2.a.bo
Level 42754275
Weight 22
Character orbit 4275.a
Self dual yes
Analytic conductor 34.13634.136
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4275,2,Mod(1,4275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4275.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 4275=325219 4275 = 3^{2} \cdot 5^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4275.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,0,8,0,0,-4,-12,0,0,-4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 34.136046864134.1360468641
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.11344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x34x2+4x+3 x^{4} - 2x^{3} - 4x^{2} + 4x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 95)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β2+β1+1)q4+(2β12)q7+(β3+β22)q82β1q11+(β32β1)q13+(2β3+2β1+2)q14++(4β3+β2+8)q98+O(q100) q + \beta_{2} q^{2} + ( - \beta_{2} + \beta_1 + 1) q^{4} + (2 \beta_1 - 2) q^{7} + (\beta_{3} + \beta_{2} - 2) q^{8} - 2 \beta_1 q^{11} + ( - \beta_{3} - 2 \beta_1) q^{13} + (2 \beta_{3} + 2 \beta_1 + 2) q^{14}+ \cdots + ( - 4 \beta_{3} + \beta_{2} + 8) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q2+8q44q712q84q112q13+8q14+4q16+4q17+4q194q228q234q26+8q284q29+4q316q324q34+6q37++38q98+O(q100) 4 q - 2 q^{2} + 8 q^{4} - 4 q^{7} - 12 q^{8} - 4 q^{11} - 2 q^{13} + 8 q^{14} + 4 q^{16} + 4 q^{17} + 4 q^{19} - 4 q^{22} - 8 q^{23} - 4 q^{26} + 8 q^{28} - 4 q^{29} + 4 q^{31} - 6 q^{32} - 4 q^{34} + 6 q^{37}+ \cdots + 38 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x34x2+4x+3 x^{4} - 2x^{3} - 4x^{2} + 4x + 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν3 \nu^{2} - \nu - 3 Copy content Toggle raw display
β3\beta_{3}== ν32ν23ν+2 \nu^{3} - 2\nu^{2} - 3\nu + 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+3 \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== β3+2β2+5β1+4 \beta_{3} + 2\beta_{2} + 5\beta _1 + 4 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.28734
−0.552409
−1.51658
2.78165
−2.63010 0 4.91744 0 0 0.574672 −7.67316 0 0
1.2 −2.14243 0 2.59002 0 0 −3.10482 −1.26409 0 0
1.3 0.816594 0 −1.33317 0 0 −5.03316 −2.72185 0 0
1.4 1.95594 0 1.82571 0 0 3.56331 −0.340899 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 +1 +1
1919 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4275.2.a.bo 4
3.b odd 2 1 475.2.a.i 4
5.b even 2 1 855.2.a.m 4
12.b even 2 1 7600.2.a.cf 4
15.d odd 2 1 95.2.a.b 4
15.e even 4 2 475.2.b.e 8
57.d even 2 1 9025.2.a.bf 4
60.h even 2 1 1520.2.a.t 4
105.g even 2 1 4655.2.a.y 4
120.i odd 2 1 6080.2.a.cc 4
120.m even 2 1 6080.2.a.ch 4
285.b even 2 1 1805.2.a.p 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.a.b 4 15.d odd 2 1
475.2.a.i 4 3.b odd 2 1
475.2.b.e 8 15.e even 4 2
855.2.a.m 4 5.b even 2 1
1520.2.a.t 4 60.h even 2 1
1805.2.a.p 4 285.b even 2 1
4275.2.a.bo 4 1.a even 1 1 trivial
4655.2.a.y 4 105.g even 2 1
6080.2.a.cc 4 120.i odd 2 1
6080.2.a.ch 4 120.m even 2 1
7600.2.a.cf 4 12.b even 2 1
9025.2.a.bf 4 57.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4275))S_{2}^{\mathrm{new}}(\Gamma_0(4275)):

T24+2T236T228T2+9 T_{2}^{4} + 2T_{2}^{3} - 6T_{2}^{2} - 8T_{2} + 9 Copy content Toggle raw display
T74+4T7316T7248T7+32 T_{7}^{4} + 4T_{7}^{3} - 16T_{7}^{2} - 48T_{7} + 32 Copy content Toggle raw display
T114+4T11316T11232T11+48 T_{11}^{4} + 4T_{11}^{3} - 16T_{11}^{2} - 32T_{11} + 48 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+2T3++9 T^{4} + 2 T^{3} + \cdots + 9 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+4T3++32 T^{4} + 4 T^{3} + \cdots + 32 Copy content Toggle raw display
1111 T4+4T3++48 T^{4} + 4 T^{3} + \cdots + 48 Copy content Toggle raw display
1313 T4+2T3++20 T^{4} + 2 T^{3} + \cdots + 20 Copy content Toggle raw display
1717 T44T3++48 T^{4} - 4 T^{3} + \cdots + 48 Copy content Toggle raw display
1919 (T1)4 (T - 1)^{4} Copy content Toggle raw display
2323 T4+8T3++288 T^{4} + 8 T^{3} + \cdots + 288 Copy content Toggle raw display
2929 T4+4T3++48 T^{4} + 4 T^{3} + \cdots + 48 Copy content Toggle raw display
3131 T44T3+640 T^{4} - 4 T^{3} + \cdots - 640 Copy content Toggle raw display
3737 T46T3++4 T^{4} - 6 T^{3} + \cdots + 4 Copy content Toggle raw display
4141 T4+16T3+240 T^{4} + 16 T^{3} + \cdots - 240 Copy content Toggle raw display
4343 T4+4T3++32 T^{4} + 4 T^{3} + \cdots + 32 Copy content Toggle raw display
4747 T4+12T3++1056 T^{4} + 12 T^{3} + \cdots + 1056 Copy content Toggle raw display
5353 T4+10T3+348 T^{4} + 10 T^{3} + \cdots - 348 Copy content Toggle raw display
5959 T464T2+192 T^{4} - 64 T^{2} + \cdots - 192 Copy content Toggle raw display
6161 T420T3+2656 T^{4} - 20 T^{3} + \cdots - 2656 Copy content Toggle raw display
6767 T418T3+1076 T^{4} - 18 T^{3} + \cdots - 1076 Copy content Toggle raw display
7171 T420T3+4224 T^{4} - 20 T^{3} + \cdots - 4224 Copy content Toggle raw display
7373 T4+28T3++176 T^{4} + 28 T^{3} + \cdots + 176 Copy content Toggle raw display
7979 T4+16T3+1856 T^{4} + 16 T^{3} + \cdots - 1856 Copy content Toggle raw display
8383 T472T2++480 T^{4} - 72 T^{2} + \cdots + 480 Copy content Toggle raw display
8989 T4+4T3++240 T^{4} + 4 T^{3} + \cdots + 240 Copy content Toggle raw display
9797 T4+30T3+1388 T^{4} + 30 T^{3} + \cdots - 1388 Copy content Toggle raw display
show more
show less