gp: [N,k,chi] = [4275,2,Mod(1,4275)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4275.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4275, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [4,-2,0,8,0,0,-4,-12,0,0,-4,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 2 x 3 − 4 x 2 + 4 x + 3 x^{4} - 2x^{3} - 4x^{2} + 4x + 3 x 4 − 2 x 3 − 4 x 2 + 4 x + 3
x^4 - 2*x^3 - 4*x^2 + 4*x + 3
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − ν − 3 \nu^{2} - \nu - 3 ν 2 − ν − 3
v^2 - v - 3
β 3 \beta_{3} β 3 = = =
ν 3 − 2 ν 2 − 3 ν + 2 \nu^{3} - 2\nu^{2} - 3\nu + 2 ν 3 − 2 ν 2 − 3 ν + 2
v^3 - 2*v^2 - 3*v + 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + β 1 + 3 \beta_{2} + \beta _1 + 3 β 2 + β 1 + 3
b2 + b1 + 3
ν 3 \nu^{3} ν 3 = = =
β 3 + 2 β 2 + 5 β 1 + 4 \beta_{3} + 2\beta_{2} + 5\beta _1 + 4 β 3 + 2 β 2 + 5 β 1 + 4
b3 + 2*b2 + 5*b1 + 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
19 19 1 9
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 4275 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(4275)) S 2 n e w ( Γ 0 ( 4 2 7 5 ) ) :
T 2 4 + 2 T 2 3 − 6 T 2 2 − 8 T 2 + 9 T_{2}^{4} + 2T_{2}^{3} - 6T_{2}^{2} - 8T_{2} + 9 T 2 4 + 2 T 2 3 − 6 T 2 2 − 8 T 2 + 9
T2^4 + 2*T2^3 - 6*T2^2 - 8*T2 + 9
T 7 4 + 4 T 7 3 − 16 T 7 2 − 48 T 7 + 32 T_{7}^{4} + 4T_{7}^{3} - 16T_{7}^{2} - 48T_{7} + 32 T 7 4 + 4 T 7 3 − 1 6 T 7 2 − 4 8 T 7 + 3 2
T7^4 + 4*T7^3 - 16*T7^2 - 48*T7 + 32
T 11 4 + 4 T 11 3 − 16 T 11 2 − 32 T 11 + 48 T_{11}^{4} + 4T_{11}^{3} - 16T_{11}^{2} - 32T_{11} + 48 T 1 1 4 + 4 T 1 1 3 − 1 6 T 1 1 2 − 3 2 T 1 1 + 4 8
T11^4 + 4*T11^3 - 16*T11^2 - 32*T11 + 48
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 2 T 3 + ⋯ + 9 T^{4} + 2 T^{3} + \cdots + 9 T 4 + 2 T 3 + ⋯ + 9
T^4 + 2*T^3 - 6*T^2 - 8*T + 9
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 + 4 T 3 + ⋯ + 32 T^{4} + 4 T^{3} + \cdots + 32 T 4 + 4 T 3 + ⋯ + 3 2
T^4 + 4*T^3 - 16*T^2 - 48*T + 32
11 11 1 1
T 4 + 4 T 3 + ⋯ + 48 T^{4} + 4 T^{3} + \cdots + 48 T 4 + 4 T 3 + ⋯ + 4 8
T^4 + 4*T^3 - 16*T^2 - 32*T + 48
13 13 1 3
T 4 + 2 T 3 + ⋯ + 20 T^{4} + 2 T^{3} + \cdots + 20 T 4 + 2 T 3 + ⋯ + 2 0
T^4 + 2*T^3 - 24*T^2 - 32*T + 20
17 17 1 7
T 4 − 4 T 3 + ⋯ + 48 T^{4} - 4 T^{3} + \cdots + 48 T 4 − 4 T 3 + ⋯ + 4 8
T^4 - 4*T^3 - 32*T^2 + 16*T + 48
19 19 1 9
( T − 1 ) 4 (T - 1)^{4} ( T − 1 ) 4
(T - 1)^4
23 23 2 3
T 4 + 8 T 3 + ⋯ + 288 T^{4} + 8 T^{3} + \cdots + 288 T 4 + 8 T 3 + ⋯ + 2 8 8
T^4 + 8*T^3 - 24*T^2 - 176*T + 288
29 29 2 9
T 4 + 4 T 3 + ⋯ + 48 T^{4} + 4 T^{3} + \cdots + 48 T 4 + 4 T 3 + ⋯ + 4 8
T^4 + 4*T^3 - 32*T^2 - 16*T + 48
31 31 3 1
T 4 − 4 T 3 + ⋯ − 640 T^{4} - 4 T^{3} + \cdots - 640 T 4 − 4 T 3 + ⋯ − 6 4 0
T^4 - 4*T^3 - 80*T^2 + 512*T - 640
37 37 3 7
T 4 − 6 T 3 + ⋯ + 4 T^{4} - 6 T^{3} + \cdots + 4 T 4 − 6 T 3 + ⋯ + 4
T^4 - 6*T^3 - 24*T^2 + 40*T + 4
41 41 4 1
T 4 + 16 T 3 + ⋯ − 240 T^{4} + 16 T^{3} + \cdots - 240 T 4 + 1 6 T 3 + ⋯ − 2 4 0
T^4 + 16*T^3 + 56*T^2 - 32*T - 240
43 43 4 3
T 4 + 4 T 3 + ⋯ + 32 T^{4} + 4 T^{3} + \cdots + 32 T 4 + 4 T 3 + ⋯ + 3 2
T^4 + 4*T^3 - 16*T^2 - 48*T + 32
47 47 4 7
T 4 + 12 T 3 + ⋯ + 1056 T^{4} + 12 T^{3} + \cdots + 1056 T 4 + 1 2 T 3 + ⋯ + 1 0 5 6
T^4 + 12*T^3 - 64*T^2 - 656*T + 1056
53 53 5 3
T 4 + 10 T 3 + ⋯ − 348 T^{4} + 10 T^{3} + \cdots - 348 T 4 + 1 0 T 3 + ⋯ − 3 4 8
T^4 + 10*T^3 - 184*T - 348
59 59 5 9
T 4 − 64 T 2 + ⋯ − 192 T^{4} - 64 T^{2} + \cdots - 192 T 4 − 6 4 T 2 + ⋯ − 1 9 2
T^4 - 64*T^2 + 224*T - 192
61 61 6 1
T 4 − 20 T 3 + ⋯ − 2656 T^{4} - 20 T^{3} + \cdots - 2656 T 4 − 2 0 T 3 + ⋯ − 2 6 5 6
T^4 - 20*T^3 + 56*T^2 + 688*T - 2656
67 67 6 7
T 4 − 18 T 3 + ⋯ − 1076 T^{4} - 18 T^{3} + \cdots - 1076 T 4 − 1 8 T 3 + ⋯ − 1 0 7 6
T^4 - 18*T^3 + 8*T^2 + 488*T - 1076
71 71 7 1
T 4 − 20 T 3 + ⋯ − 4224 T^{4} - 20 T^{3} + \cdots - 4224 T 4 − 2 0 T 3 + ⋯ − 4 2 2 4
T^4 - 20*T^3 + 32*T^2 + 1024*T - 4224
73 73 7 3
T 4 + 28 T 3 + ⋯ + 176 T^{4} + 28 T^{3} + \cdots + 176 T 4 + 2 8 T 3 + ⋯ + 1 7 6
T^4 + 28*T^3 + 256*T^2 + 784*T + 176
79 79 7 9
T 4 + 16 T 3 + ⋯ − 1856 T^{4} + 16 T^{3} + \cdots - 1856 T 4 + 1 6 T 3 + ⋯ − 1 8 5 6
T^4 + 16*T^3 + 32*T^2 - 480*T - 1856
83 83 8 3
T 4 − 72 T 2 + ⋯ + 480 T^{4} - 72 T^{2} + \cdots + 480 T 4 − 7 2 T 2 + ⋯ + 4 8 0
T^4 - 72*T^2 - 112*T + 480
89 89 8 9
T 4 + 4 T 3 + ⋯ + 240 T^{4} + 4 T^{3} + \cdots + 240 T 4 + 4 T 3 + ⋯ + 2 4 0
T^4 + 4*T^3 - 144*T^2 + 176*T + 240
97 97 9 7
T 4 + 30 T 3 + ⋯ − 1388 T^{4} + 30 T^{3} + \cdots - 1388 T 4 + 3 0 T 3 + ⋯ − 1 3 8 8
T^4 + 30*T^3 + 224*T^2 + 8*T - 1388
show more
show less