Properties

Label 4256.2.a.q.1.3
Level $4256$
Weight $2$
Character 4256.1
Self dual yes
Analytic conductor $33.984$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4256,2,Mod(1,4256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4256.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4256, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4256 = 2^{5} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4256.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,0,3,0,-5,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.9843311003\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 10x^{5} + 31x^{4} + 12x^{3} - 45x^{2} - 15x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.811529\) of defining polynomial
Character \(\chi\) \(=\) 4256.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.811529 q^{3} +0.636007 q^{5} -1.00000 q^{7} -2.34142 q^{9} +1.29803 q^{11} +1.02111 q^{13} -0.516138 q^{15} -7.09589 q^{17} -1.00000 q^{19} +0.811529 q^{21} -3.70216 q^{23} -4.59550 q^{25} +4.33472 q^{27} +4.94639 q^{29} +2.96414 q^{31} -1.05339 q^{33} -0.636007 q^{35} +2.78424 q^{37} -0.828662 q^{39} +5.64336 q^{41} +1.08208 q^{43} -1.48916 q^{45} +11.2285 q^{47} +1.00000 q^{49} +5.75852 q^{51} -6.23941 q^{53} +0.825557 q^{55} +0.811529 q^{57} +1.27447 q^{59} -11.3744 q^{61} +2.34142 q^{63} +0.649434 q^{65} +7.11692 q^{67} +3.00441 q^{69} +4.45671 q^{71} -2.12332 q^{73} +3.72938 q^{75} -1.29803 q^{77} +13.1745 q^{79} +3.50652 q^{81} +2.08289 q^{83} -4.51303 q^{85} -4.01413 q^{87} +7.92565 q^{89} -1.02111 q^{91} -2.40548 q^{93} -0.636007 q^{95} +9.66418 q^{97} -3.03924 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 3 q^{3} - 5 q^{5} - 7 q^{7} + 8 q^{9} + 3 q^{11} - 16 q^{13} + 8 q^{15} + 8 q^{17} - 7 q^{19} - 3 q^{21} + 10 q^{23} + 8 q^{25} + 6 q^{27} - 11 q^{29} + 14 q^{31} + 3 q^{33} + 5 q^{35} - 13 q^{37}+ \cdots + 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.811529 −0.468536 −0.234268 0.972172i \(-0.575269\pi\)
−0.234268 + 0.972172i \(0.575269\pi\)
\(4\) 0 0
\(5\) 0.636007 0.284431 0.142215 0.989836i \(-0.454577\pi\)
0.142215 + 0.989836i \(0.454577\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.34142 −0.780474
\(10\) 0 0
\(11\) 1.29803 0.391371 0.195686 0.980667i \(-0.437307\pi\)
0.195686 + 0.980667i \(0.437307\pi\)
\(12\) 0 0
\(13\) 1.02111 0.283206 0.141603 0.989924i \(-0.454774\pi\)
0.141603 + 0.989924i \(0.454774\pi\)
\(14\) 0 0
\(15\) −0.516138 −0.133266
\(16\) 0 0
\(17\) −7.09589 −1.72101 −0.860503 0.509445i \(-0.829851\pi\)
−0.860503 + 0.509445i \(0.829851\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.811529 0.177090
\(22\) 0 0
\(23\) −3.70216 −0.771953 −0.385977 0.922509i \(-0.626135\pi\)
−0.385977 + 0.922509i \(0.626135\pi\)
\(24\) 0 0
\(25\) −4.59550 −0.919099
\(26\) 0 0
\(27\) 4.33472 0.834217
\(28\) 0 0
\(29\) 4.94639 0.918521 0.459260 0.888302i \(-0.348114\pi\)
0.459260 + 0.888302i \(0.348114\pi\)
\(30\) 0 0
\(31\) 2.96414 0.532375 0.266187 0.963921i \(-0.414236\pi\)
0.266187 + 0.963921i \(0.414236\pi\)
\(32\) 0 0
\(33\) −1.05339 −0.183372
\(34\) 0 0
\(35\) −0.636007 −0.107505
\(36\) 0 0
\(37\) 2.78424 0.457726 0.228863 0.973459i \(-0.426499\pi\)
0.228863 + 0.973459i \(0.426499\pi\)
\(38\) 0 0
\(39\) −0.828662 −0.132692
\(40\) 0 0
\(41\) 5.64336 0.881345 0.440673 0.897668i \(-0.354740\pi\)
0.440673 + 0.897668i \(0.354740\pi\)
\(42\) 0 0
\(43\) 1.08208 0.165016 0.0825081 0.996590i \(-0.473707\pi\)
0.0825081 + 0.996590i \(0.473707\pi\)
\(44\) 0 0
\(45\) −1.48916 −0.221991
\(46\) 0 0
\(47\) 11.2285 1.63785 0.818924 0.573902i \(-0.194571\pi\)
0.818924 + 0.573902i \(0.194571\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.75852 0.806354
\(52\) 0 0
\(53\) −6.23941 −0.857049 −0.428524 0.903530i \(-0.640966\pi\)
−0.428524 + 0.903530i \(0.640966\pi\)
\(54\) 0 0
\(55\) 0.825557 0.111318
\(56\) 0 0
\(57\) 0.811529 0.107490
\(58\) 0 0
\(59\) 1.27447 0.165921 0.0829607 0.996553i \(-0.473562\pi\)
0.0829607 + 0.996553i \(0.473562\pi\)
\(60\) 0 0
\(61\) −11.3744 −1.45634 −0.728172 0.685395i \(-0.759630\pi\)
−0.728172 + 0.685395i \(0.759630\pi\)
\(62\) 0 0
\(63\) 2.34142 0.294991
\(64\) 0 0
\(65\) 0.649434 0.0805524
\(66\) 0 0
\(67\) 7.11692 0.869470 0.434735 0.900558i \(-0.356842\pi\)
0.434735 + 0.900558i \(0.356842\pi\)
\(68\) 0 0
\(69\) 3.00441 0.361688
\(70\) 0 0
\(71\) 4.45671 0.528914 0.264457 0.964397i \(-0.414807\pi\)
0.264457 + 0.964397i \(0.414807\pi\)
\(72\) 0 0
\(73\) −2.12332 −0.248515 −0.124258 0.992250i \(-0.539655\pi\)
−0.124258 + 0.992250i \(0.539655\pi\)
\(74\) 0 0
\(75\) 3.72938 0.430631
\(76\) 0 0
\(77\) −1.29803 −0.147925
\(78\) 0 0
\(79\) 13.1745 1.48225 0.741125 0.671367i \(-0.234293\pi\)
0.741125 + 0.671367i \(0.234293\pi\)
\(80\) 0 0
\(81\) 3.50652 0.389613
\(82\) 0 0
\(83\) 2.08289 0.228627 0.114313 0.993445i \(-0.463533\pi\)
0.114313 + 0.993445i \(0.463533\pi\)
\(84\) 0 0
\(85\) −4.51303 −0.489507
\(86\) 0 0
\(87\) −4.01413 −0.430360
\(88\) 0 0
\(89\) 7.92565 0.840117 0.420059 0.907497i \(-0.362009\pi\)
0.420059 + 0.907497i \(0.362009\pi\)
\(90\) 0 0
\(91\) −1.02111 −0.107042
\(92\) 0 0
\(93\) −2.40548 −0.249437
\(94\) 0 0
\(95\) −0.636007 −0.0652529
\(96\) 0 0
\(97\) 9.66418 0.981249 0.490624 0.871371i \(-0.336769\pi\)
0.490624 + 0.871371i \(0.336769\pi\)
\(98\) 0 0
\(99\) −3.03924 −0.305455
\(100\) 0 0
\(101\) −16.7633 −1.66801 −0.834003 0.551759i \(-0.813957\pi\)
−0.834003 + 0.551759i \(0.813957\pi\)
\(102\) 0 0
\(103\) 2.23385 0.220108 0.110054 0.993926i \(-0.464898\pi\)
0.110054 + 0.993926i \(0.464898\pi\)
\(104\) 0 0
\(105\) 0.516138 0.0503699
\(106\) 0 0
\(107\) −11.6185 −1.12320 −0.561601 0.827408i \(-0.689814\pi\)
−0.561601 + 0.827408i \(0.689814\pi\)
\(108\) 0 0
\(109\) 5.14717 0.493010 0.246505 0.969142i \(-0.420718\pi\)
0.246505 + 0.969142i \(0.420718\pi\)
\(110\) 0 0
\(111\) −2.25949 −0.214461
\(112\) 0 0
\(113\) −0.0669556 −0.00629865 −0.00314933 0.999995i \(-0.501002\pi\)
−0.00314933 + 0.999995i \(0.501002\pi\)
\(114\) 0 0
\(115\) −2.35460 −0.219567
\(116\) 0 0
\(117\) −2.39085 −0.221035
\(118\) 0 0
\(119\) 7.09589 0.650479
\(120\) 0 0
\(121\) −9.31511 −0.846828
\(122\) 0 0
\(123\) −4.57975 −0.412942
\(124\) 0 0
\(125\) −6.10280 −0.545851
\(126\) 0 0
\(127\) 1.92435 0.170758 0.0853791 0.996349i \(-0.472790\pi\)
0.0853791 + 0.996349i \(0.472790\pi\)
\(128\) 0 0
\(129\) −0.878142 −0.0773161
\(130\) 0 0
\(131\) 7.18486 0.627744 0.313872 0.949465i \(-0.398374\pi\)
0.313872 + 0.949465i \(0.398374\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 2.75691 0.237277
\(136\) 0 0
\(137\) 7.55147 0.645166 0.322583 0.946541i \(-0.395449\pi\)
0.322583 + 0.946541i \(0.395449\pi\)
\(138\) 0 0
\(139\) 10.6473 0.903088 0.451544 0.892249i \(-0.350873\pi\)
0.451544 + 0.892249i \(0.350873\pi\)
\(140\) 0 0
\(141\) −9.11226 −0.767391
\(142\) 0 0
\(143\) 1.32544 0.110839
\(144\) 0 0
\(145\) 3.14593 0.261256
\(146\) 0 0
\(147\) −0.811529 −0.0669338
\(148\) 0 0
\(149\) 16.1264 1.32113 0.660564 0.750769i \(-0.270317\pi\)
0.660564 + 0.750769i \(0.270317\pi\)
\(150\) 0 0
\(151\) 12.0872 0.983640 0.491820 0.870697i \(-0.336332\pi\)
0.491820 + 0.870697i \(0.336332\pi\)
\(152\) 0 0
\(153\) 16.6145 1.34320
\(154\) 0 0
\(155\) 1.88521 0.151424
\(156\) 0 0
\(157\) −5.07289 −0.404861 −0.202430 0.979297i \(-0.564884\pi\)
−0.202430 + 0.979297i \(0.564884\pi\)
\(158\) 0 0
\(159\) 5.06346 0.401558
\(160\) 0 0
\(161\) 3.70216 0.291771
\(162\) 0 0
\(163\) 10.1395 0.794189 0.397094 0.917778i \(-0.370019\pi\)
0.397094 + 0.917778i \(0.370019\pi\)
\(164\) 0 0
\(165\) −0.669963 −0.0521566
\(166\) 0 0
\(167\) −12.0873 −0.935344 −0.467672 0.883902i \(-0.654907\pi\)
−0.467672 + 0.883902i \(0.654907\pi\)
\(168\) 0 0
\(169\) −11.9573 −0.919795
\(170\) 0 0
\(171\) 2.34142 0.179053
\(172\) 0 0
\(173\) −1.18756 −0.0902887 −0.0451444 0.998980i \(-0.514375\pi\)
−0.0451444 + 0.998980i \(0.514375\pi\)
\(174\) 0 0
\(175\) 4.59550 0.347387
\(176\) 0 0
\(177\) −1.03427 −0.0777401
\(178\) 0 0
\(179\) 10.0156 0.748603 0.374301 0.927307i \(-0.377883\pi\)
0.374301 + 0.927307i \(0.377883\pi\)
\(180\) 0 0
\(181\) 10.8750 0.808332 0.404166 0.914686i \(-0.367562\pi\)
0.404166 + 0.914686i \(0.367562\pi\)
\(182\) 0 0
\(183\) 9.23066 0.682350
\(184\) 0 0
\(185\) 1.77080 0.130191
\(186\) 0 0
\(187\) −9.21069 −0.673553
\(188\) 0 0
\(189\) −4.33472 −0.315304
\(190\) 0 0
\(191\) −1.08397 −0.0784332 −0.0392166 0.999231i \(-0.512486\pi\)
−0.0392166 + 0.999231i \(0.512486\pi\)
\(192\) 0 0
\(193\) 12.1528 0.874776 0.437388 0.899273i \(-0.355904\pi\)
0.437388 + 0.899273i \(0.355904\pi\)
\(194\) 0 0
\(195\) −0.527035 −0.0377417
\(196\) 0 0
\(197\) −1.77068 −0.126155 −0.0630777 0.998009i \(-0.520092\pi\)
−0.0630777 + 0.998009i \(0.520092\pi\)
\(198\) 0 0
\(199\) −1.57152 −0.111402 −0.0557010 0.998447i \(-0.517739\pi\)
−0.0557010 + 0.998447i \(0.517739\pi\)
\(200\) 0 0
\(201\) −5.77558 −0.407378
\(202\) 0 0
\(203\) −4.94639 −0.347168
\(204\) 0 0
\(205\) 3.58922 0.250682
\(206\) 0 0
\(207\) 8.66831 0.602489
\(208\) 0 0
\(209\) −1.29803 −0.0897868
\(210\) 0 0
\(211\) 27.8073 1.91434 0.957168 0.289533i \(-0.0935000\pi\)
0.957168 + 0.289533i \(0.0935000\pi\)
\(212\) 0 0
\(213\) −3.61675 −0.247815
\(214\) 0 0
\(215\) 0.688213 0.0469357
\(216\) 0 0
\(217\) −2.96414 −0.201219
\(218\) 0 0
\(219\) 1.72313 0.116438
\(220\) 0 0
\(221\) −7.24570 −0.487399
\(222\) 0 0
\(223\) 4.55286 0.304882 0.152441 0.988313i \(-0.451287\pi\)
0.152441 + 0.988313i \(0.451287\pi\)
\(224\) 0 0
\(225\) 10.7600 0.717333
\(226\) 0 0
\(227\) −18.4223 −1.22273 −0.611364 0.791349i \(-0.709379\pi\)
−0.611364 + 0.791349i \(0.709379\pi\)
\(228\) 0 0
\(229\) 13.0123 0.859880 0.429940 0.902857i \(-0.358535\pi\)
0.429940 + 0.902857i \(0.358535\pi\)
\(230\) 0 0
\(231\) 1.05339 0.0693080
\(232\) 0 0
\(233\) 17.4557 1.14356 0.571780 0.820407i \(-0.306253\pi\)
0.571780 + 0.820407i \(0.306253\pi\)
\(234\) 0 0
\(235\) 7.14141 0.465854
\(236\) 0 0
\(237\) −10.6915 −0.694488
\(238\) 0 0
\(239\) −2.15898 −0.139653 −0.0698265 0.997559i \(-0.522245\pi\)
−0.0698265 + 0.997559i \(0.522245\pi\)
\(240\) 0 0
\(241\) 5.95311 0.383473 0.191737 0.981446i \(-0.438588\pi\)
0.191737 + 0.981446i \(0.438588\pi\)
\(242\) 0 0
\(243\) −15.8498 −1.01676
\(244\) 0 0
\(245\) 0.636007 0.0406330
\(246\) 0 0
\(247\) −1.02111 −0.0649718
\(248\) 0 0
\(249\) −1.69032 −0.107120
\(250\) 0 0
\(251\) 11.3262 0.714904 0.357452 0.933932i \(-0.383646\pi\)
0.357452 + 0.933932i \(0.383646\pi\)
\(252\) 0 0
\(253\) −4.80552 −0.302120
\(254\) 0 0
\(255\) 3.66246 0.229352
\(256\) 0 0
\(257\) 22.5520 1.40675 0.703377 0.710817i \(-0.251675\pi\)
0.703377 + 0.710817i \(0.251675\pi\)
\(258\) 0 0
\(259\) −2.78424 −0.173004
\(260\) 0 0
\(261\) −11.5816 −0.716881
\(262\) 0 0
\(263\) 25.1703 1.55207 0.776033 0.630693i \(-0.217229\pi\)
0.776033 + 0.630693i \(0.217229\pi\)
\(264\) 0 0
\(265\) −3.96831 −0.243771
\(266\) 0 0
\(267\) −6.43189 −0.393626
\(268\) 0 0
\(269\) 12.0045 0.731926 0.365963 0.930629i \(-0.380740\pi\)
0.365963 + 0.930629i \(0.380740\pi\)
\(270\) 0 0
\(271\) −6.81151 −0.413770 −0.206885 0.978365i \(-0.566333\pi\)
−0.206885 + 0.978365i \(0.566333\pi\)
\(272\) 0 0
\(273\) 0.828662 0.0501529
\(274\) 0 0
\(275\) −5.96510 −0.359709
\(276\) 0 0
\(277\) −17.9562 −1.07888 −0.539441 0.842024i \(-0.681364\pi\)
−0.539441 + 0.842024i \(0.681364\pi\)
\(278\) 0 0
\(279\) −6.94029 −0.415504
\(280\) 0 0
\(281\) 2.17514 0.129758 0.0648791 0.997893i \(-0.479334\pi\)
0.0648791 + 0.997893i \(0.479334\pi\)
\(282\) 0 0
\(283\) 25.3285 1.50562 0.752812 0.658235i \(-0.228697\pi\)
0.752812 + 0.658235i \(0.228697\pi\)
\(284\) 0 0
\(285\) 0.516138 0.0305734
\(286\) 0 0
\(287\) −5.64336 −0.333117
\(288\) 0 0
\(289\) 33.3516 1.96186
\(290\) 0 0
\(291\) −7.84276 −0.459751
\(292\) 0 0
\(293\) −13.4142 −0.783667 −0.391833 0.920036i \(-0.628159\pi\)
−0.391833 + 0.920036i \(0.628159\pi\)
\(294\) 0 0
\(295\) 0.810569 0.0471931
\(296\) 0 0
\(297\) 5.62660 0.326489
\(298\) 0 0
\(299\) −3.78032 −0.218621
\(300\) 0 0
\(301\) −1.08208 −0.0623703
\(302\) 0 0
\(303\) 13.6039 0.781522
\(304\) 0 0
\(305\) −7.23420 −0.414229
\(306\) 0 0
\(307\) 2.45091 0.139881 0.0699405 0.997551i \(-0.477719\pi\)
0.0699405 + 0.997551i \(0.477719\pi\)
\(308\) 0 0
\(309\) −1.81283 −0.103128
\(310\) 0 0
\(311\) 9.17314 0.520161 0.260080 0.965587i \(-0.416251\pi\)
0.260080 + 0.965587i \(0.416251\pi\)
\(312\) 0 0
\(313\) −33.2472 −1.87924 −0.939622 0.342215i \(-0.888823\pi\)
−0.939622 + 0.342215i \(0.888823\pi\)
\(314\) 0 0
\(315\) 1.48916 0.0839046
\(316\) 0 0
\(317\) −11.0831 −0.622487 −0.311243 0.950330i \(-0.600745\pi\)
−0.311243 + 0.950330i \(0.600745\pi\)
\(318\) 0 0
\(319\) 6.42057 0.359483
\(320\) 0 0
\(321\) 9.42874 0.526261
\(322\) 0 0
\(323\) 7.09589 0.394826
\(324\) 0 0
\(325\) −4.69252 −0.260294
\(326\) 0 0
\(327\) −4.17708 −0.230993
\(328\) 0 0
\(329\) −11.2285 −0.619048
\(330\) 0 0
\(331\) −14.0938 −0.774667 −0.387334 0.921940i \(-0.626604\pi\)
−0.387334 + 0.921940i \(0.626604\pi\)
\(332\) 0 0
\(333\) −6.51908 −0.357243
\(334\) 0 0
\(335\) 4.52641 0.247304
\(336\) 0 0
\(337\) −12.7704 −0.695647 −0.347824 0.937560i \(-0.613079\pi\)
−0.347824 + 0.937560i \(0.613079\pi\)
\(338\) 0 0
\(339\) 0.0543364 0.00295115
\(340\) 0 0
\(341\) 3.84754 0.208356
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 1.91082 0.102875
\(346\) 0 0
\(347\) −12.8281 −0.688649 −0.344325 0.938851i \(-0.611892\pi\)
−0.344325 + 0.938851i \(0.611892\pi\)
\(348\) 0 0
\(349\) 2.68384 0.143663 0.0718313 0.997417i \(-0.477116\pi\)
0.0718313 + 0.997417i \(0.477116\pi\)
\(350\) 0 0
\(351\) 4.42623 0.236255
\(352\) 0 0
\(353\) 6.87677 0.366013 0.183007 0.983112i \(-0.441417\pi\)
0.183007 + 0.983112i \(0.441417\pi\)
\(354\) 0 0
\(355\) 2.83450 0.150439
\(356\) 0 0
\(357\) −5.75852 −0.304773
\(358\) 0 0
\(359\) −24.8326 −1.31061 −0.655306 0.755363i \(-0.727461\pi\)
−0.655306 + 0.755363i \(0.727461\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 7.55948 0.396770
\(364\) 0 0
\(365\) −1.35044 −0.0706854
\(366\) 0 0
\(367\) −26.1933 −1.36728 −0.683638 0.729821i \(-0.739603\pi\)
−0.683638 + 0.729821i \(0.739603\pi\)
\(368\) 0 0
\(369\) −13.2135 −0.687867
\(370\) 0 0
\(371\) 6.23941 0.323934
\(372\) 0 0
\(373\) 14.5606 0.753921 0.376960 0.926229i \(-0.376969\pi\)
0.376960 + 0.926229i \(0.376969\pi\)
\(374\) 0 0
\(375\) 4.95260 0.255751
\(376\) 0 0
\(377\) 5.05082 0.260130
\(378\) 0 0
\(379\) −11.0307 −0.566609 −0.283304 0.959030i \(-0.591431\pi\)
−0.283304 + 0.959030i \(0.591431\pi\)
\(380\) 0 0
\(381\) −1.56166 −0.0800064
\(382\) 0 0
\(383\) 20.8823 1.06703 0.533517 0.845789i \(-0.320870\pi\)
0.533517 + 0.845789i \(0.320870\pi\)
\(384\) 0 0
\(385\) −0.825557 −0.0420743
\(386\) 0 0
\(387\) −2.53361 −0.128791
\(388\) 0 0
\(389\) 0.741281 0.0375844 0.0187922 0.999823i \(-0.494018\pi\)
0.0187922 + 0.999823i \(0.494018\pi\)
\(390\) 0 0
\(391\) 26.2701 1.32854
\(392\) 0 0
\(393\) −5.83072 −0.294121
\(394\) 0 0
\(395\) 8.37909 0.421598
\(396\) 0 0
\(397\) −21.8743 −1.09784 −0.548919 0.835876i \(-0.684960\pi\)
−0.548919 + 0.835876i \(0.684960\pi\)
\(398\) 0 0
\(399\) −0.811529 −0.0406272
\(400\) 0 0
\(401\) 35.0381 1.74972 0.874859 0.484378i \(-0.160954\pi\)
0.874859 + 0.484378i \(0.160954\pi\)
\(402\) 0 0
\(403\) 3.02672 0.150772
\(404\) 0 0
\(405\) 2.23017 0.110818
\(406\) 0 0
\(407\) 3.61403 0.179141
\(408\) 0 0
\(409\) −1.79179 −0.0885981 −0.0442991 0.999018i \(-0.514105\pi\)
−0.0442991 + 0.999018i \(0.514105\pi\)
\(410\) 0 0
\(411\) −6.12823 −0.302284
\(412\) 0 0
\(413\) −1.27447 −0.0627124
\(414\) 0 0
\(415\) 1.32473 0.0650285
\(416\) 0 0
\(417\) −8.64055 −0.423130
\(418\) 0 0
\(419\) 28.7315 1.40363 0.701814 0.712361i \(-0.252374\pi\)
0.701814 + 0.712361i \(0.252374\pi\)
\(420\) 0 0
\(421\) 5.93235 0.289125 0.144563 0.989496i \(-0.453822\pi\)
0.144563 + 0.989496i \(0.453822\pi\)
\(422\) 0 0
\(423\) −26.2907 −1.27830
\(424\) 0 0
\(425\) 32.6091 1.58177
\(426\) 0 0
\(427\) 11.3744 0.550446
\(428\) 0 0
\(429\) −1.07563 −0.0519319
\(430\) 0 0
\(431\) −12.9682 −0.624655 −0.312328 0.949974i \(-0.601109\pi\)
−0.312328 + 0.949974i \(0.601109\pi\)
\(432\) 0 0
\(433\) 32.4728 1.56054 0.780272 0.625441i \(-0.215081\pi\)
0.780272 + 0.625441i \(0.215081\pi\)
\(434\) 0 0
\(435\) −2.55302 −0.122408
\(436\) 0 0
\(437\) 3.70216 0.177098
\(438\) 0 0
\(439\) −15.9348 −0.760526 −0.380263 0.924878i \(-0.624166\pi\)
−0.380263 + 0.924878i \(0.624166\pi\)
\(440\) 0 0
\(441\) −2.34142 −0.111496
\(442\) 0 0
\(443\) 31.1810 1.48145 0.740727 0.671806i \(-0.234481\pi\)
0.740727 + 0.671806i \(0.234481\pi\)
\(444\) 0 0
\(445\) 5.04077 0.238955
\(446\) 0 0
\(447\) −13.0871 −0.618997
\(448\) 0 0
\(449\) 14.3006 0.674886 0.337443 0.941346i \(-0.390438\pi\)
0.337443 + 0.941346i \(0.390438\pi\)
\(450\) 0 0
\(451\) 7.32527 0.344933
\(452\) 0 0
\(453\) −9.80909 −0.460871
\(454\) 0 0
\(455\) −0.649434 −0.0304460
\(456\) 0 0
\(457\) 12.8833 0.602655 0.301328 0.953521i \(-0.402570\pi\)
0.301328 + 0.953521i \(0.402570\pi\)
\(458\) 0 0
\(459\) −30.7587 −1.43569
\(460\) 0 0
\(461\) −2.22705 −0.103724 −0.0518621 0.998654i \(-0.516516\pi\)
−0.0518621 + 0.998654i \(0.516516\pi\)
\(462\) 0 0
\(463\) 5.26683 0.244770 0.122385 0.992483i \(-0.460946\pi\)
0.122385 + 0.992483i \(0.460946\pi\)
\(464\) 0 0
\(465\) −1.52990 −0.0709475
\(466\) 0 0
\(467\) 0.391021 0.0180943 0.00904715 0.999959i \(-0.497120\pi\)
0.00904715 + 0.999959i \(0.497120\pi\)
\(468\) 0 0
\(469\) −7.11692 −0.328629
\(470\) 0 0
\(471\) 4.11679 0.189692
\(472\) 0 0
\(473\) 1.40458 0.0645827
\(474\) 0 0
\(475\) 4.59550 0.210856
\(476\) 0 0
\(477\) 14.6091 0.668904
\(478\) 0 0
\(479\) 28.1075 1.28426 0.642132 0.766594i \(-0.278050\pi\)
0.642132 + 0.766594i \(0.278050\pi\)
\(480\) 0 0
\(481\) 2.84302 0.129631
\(482\) 0 0
\(483\) −3.00441 −0.136705
\(484\) 0 0
\(485\) 6.14648 0.279097
\(486\) 0 0
\(487\) 32.7247 1.48290 0.741448 0.671010i \(-0.234139\pi\)
0.741448 + 0.671010i \(0.234139\pi\)
\(488\) 0 0
\(489\) −8.22851 −0.372106
\(490\) 0 0
\(491\) 13.1414 0.593063 0.296531 0.955023i \(-0.404170\pi\)
0.296531 + 0.955023i \(0.404170\pi\)
\(492\) 0 0
\(493\) −35.0990 −1.58078
\(494\) 0 0
\(495\) −1.93298 −0.0868809
\(496\) 0 0
\(497\) −4.45671 −0.199911
\(498\) 0 0
\(499\) 4.07868 0.182587 0.0912935 0.995824i \(-0.470900\pi\)
0.0912935 + 0.995824i \(0.470900\pi\)
\(500\) 0 0
\(501\) 9.80920 0.438243
\(502\) 0 0
\(503\) −27.6725 −1.23386 −0.616928 0.787020i \(-0.711623\pi\)
−0.616928 + 0.787020i \(0.711623\pi\)
\(504\) 0 0
\(505\) −10.6615 −0.474433
\(506\) 0 0
\(507\) 9.70371 0.430957
\(508\) 0 0
\(509\) −27.7347 −1.22932 −0.614660 0.788792i \(-0.710707\pi\)
−0.614660 + 0.788792i \(0.710707\pi\)
\(510\) 0 0
\(511\) 2.12332 0.0939300
\(512\) 0 0
\(513\) −4.33472 −0.191382
\(514\) 0 0
\(515\) 1.42074 0.0626054
\(516\) 0 0
\(517\) 14.5750 0.641007
\(518\) 0 0
\(519\) 0.963741 0.0423036
\(520\) 0 0
\(521\) 11.7538 0.514943 0.257471 0.966286i \(-0.417111\pi\)
0.257471 + 0.966286i \(0.417111\pi\)
\(522\) 0 0
\(523\) 36.8157 1.60984 0.804919 0.593385i \(-0.202209\pi\)
0.804919 + 0.593385i \(0.202209\pi\)
\(524\) 0 0
\(525\) −3.72938 −0.162763
\(526\) 0 0
\(527\) −21.0332 −0.916220
\(528\) 0 0
\(529\) −9.29404 −0.404089
\(530\) 0 0
\(531\) −2.98406 −0.129497
\(532\) 0 0
\(533\) 5.76251 0.249602
\(534\) 0 0
\(535\) −7.38944 −0.319473
\(536\) 0 0
\(537\) −8.12796 −0.350748
\(538\) 0 0
\(539\) 1.29803 0.0559102
\(540\) 0 0
\(541\) 7.04710 0.302979 0.151489 0.988459i \(-0.451593\pi\)
0.151489 + 0.988459i \(0.451593\pi\)
\(542\) 0 0
\(543\) −8.82537 −0.378733
\(544\) 0 0
\(545\) 3.27363 0.140227
\(546\) 0 0
\(547\) 8.94352 0.382397 0.191199 0.981551i \(-0.438763\pi\)
0.191199 + 0.981551i \(0.438763\pi\)
\(548\) 0 0
\(549\) 26.6323 1.13664
\(550\) 0 0
\(551\) −4.94639 −0.210723
\(552\) 0 0
\(553\) −13.1745 −0.560238
\(554\) 0 0
\(555\) −1.43705 −0.0609994
\(556\) 0 0
\(557\) −45.2610 −1.91777 −0.958885 0.283794i \(-0.908407\pi\)
−0.958885 + 0.283794i \(0.908407\pi\)
\(558\) 0 0
\(559\) 1.10493 0.0467335
\(560\) 0 0
\(561\) 7.47474 0.315584
\(562\) 0 0
\(563\) −32.3507 −1.36342 −0.681710 0.731623i \(-0.738763\pi\)
−0.681710 + 0.731623i \(0.738763\pi\)
\(564\) 0 0
\(565\) −0.0425842 −0.00179153
\(566\) 0 0
\(567\) −3.50652 −0.147260
\(568\) 0 0
\(569\) −8.97303 −0.376169 −0.188085 0.982153i \(-0.560228\pi\)
−0.188085 + 0.982153i \(0.560228\pi\)
\(570\) 0 0
\(571\) −17.1457 −0.717525 −0.358763 0.933429i \(-0.616801\pi\)
−0.358763 + 0.933429i \(0.616801\pi\)
\(572\) 0 0
\(573\) 0.879672 0.0367488
\(574\) 0 0
\(575\) 17.0132 0.709501
\(576\) 0 0
\(577\) 14.8515 0.618276 0.309138 0.951017i \(-0.399959\pi\)
0.309138 + 0.951017i \(0.399959\pi\)
\(578\) 0 0
\(579\) −9.86233 −0.409864
\(580\) 0 0
\(581\) −2.08289 −0.0864128
\(582\) 0 0
\(583\) −8.09896 −0.335424
\(584\) 0 0
\(585\) −1.52060 −0.0628691
\(586\) 0 0
\(587\) −12.7544 −0.526432 −0.263216 0.964737i \(-0.584783\pi\)
−0.263216 + 0.964737i \(0.584783\pi\)
\(588\) 0 0
\(589\) −2.96414 −0.122135
\(590\) 0 0
\(591\) 1.43695 0.0591084
\(592\) 0 0
\(593\) −38.3977 −1.57681 −0.788403 0.615159i \(-0.789092\pi\)
−0.788403 + 0.615159i \(0.789092\pi\)
\(594\) 0 0
\(595\) 4.51303 0.185016
\(596\) 0 0
\(597\) 1.27533 0.0521959
\(598\) 0 0
\(599\) 4.16331 0.170108 0.0850541 0.996376i \(-0.472894\pi\)
0.0850541 + 0.996376i \(0.472894\pi\)
\(600\) 0 0
\(601\) 9.28102 0.378581 0.189290 0.981921i \(-0.439381\pi\)
0.189290 + 0.981921i \(0.439381\pi\)
\(602\) 0 0
\(603\) −16.6637 −0.678599
\(604\) 0 0
\(605\) −5.92447 −0.240864
\(606\) 0 0
\(607\) 18.2012 0.738764 0.369382 0.929278i \(-0.379569\pi\)
0.369382 + 0.929278i \(0.379569\pi\)
\(608\) 0 0
\(609\) 4.01413 0.162661
\(610\) 0 0
\(611\) 11.4656 0.463848
\(612\) 0 0
\(613\) 15.1116 0.610351 0.305175 0.952296i \(-0.401285\pi\)
0.305175 + 0.952296i \(0.401285\pi\)
\(614\) 0 0
\(615\) −2.91275 −0.117454
\(616\) 0 0
\(617\) 18.5113 0.745236 0.372618 0.927985i \(-0.378460\pi\)
0.372618 + 0.927985i \(0.378460\pi\)
\(618\) 0 0
\(619\) −7.80912 −0.313875 −0.156938 0.987609i \(-0.550162\pi\)
−0.156938 + 0.987609i \(0.550162\pi\)
\(620\) 0 0
\(621\) −16.0478 −0.643976
\(622\) 0 0
\(623\) −7.92565 −0.317535
\(624\) 0 0
\(625\) 19.0961 0.763842
\(626\) 0 0
\(627\) 1.05339 0.0420684
\(628\) 0 0
\(629\) −19.7567 −0.787750
\(630\) 0 0
\(631\) −34.9920 −1.39301 −0.696505 0.717551i \(-0.745263\pi\)
−0.696505 + 0.717551i \(0.745263\pi\)
\(632\) 0 0
\(633\) −22.5665 −0.896936
\(634\) 0 0
\(635\) 1.22390 0.0485689
\(636\) 0 0
\(637\) 1.02111 0.0404580
\(638\) 0 0
\(639\) −10.4350 −0.412804
\(640\) 0 0
\(641\) 35.7796 1.41321 0.706605 0.707608i \(-0.250226\pi\)
0.706605 + 0.707608i \(0.250226\pi\)
\(642\) 0 0
\(643\) 17.3962 0.686038 0.343019 0.939328i \(-0.388550\pi\)
0.343019 + 0.939328i \(0.388550\pi\)
\(644\) 0 0
\(645\) −0.558504 −0.0219911
\(646\) 0 0
\(647\) −30.7502 −1.20892 −0.604458 0.796637i \(-0.706610\pi\)
−0.604458 + 0.796637i \(0.706610\pi\)
\(648\) 0 0
\(649\) 1.65430 0.0649369
\(650\) 0 0
\(651\) 2.40548 0.0942783
\(652\) 0 0
\(653\) 44.6013 1.74538 0.872691 0.488272i \(-0.162373\pi\)
0.872691 + 0.488272i \(0.162373\pi\)
\(654\) 0 0
\(655\) 4.56962 0.178550
\(656\) 0 0
\(657\) 4.97158 0.193960
\(658\) 0 0
\(659\) 36.9039 1.43757 0.718785 0.695232i \(-0.244698\pi\)
0.718785 + 0.695232i \(0.244698\pi\)
\(660\) 0 0
\(661\) −22.3132 −0.867882 −0.433941 0.900941i \(-0.642877\pi\)
−0.433941 + 0.900941i \(0.642877\pi\)
\(662\) 0 0
\(663\) 5.88009 0.228364
\(664\) 0 0
\(665\) 0.636007 0.0246633
\(666\) 0 0
\(667\) −18.3123 −0.709055
\(668\) 0 0
\(669\) −3.69477 −0.142848
\(670\) 0 0
\(671\) −14.7643 −0.569971
\(672\) 0 0
\(673\) 28.2034 1.08716 0.543581 0.839356i \(-0.317068\pi\)
0.543581 + 0.839356i \(0.317068\pi\)
\(674\) 0 0
\(675\) −19.9202 −0.766728
\(676\) 0 0
\(677\) −27.3009 −1.04926 −0.524629 0.851331i \(-0.675796\pi\)
−0.524629 + 0.851331i \(0.675796\pi\)
\(678\) 0 0
\(679\) −9.66418 −0.370877
\(680\) 0 0
\(681\) 14.9502 0.572893
\(682\) 0 0
\(683\) −27.9117 −1.06801 −0.534005 0.845481i \(-0.679314\pi\)
−0.534005 + 0.845481i \(0.679314\pi\)
\(684\) 0 0
\(685\) 4.80279 0.183505
\(686\) 0 0
\(687\) −10.5599 −0.402885
\(688\) 0 0
\(689\) −6.37114 −0.242721
\(690\) 0 0
\(691\) −22.6534 −0.861778 −0.430889 0.902405i \(-0.641800\pi\)
−0.430889 + 0.902405i \(0.641800\pi\)
\(692\) 0 0
\(693\) 3.03924 0.115451
\(694\) 0 0
\(695\) 6.77173 0.256866
\(696\) 0 0
\(697\) −40.0447 −1.51680
\(698\) 0 0
\(699\) −14.1658 −0.535800
\(700\) 0 0
\(701\) −9.84112 −0.371694 −0.185847 0.982579i \(-0.559503\pi\)
−0.185847 + 0.982579i \(0.559503\pi\)
\(702\) 0 0
\(703\) −2.78424 −0.105010
\(704\) 0 0
\(705\) −5.79546 −0.218270
\(706\) 0 0
\(707\) 16.7633 0.630447
\(708\) 0 0
\(709\) 28.3147 1.06338 0.531691 0.846938i \(-0.321557\pi\)
0.531691 + 0.846938i \(0.321557\pi\)
\(710\) 0 0
\(711\) −30.8471 −1.15686
\(712\) 0 0
\(713\) −10.9737 −0.410968
\(714\) 0 0
\(715\) 0.842987 0.0315259
\(716\) 0 0
\(717\) 1.75208 0.0654325
\(718\) 0 0
\(719\) −20.6519 −0.770185 −0.385092 0.922878i \(-0.625830\pi\)
−0.385092 + 0.922878i \(0.625830\pi\)
\(720\) 0 0
\(721\) −2.23385 −0.0831929
\(722\) 0 0
\(723\) −4.83112 −0.179671
\(724\) 0 0
\(725\) −22.7311 −0.844212
\(726\) 0 0
\(727\) −15.2781 −0.566635 −0.283317 0.959026i \(-0.591435\pi\)
−0.283317 + 0.959026i \(0.591435\pi\)
\(728\) 0 0
\(729\) 2.34300 0.0867779
\(730\) 0 0
\(731\) −7.67835 −0.283994
\(732\) 0 0
\(733\) 2.45927 0.0908352 0.0454176 0.998968i \(-0.485538\pi\)
0.0454176 + 0.998968i \(0.485538\pi\)
\(734\) 0 0
\(735\) −0.516138 −0.0190380
\(736\) 0 0
\(737\) 9.23799 0.340286
\(738\) 0 0
\(739\) −40.5385 −1.49123 −0.745616 0.666376i \(-0.767845\pi\)
−0.745616 + 0.666376i \(0.767845\pi\)
\(740\) 0 0
\(741\) 0.828662 0.0304417
\(742\) 0 0
\(743\) −0.152709 −0.00560235 −0.00280117 0.999996i \(-0.500892\pi\)
−0.00280117 + 0.999996i \(0.500892\pi\)
\(744\) 0 0
\(745\) 10.2565 0.375770
\(746\) 0 0
\(747\) −4.87692 −0.178437
\(748\) 0 0
\(749\) 11.6185 0.424531
\(750\) 0 0
\(751\) 2.79407 0.101957 0.0509785 0.998700i \(-0.483766\pi\)
0.0509785 + 0.998700i \(0.483766\pi\)
\(752\) 0 0
\(753\) −9.19154 −0.334958
\(754\) 0 0
\(755\) 7.68752 0.279778
\(756\) 0 0
\(757\) 42.7727 1.55460 0.777301 0.629129i \(-0.216588\pi\)
0.777301 + 0.629129i \(0.216588\pi\)
\(758\) 0 0
\(759\) 3.89982 0.141554
\(760\) 0 0
\(761\) −22.9768 −0.832907 −0.416454 0.909157i \(-0.636727\pi\)
−0.416454 + 0.909157i \(0.636727\pi\)
\(762\) 0 0
\(763\) −5.14717 −0.186340
\(764\) 0 0
\(765\) 10.5669 0.382047
\(766\) 0 0
\(767\) 1.30137 0.0469899
\(768\) 0 0
\(769\) 16.4778 0.594204 0.297102 0.954846i \(-0.403980\pi\)
0.297102 + 0.954846i \(0.403980\pi\)
\(770\) 0 0
\(771\) −18.3016 −0.659115
\(772\) 0 0
\(773\) −38.2050 −1.37414 −0.687070 0.726592i \(-0.741103\pi\)
−0.687070 + 0.726592i \(0.741103\pi\)
\(774\) 0 0
\(775\) −13.6217 −0.489305
\(776\) 0 0
\(777\) 2.25949 0.0810588
\(778\) 0 0
\(779\) −5.64336 −0.202195
\(780\) 0 0
\(781\) 5.78495 0.207002
\(782\) 0 0
\(783\) 21.4412 0.766245
\(784\) 0 0
\(785\) −3.22639 −0.115155
\(786\) 0 0
\(787\) −37.2974 −1.32951 −0.664754 0.747062i \(-0.731464\pi\)
−0.664754 + 0.747062i \(0.731464\pi\)
\(788\) 0 0
\(789\) −20.4264 −0.727199
\(790\) 0 0
\(791\) 0.0669556 0.00238067
\(792\) 0 0
\(793\) −11.6145 −0.412445
\(794\) 0 0
\(795\) 3.22039 0.114216
\(796\) 0 0
\(797\) −23.7648 −0.841791 −0.420895 0.907109i \(-0.638284\pi\)
−0.420895 + 0.907109i \(0.638284\pi\)
\(798\) 0 0
\(799\) −79.6763 −2.81875
\(800\) 0 0
\(801\) −18.5573 −0.655690
\(802\) 0 0
\(803\) −2.75613 −0.0972618
\(804\) 0 0
\(805\) 2.35460 0.0829886
\(806\) 0 0
\(807\) −9.74198 −0.342934
\(808\) 0 0
\(809\) −1.83710 −0.0645890 −0.0322945 0.999478i \(-0.510281\pi\)
−0.0322945 + 0.999478i \(0.510281\pi\)
\(810\) 0 0
\(811\) −32.3038 −1.13434 −0.567169 0.823601i \(-0.691961\pi\)
−0.567169 + 0.823601i \(0.691961\pi\)
\(812\) 0 0
\(813\) 5.52774 0.193866
\(814\) 0 0
\(815\) 6.44880 0.225892
\(816\) 0 0
\(817\) −1.08208 −0.0378573
\(818\) 0 0
\(819\) 2.39085 0.0835432
\(820\) 0 0
\(821\) 17.6352 0.615472 0.307736 0.951472i \(-0.400429\pi\)
0.307736 + 0.951472i \(0.400429\pi\)
\(822\) 0 0
\(823\) 52.6367 1.83480 0.917401 0.397965i \(-0.130283\pi\)
0.917401 + 0.397965i \(0.130283\pi\)
\(824\) 0 0
\(825\) 4.84085 0.168537
\(826\) 0 0
\(827\) −22.5231 −0.783204 −0.391602 0.920135i \(-0.628079\pi\)
−0.391602 + 0.920135i \(0.628079\pi\)
\(828\) 0 0
\(829\) −26.2488 −0.911659 −0.455830 0.890067i \(-0.650657\pi\)
−0.455830 + 0.890067i \(0.650657\pi\)
\(830\) 0 0
\(831\) 14.5719 0.505495
\(832\) 0 0
\(833\) −7.09589 −0.245858
\(834\) 0 0
\(835\) −7.68761 −0.266041
\(836\) 0 0
\(837\) 12.8487 0.444116
\(838\) 0 0
\(839\) 5.27136 0.181987 0.0909937 0.995851i \(-0.470996\pi\)
0.0909937 + 0.995851i \(0.470996\pi\)
\(840\) 0 0
\(841\) −4.53326 −0.156319
\(842\) 0 0
\(843\) −1.76519 −0.0607964
\(844\) 0 0
\(845\) −7.60494 −0.261618
\(846\) 0 0
\(847\) 9.31511 0.320071
\(848\) 0 0
\(849\) −20.5548 −0.705440
\(850\) 0 0
\(851\) −10.3077 −0.353343
\(852\) 0 0
\(853\) −7.92638 −0.271394 −0.135697 0.990750i \(-0.543327\pi\)
−0.135697 + 0.990750i \(0.543327\pi\)
\(854\) 0 0
\(855\) 1.48916 0.0509282
\(856\) 0 0
\(857\) −52.3189 −1.78718 −0.893589 0.448886i \(-0.851821\pi\)
−0.893589 + 0.448886i \(0.851821\pi\)
\(858\) 0 0
\(859\) 21.1473 0.721535 0.360768 0.932656i \(-0.382515\pi\)
0.360768 + 0.932656i \(0.382515\pi\)
\(860\) 0 0
\(861\) 4.57975 0.156078
\(862\) 0 0
\(863\) −33.6834 −1.14660 −0.573298 0.819347i \(-0.694336\pi\)
−0.573298 + 0.819347i \(0.694336\pi\)
\(864\) 0 0
\(865\) −0.755298 −0.0256809
\(866\) 0 0
\(867\) −27.0658 −0.919203
\(868\) 0 0
\(869\) 17.1010 0.580110
\(870\) 0 0
\(871\) 7.26717 0.246239
\(872\) 0 0
\(873\) −22.6279 −0.765839
\(874\) 0 0
\(875\) 6.10280 0.206312
\(876\) 0 0
\(877\) −37.9082 −1.28007 −0.640035 0.768346i \(-0.721080\pi\)
−0.640035 + 0.768346i \(0.721080\pi\)
\(878\) 0 0
\(879\) 10.8860 0.367176
\(880\) 0 0
\(881\) 25.4413 0.857138 0.428569 0.903509i \(-0.359018\pi\)
0.428569 + 0.903509i \(0.359018\pi\)
\(882\) 0 0
\(883\) 44.7224 1.50503 0.752514 0.658576i \(-0.228841\pi\)
0.752514 + 0.658576i \(0.228841\pi\)
\(884\) 0 0
\(885\) −0.657800 −0.0221117
\(886\) 0 0
\(887\) −53.9753 −1.81231 −0.906157 0.422942i \(-0.860998\pi\)
−0.906157 + 0.422942i \(0.860998\pi\)
\(888\) 0 0
\(889\) −1.92435 −0.0645405
\(890\) 0 0
\(891\) 4.55157 0.152483
\(892\) 0 0
\(893\) −11.2285 −0.375748
\(894\) 0 0
\(895\) 6.37000 0.212926
\(896\) 0 0
\(897\) 3.06784 0.102432
\(898\) 0 0
\(899\) 14.6618 0.488997
\(900\) 0 0
\(901\) 44.2742 1.47499
\(902\) 0 0
\(903\) 0.878142 0.0292227
\(904\) 0 0
\(905\) 6.91657 0.229915
\(906\) 0 0
\(907\) −33.2363 −1.10359 −0.551797 0.833978i \(-0.686058\pi\)
−0.551797 + 0.833978i \(0.686058\pi\)
\(908\) 0 0
\(909\) 39.2499 1.30184
\(910\) 0 0
\(911\) −47.2924 −1.56687 −0.783433 0.621476i \(-0.786533\pi\)
−0.783433 + 0.621476i \(0.786533\pi\)
\(912\) 0 0
\(913\) 2.70366 0.0894780
\(914\) 0 0
\(915\) 5.87076 0.194081
\(916\) 0 0
\(917\) −7.18486 −0.237265
\(918\) 0 0
\(919\) 23.6716 0.780853 0.390426 0.920634i \(-0.372328\pi\)
0.390426 + 0.920634i \(0.372328\pi\)
\(920\) 0 0
\(921\) −1.98899 −0.0655393
\(922\) 0 0
\(923\) 4.55080 0.149791
\(924\) 0 0
\(925\) −12.7950 −0.420696
\(926\) 0 0
\(927\) −5.23038 −0.171788
\(928\) 0 0
\(929\) −26.6785 −0.875293 −0.437646 0.899147i \(-0.644188\pi\)
−0.437646 + 0.899147i \(0.644188\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) −7.44426 −0.243714
\(934\) 0 0
\(935\) −5.85806 −0.191579
\(936\) 0 0
\(937\) 24.9994 0.816696 0.408348 0.912826i \(-0.366105\pi\)
0.408348 + 0.912826i \(0.366105\pi\)
\(938\) 0 0
\(939\) 26.9811 0.880494
\(940\) 0 0
\(941\) −20.2696 −0.660769 −0.330385 0.943846i \(-0.607178\pi\)
−0.330385 + 0.943846i \(0.607178\pi\)
\(942\) 0 0
\(943\) −20.8926 −0.680357
\(944\) 0 0
\(945\) −2.75691 −0.0896822
\(946\) 0 0
\(947\) −44.4560 −1.44462 −0.722312 0.691567i \(-0.756921\pi\)
−0.722312 + 0.691567i \(0.756921\pi\)
\(948\) 0 0
\(949\) −2.16814 −0.0703810
\(950\) 0 0
\(951\) 8.99422 0.291658
\(952\) 0 0
\(953\) 53.4069 1.73002 0.865010 0.501754i \(-0.167312\pi\)
0.865010 + 0.501754i \(0.167312\pi\)
\(954\) 0 0
\(955\) −0.689411 −0.0223088
\(956\) 0 0
\(957\) −5.21048 −0.168431
\(958\) 0 0
\(959\) −7.55147 −0.243850
\(960\) 0 0
\(961\) −22.2139 −0.716577
\(962\) 0 0
\(963\) 27.2038 0.876630
\(964\) 0 0
\(965\) 7.72925 0.248813
\(966\) 0 0
\(967\) 45.2384 1.45477 0.727384 0.686231i \(-0.240736\pi\)
0.727384 + 0.686231i \(0.240736\pi\)
\(968\) 0 0
\(969\) −5.75852 −0.184990
\(970\) 0 0
\(971\) −40.3899 −1.29617 −0.648086 0.761567i \(-0.724430\pi\)
−0.648086 + 0.761567i \(0.724430\pi\)
\(972\) 0 0
\(973\) −10.6473 −0.341335
\(974\) 0 0
\(975\) 3.80811 0.121957
\(976\) 0 0
\(977\) −4.45440 −0.142509 −0.0712544 0.997458i \(-0.522700\pi\)
−0.0712544 + 0.997458i \(0.522700\pi\)
\(978\) 0 0
\(979\) 10.2878 0.328798
\(980\) 0 0
\(981\) −12.0517 −0.384781
\(982\) 0 0
\(983\) −37.4751 −1.19527 −0.597634 0.801769i \(-0.703893\pi\)
−0.597634 + 0.801769i \(0.703893\pi\)
\(984\) 0 0
\(985\) −1.12616 −0.0358825
\(986\) 0 0
\(987\) 9.11226 0.290047
\(988\) 0 0
\(989\) −4.00604 −0.127385
\(990\) 0 0
\(991\) 6.64266 0.211011 0.105506 0.994419i \(-0.466354\pi\)
0.105506 + 0.994419i \(0.466354\pi\)
\(992\) 0 0
\(993\) 11.4375 0.362960
\(994\) 0 0
\(995\) −0.999496 −0.0316862
\(996\) 0 0
\(997\) −0.970611 −0.0307396 −0.0153698 0.999882i \(-0.504893\pi\)
−0.0153698 + 0.999882i \(0.504893\pi\)
\(998\) 0 0
\(999\) 12.0689 0.381843
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4256.2.a.q.1.3 yes 7
4.3 odd 2 4256.2.a.p.1.5 7
8.3 odd 2 8512.2.a.ci.1.3 7
8.5 even 2 8512.2.a.ch.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4256.2.a.p.1.5 7 4.3 odd 2
4256.2.a.q.1.3 yes 7 1.1 even 1 trivial
8512.2.a.ch.1.5 7 8.5 even 2
8512.2.a.ci.1.3 7 8.3 odd 2