Properties

Label 4256.2.a
Level $4256$
Weight $2$
Character orbit 4256.a
Rep. character $\chi_{4256}(1,\cdot)$
Character field $\Q$
Dimension $108$
Newform subspaces $20$
Sturm bound $1280$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4256 = 2^{5} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4256.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(1280\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4256))\).

Total New Old
Modular forms 656 108 548
Cusp forms 625 108 517
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(72\)\(11\)\(61\)\(69\)\(11\)\(58\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(88\)\(16\)\(72\)\(84\)\(16\)\(68\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(86\)\(16\)\(70\)\(82\)\(16\)\(66\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(+\)\(82\)\(11\)\(71\)\(78\)\(11\)\(67\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(+\)\(-\)\(92\)\(16\)\(76\)\(88\)\(16\)\(72\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(+\)\(76\)\(11\)\(65\)\(72\)\(11\)\(61\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(+\)\(78\)\(11\)\(67\)\(74\)\(11\)\(63\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(-\)\(-\)\(82\)\(16\)\(66\)\(78\)\(16\)\(62\)\(4\)\(0\)\(4\)
Plus space\(+\)\(308\)\(44\)\(264\)\(293\)\(44\)\(249\)\(15\)\(0\)\(15\)
Minus space\(-\)\(348\)\(64\)\(284\)\(332\)\(64\)\(268\)\(16\)\(0\)\(16\)

Trace form

\( 108 q - 8 q^{5} + 108 q^{9} - 8 q^{13} + 24 q^{17} + 132 q^{25} - 8 q^{29} - 40 q^{37} + 24 q^{41} + 56 q^{45} + 108 q^{49} + 88 q^{53} - 40 q^{61} + 48 q^{65} + 96 q^{69} + 24 q^{73} + 108 q^{81} - 48 q^{85}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4256))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 19
4256.2.a.a 4256.a 1.a $1$ $33.984$ \(\Q\) None 4256.2.a.a \(0\) \(0\) \(2\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{5}-q^{7}-3q^{9}-4q^{13}+6q^{17}+\cdots\)
4256.2.a.b 4256.a 1.a $1$ $33.984$ \(\Q\) None 4256.2.a.a \(0\) \(0\) \(2\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{5}+q^{7}-3q^{9}-4q^{13}+6q^{17}+\cdots\)
4256.2.a.c 4256.a 1.a $2$ $33.984$ \(\Q(\sqrt{5}) \) None 4256.2.a.c \(0\) \(-3\) \(1\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}+\beta q^{5}+q^{7}+(-1+3\beta )q^{9}+\cdots\)
4256.2.a.d 4256.a 1.a $2$ $33.984$ \(\Q(\sqrt{5}) \) None 4256.2.a.c \(0\) \(3\) \(1\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+\beta q^{5}-q^{7}+(-1+3\beta )q^{9}+\cdots\)
4256.2.a.e 4256.a 1.a $4$ $33.984$ 4.4.2624.1 None 4256.2.a.e \(0\) \(-2\) \(0\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(1-\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)
4256.2.a.f 4256.a 1.a $4$ $33.984$ 4.4.2624.1 None 4256.2.a.e \(0\) \(2\) \(0\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(1-\beta _{1}-\beta _{2}+\beta _{3})q^{5}+\cdots\)
4256.2.a.g 4256.a 1.a $5$ $33.984$ 5.5.1730752.1 None 4256.2.a.g \(0\) \(-2\) \(-6\) \(5\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1-\beta _{3})q^{5}+q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
4256.2.a.h 4256.a 1.a $5$ $33.984$ 5.5.1730752.1 None 4256.2.a.g \(0\) \(2\) \(-6\) \(-5\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1-\beta _{3})q^{5}-q^{7}+(\beta _{1}+\cdots)q^{9}+\cdots\)
4256.2.a.i 4256.a 1.a $6$ $33.984$ 6.6.41027408.1 None 4256.2.a.i \(0\) \(-3\) \(3\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+\beta _{3}q^{5}-q^{7}+(\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{9}+\cdots\)
4256.2.a.j 4256.a 1.a $6$ $33.984$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 4256.2.a.j \(0\) \(-1\) \(-5\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1-\beta _{4})q^{5}-q^{7}+(2+\beta _{2}+\cdots)q^{9}+\cdots\)
4256.2.a.k 4256.a 1.a $6$ $33.984$ 6.6.60663248.1 None 4256.2.a.k \(0\) \(-1\) \(1\) \(6\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+\beta _{5}q^{5}+q^{7}+(1-\beta _{3}+\beta _{4}+\cdots)q^{9}+\cdots\)
4256.2.a.l 4256.a 1.a $6$ $33.984$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 4256.2.a.j \(0\) \(1\) \(-5\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1-\beta _{4})q^{5}+q^{7}+(2+\beta _{2}+\cdots)q^{9}+\cdots\)
4256.2.a.m 4256.a 1.a $6$ $33.984$ 6.6.60663248.1 None 4256.2.a.k \(0\) \(1\) \(1\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+\beta _{5}q^{5}-q^{7}+(1-\beta _{3}+\beta _{4}+\cdots)q^{9}+\cdots\)
4256.2.a.n 4256.a 1.a $6$ $33.984$ 6.6.41027408.1 None 4256.2.a.i \(0\) \(3\) \(3\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+\beta _{3}q^{5}+q^{7}+(\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{9}+\cdots\)
4256.2.a.o 4256.a 1.a $7$ $33.984$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 4256.2.a.o \(0\) \(-7\) \(5\) \(-7\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(1+\beta _{3})q^{5}-q^{7}+\cdots\)
4256.2.a.p 4256.a 1.a $7$ $33.984$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 4256.2.a.p \(0\) \(-3\) \(-5\) \(7\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(-1+\beta _{3})q^{5}+q^{7}+(1-\beta _{2}+\cdots)q^{9}+\cdots\)
4256.2.a.q 4256.a 1.a $7$ $33.984$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 4256.2.a.p \(0\) \(3\) \(-5\) \(-7\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-1+\beta _{3})q^{5}-q^{7}+(1-\beta _{2}+\cdots)q^{9}+\cdots\)
4256.2.a.r 4256.a 1.a $7$ $33.984$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 4256.2.a.o \(0\) \(7\) \(5\) \(7\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(1+\beta _{3})q^{5}+q^{7}+(2+\cdots)q^{9}+\cdots\)
4256.2.a.s 4256.a 1.a $10$ $33.984$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 4256.2.a.s \(0\) \(0\) \(0\) \(-10\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}-\beta _{5}q^{5}-q^{7}+(2+\beta _{2})q^{9}+\cdots\)
4256.2.a.t 4256.a 1.a $10$ $33.984$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 4256.2.a.s \(0\) \(0\) \(0\) \(10\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-\beta _{5}q^{5}+q^{7}+(2+\beta _{2})q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4256))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(4256)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(304))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(532))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(608))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1064))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2128))\)\(^{\oplus 2}\)