Defining parameters
| Level: | \( N \) | \(=\) | \( 4256 = 2^{5} \cdot 7 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4256.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 20 \) | ||
| Sturm bound: | \(1280\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(3\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4256))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 656 | 108 | 548 |
| Cusp forms | 625 | 108 | 517 |
| Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(72\) | \(11\) | \(61\) | \(69\) | \(11\) | \(58\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(88\) | \(16\) | \(72\) | \(84\) | \(16\) | \(68\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(86\) | \(16\) | \(70\) | \(82\) | \(16\) | \(66\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(82\) | \(11\) | \(71\) | \(78\) | \(11\) | \(67\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(92\) | \(16\) | \(76\) | \(88\) | \(16\) | \(72\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(76\) | \(11\) | \(65\) | \(72\) | \(11\) | \(61\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(78\) | \(11\) | \(67\) | \(74\) | \(11\) | \(63\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(82\) | \(16\) | \(66\) | \(78\) | \(16\) | \(62\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(308\) | \(44\) | \(264\) | \(293\) | \(44\) | \(249\) | \(15\) | \(0\) | \(15\) | |||||
| Minus space | \(-\) | \(348\) | \(64\) | \(284\) | \(332\) | \(64\) | \(268\) | \(16\) | \(0\) | \(16\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4256))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4256))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4256)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(304))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(532))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(608))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1064))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2128))\)\(^{\oplus 2}\)