Properties

Label 425.6.a.k.1.3
Level $425$
Weight $6$
Character 425.1
Self dual yes
Analytic conductor $68.163$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,6,Mod(1,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.1631234205\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 378 x^{13} + 106 x^{12} + 55677 x^{11} + 23739 x^{10} - 4018640 x^{9} + \cdots - 45034730496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{9}\cdot 5^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-8.07389\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.07389 q^{2} +18.0213 q^{3} +33.1877 q^{4} -145.502 q^{6} -142.473 q^{7} -9.58900 q^{8} +81.7682 q^{9} +687.202 q^{11} +598.086 q^{12} +738.458 q^{13} +1150.31 q^{14} -984.584 q^{16} +289.000 q^{17} -660.187 q^{18} -67.1524 q^{19} -2567.56 q^{21} -5548.39 q^{22} -942.982 q^{23} -172.807 q^{24} -5962.23 q^{26} -2905.61 q^{27} -4728.36 q^{28} +7736.96 q^{29} -6185.50 q^{31} +8256.27 q^{32} +12384.3 q^{33} -2333.35 q^{34} +2713.69 q^{36} -8429.23 q^{37} +542.181 q^{38} +13308.0 q^{39} +7390.63 q^{41} +20730.2 q^{42} +11369.6 q^{43} +22806.6 q^{44} +7613.53 q^{46} +6055.20 q^{47} -17743.5 q^{48} +3491.70 q^{49} +5208.16 q^{51} +24507.7 q^{52} -35098.3 q^{53} +23459.6 q^{54} +1366.18 q^{56} -1210.17 q^{57} -62467.4 q^{58} +23999.4 q^{59} +32862.9 q^{61} +49941.1 q^{62} -11649.8 q^{63} -35153.5 q^{64} -99989.4 q^{66} -49249.7 q^{67} +9591.23 q^{68} -16993.8 q^{69} +56753.1 q^{71} -784.075 q^{72} -28007.0 q^{73} +68056.6 q^{74} -2228.63 q^{76} -97908.1 q^{77} -107447. q^{78} +40327.5 q^{79} -72232.6 q^{81} -59671.1 q^{82} -29417.7 q^{83} -85211.3 q^{84} -91797.0 q^{86} +139430. q^{87} -6589.58 q^{88} +64117.3 q^{89} -105211. q^{91} -31295.4 q^{92} -111471. q^{93} -48889.0 q^{94} +148789. q^{96} +98670.9 q^{97} -28191.6 q^{98} +56191.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + q^{2} + 9 q^{3} + 277 q^{4} + 169 q^{6} + 181 q^{7} + 753 q^{8} + 1826 q^{9} + 172 q^{11} - 2109 q^{12} - 389 q^{13} + 3635 q^{14} + 6837 q^{16} + 4335 q^{17} + 6742 q^{18} + 5150 q^{19} - 6891 q^{21}+ \cdots - 183214 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.07389 −1.42728 −0.713638 0.700515i \(-0.752954\pi\)
−0.713638 + 0.700515i \(0.752954\pi\)
\(3\) 18.0213 1.15607 0.578034 0.816012i \(-0.303820\pi\)
0.578034 + 0.816012i \(0.303820\pi\)
\(4\) 33.1877 1.03711
\(5\) 0 0
\(6\) −145.502 −1.65003
\(7\) −142.473 −1.09898 −0.549489 0.835501i \(-0.685178\pi\)
−0.549489 + 0.835501i \(0.685178\pi\)
\(8\) −9.58900 −0.0529723
\(9\) 81.7682 0.336494
\(10\) 0 0
\(11\) 687.202 1.71239 0.856195 0.516652i \(-0.172822\pi\)
0.856195 + 0.516652i \(0.172822\pi\)
\(12\) 598.086 1.19898
\(13\) 738.458 1.21190 0.605951 0.795502i \(-0.292793\pi\)
0.605951 + 0.795502i \(0.292793\pi\)
\(14\) 1150.31 1.56854
\(15\) 0 0
\(16\) −984.584 −0.961508
\(17\) 289.000 0.242536
\(18\) −660.187 −0.480270
\(19\) −67.1524 −0.0426754 −0.0213377 0.999772i \(-0.506793\pi\)
−0.0213377 + 0.999772i \(0.506793\pi\)
\(20\) 0 0
\(21\) −2567.56 −1.27049
\(22\) −5548.39 −2.44405
\(23\) −942.982 −0.371692 −0.185846 0.982579i \(-0.559503\pi\)
−0.185846 + 0.982579i \(0.559503\pi\)
\(24\) −172.807 −0.0612396
\(25\) 0 0
\(26\) −5962.23 −1.72972
\(27\) −2905.61 −0.767058
\(28\) −4728.36 −1.13977
\(29\) 7736.96 1.70834 0.854172 0.519990i \(-0.174064\pi\)
0.854172 + 0.519990i \(0.174064\pi\)
\(30\) 0 0
\(31\) −6185.50 −1.15603 −0.578017 0.816025i \(-0.696173\pi\)
−0.578017 + 0.816025i \(0.696173\pi\)
\(32\) 8256.27 1.42531
\(33\) 12384.3 1.97964
\(34\) −2333.35 −0.346165
\(35\) 0 0
\(36\) 2713.69 0.348983
\(37\) −8429.23 −1.01224 −0.506120 0.862463i \(-0.668921\pi\)
−0.506120 + 0.862463i \(0.668921\pi\)
\(38\) 542.181 0.0609095
\(39\) 13308.0 1.40104
\(40\) 0 0
\(41\) 7390.63 0.686629 0.343314 0.939221i \(-0.388450\pi\)
0.343314 + 0.939221i \(0.388450\pi\)
\(42\) 20730.2 1.81334
\(43\) 11369.6 0.937724 0.468862 0.883272i \(-0.344664\pi\)
0.468862 + 0.883272i \(0.344664\pi\)
\(44\) 22806.6 1.77594
\(45\) 0 0
\(46\) 7613.53 0.530507
\(47\) 6055.20 0.399838 0.199919 0.979812i \(-0.435932\pi\)
0.199919 + 0.979812i \(0.435932\pi\)
\(48\) −17743.5 −1.11157
\(49\) 3491.70 0.207752
\(50\) 0 0
\(51\) 5208.16 0.280388
\(52\) 24507.7 1.25688
\(53\) −35098.3 −1.71631 −0.858156 0.513390i \(-0.828390\pi\)
−0.858156 + 0.513390i \(0.828390\pi\)
\(54\) 23459.6 1.09480
\(55\) 0 0
\(56\) 1366.18 0.0582153
\(57\) −1210.17 −0.0493357
\(58\) −62467.4 −2.43828
\(59\) 23999.4 0.897576 0.448788 0.893638i \(-0.351856\pi\)
0.448788 + 0.893638i \(0.351856\pi\)
\(60\) 0 0
\(61\) 32862.9 1.13079 0.565394 0.824821i \(-0.308724\pi\)
0.565394 + 0.824821i \(0.308724\pi\)
\(62\) 49941.1 1.64998
\(63\) −11649.8 −0.369800
\(64\) −35153.5 −1.07280
\(65\) 0 0
\(66\) −99989.4 −2.82549
\(67\) −49249.7 −1.34035 −0.670173 0.742205i \(-0.733780\pi\)
−0.670173 + 0.742205i \(0.733780\pi\)
\(68\) 9591.23 0.251537
\(69\) −16993.8 −0.429702
\(70\) 0 0
\(71\) 56753.1 1.33611 0.668057 0.744110i \(-0.267126\pi\)
0.668057 + 0.744110i \(0.267126\pi\)
\(72\) −784.075 −0.0178249
\(73\) −28007.0 −0.615119 −0.307559 0.951529i \(-0.599512\pi\)
−0.307559 + 0.951529i \(0.599512\pi\)
\(74\) 68056.6 1.44475
\(75\) 0 0
\(76\) −2228.63 −0.0442592
\(77\) −97908.1 −1.88188
\(78\) −107447. −1.99967
\(79\) 40327.5 0.726999 0.363499 0.931594i \(-0.381582\pi\)
0.363499 + 0.931594i \(0.381582\pi\)
\(80\) 0 0
\(81\) −72232.6 −1.22327
\(82\) −59671.1 −0.980008
\(83\) −29417.7 −0.468720 −0.234360 0.972150i \(-0.575299\pi\)
−0.234360 + 0.972150i \(0.575299\pi\)
\(84\) −85211.3 −1.31765
\(85\) 0 0
\(86\) −91797.0 −1.33839
\(87\) 139430. 1.97496
\(88\) −6589.58 −0.0907092
\(89\) 64117.3 0.858026 0.429013 0.903298i \(-0.358862\pi\)
0.429013 + 0.903298i \(0.358862\pi\)
\(90\) 0 0
\(91\) −105211. −1.33185
\(92\) −31295.4 −0.385488
\(93\) −111471. −1.33646
\(94\) −48889.0 −0.570678
\(95\) 0 0
\(96\) 148789. 1.64775
\(97\) 98670.9 1.06478 0.532390 0.846499i \(-0.321294\pi\)
0.532390 + 0.846499i \(0.321294\pi\)
\(98\) −28191.6 −0.296520
\(99\) 56191.3 0.576210
\(100\) 0 0
\(101\) 157091. 1.53231 0.766157 0.642653i \(-0.222166\pi\)
0.766157 + 0.642653i \(0.222166\pi\)
\(102\) −42050.1 −0.400191
\(103\) 196343. 1.82357 0.911783 0.410672i \(-0.134706\pi\)
0.911783 + 0.410672i \(0.134706\pi\)
\(104\) −7081.07 −0.0641972
\(105\) 0 0
\(106\) 283379. 2.44965
\(107\) −135667. −1.14555 −0.572776 0.819712i \(-0.694134\pi\)
−0.572776 + 0.819712i \(0.694134\pi\)
\(108\) −96430.4 −0.795527
\(109\) −189284. −1.52598 −0.762988 0.646413i \(-0.776268\pi\)
−0.762988 + 0.646413i \(0.776268\pi\)
\(110\) 0 0
\(111\) −151906. −1.17022
\(112\) 140277. 1.05668
\(113\) −102836. −0.757618 −0.378809 0.925475i \(-0.623666\pi\)
−0.378809 + 0.925475i \(0.623666\pi\)
\(114\) 9770.81 0.0704156
\(115\) 0 0
\(116\) 256772. 1.77175
\(117\) 60382.3 0.407798
\(118\) −193769. −1.28109
\(119\) −41174.8 −0.266541
\(120\) 0 0
\(121\) 311196. 1.93228
\(122\) −265331. −1.61395
\(123\) 133189. 0.793790
\(124\) −205282. −1.19894
\(125\) 0 0
\(126\) 94059.1 0.527806
\(127\) 89049.4 0.489916 0.244958 0.969534i \(-0.421226\pi\)
0.244958 + 0.969534i \(0.421226\pi\)
\(128\) 19624.7 0.105872
\(129\) 204896. 1.08407
\(130\) 0 0
\(131\) 146144. 0.744051 0.372025 0.928223i \(-0.378663\pi\)
0.372025 + 0.928223i \(0.378663\pi\)
\(132\) 411006. 2.05311
\(133\) 9567.43 0.0468993
\(134\) 397637. 1.91304
\(135\) 0 0
\(136\) −2771.22 −0.0128477
\(137\) 160824. 0.732063 0.366031 0.930603i \(-0.380716\pi\)
0.366031 + 0.930603i \(0.380716\pi\)
\(138\) 137206. 0.613303
\(139\) 19640.0 0.0862194 0.0431097 0.999070i \(-0.486274\pi\)
0.0431097 + 0.999070i \(0.486274\pi\)
\(140\) 0 0
\(141\) 109123. 0.462240
\(142\) −458218. −1.90700
\(143\) 507470. 2.07525
\(144\) −80507.7 −0.323542
\(145\) 0 0
\(146\) 226125. 0.877944
\(147\) 62925.0 0.240176
\(148\) −279746. −1.04981
\(149\) 157622. 0.581636 0.290818 0.956778i \(-0.406073\pi\)
0.290818 + 0.956778i \(0.406073\pi\)
\(150\) 0 0
\(151\) 71650.8 0.255728 0.127864 0.991792i \(-0.459188\pi\)
0.127864 + 0.991792i \(0.459188\pi\)
\(152\) 643.924 0.00226061
\(153\) 23631.0 0.0816119
\(154\) 790499. 2.68596
\(155\) 0 0
\(156\) 441661. 1.45304
\(157\) 133758. 0.433081 0.216541 0.976274i \(-0.430523\pi\)
0.216541 + 0.976274i \(0.430523\pi\)
\(158\) −325600. −1.03763
\(159\) −632517. −1.98417
\(160\) 0 0
\(161\) 134350. 0.408482
\(162\) 583198. 1.74594
\(163\) 356947. 1.05229 0.526145 0.850395i \(-0.323637\pi\)
0.526145 + 0.850395i \(0.323637\pi\)
\(164\) 245278. 0.712112
\(165\) 0 0
\(166\) 237515. 0.668993
\(167\) 239921. 0.665699 0.332850 0.942980i \(-0.391990\pi\)
0.332850 + 0.942980i \(0.391990\pi\)
\(168\) 24620.3 0.0673009
\(169\) 174027. 0.468706
\(170\) 0 0
\(171\) −5490.93 −0.0143600
\(172\) 377331. 0.972527
\(173\) 554668. 1.40902 0.704512 0.709693i \(-0.251166\pi\)
0.704512 + 0.709693i \(0.251166\pi\)
\(174\) −1.12574e6 −2.81882
\(175\) 0 0
\(176\) −676609. −1.64648
\(177\) 432502. 1.03766
\(178\) −517676. −1.22464
\(179\) −92023.1 −0.214667 −0.107333 0.994223i \(-0.534231\pi\)
−0.107333 + 0.994223i \(0.534231\pi\)
\(180\) 0 0
\(181\) −3508.83 −0.00796096 −0.00398048 0.999992i \(-0.501267\pi\)
−0.00398048 + 0.999992i \(0.501267\pi\)
\(182\) 849459. 1.90092
\(183\) 592233. 1.30727
\(184\) 9042.25 0.0196894
\(185\) 0 0
\(186\) 900004. 1.90749
\(187\) 198601. 0.415316
\(188\) 200958. 0.414677
\(189\) 413973. 0.842980
\(190\) 0 0
\(191\) 35556.6 0.0705239 0.0352619 0.999378i \(-0.488773\pi\)
0.0352619 + 0.999378i \(0.488773\pi\)
\(192\) −633513. −1.24023
\(193\) −87356.2 −0.168811 −0.0844055 0.996431i \(-0.526899\pi\)
−0.0844055 + 0.996431i \(0.526899\pi\)
\(194\) −796658. −1.51973
\(195\) 0 0
\(196\) 115881. 0.215463
\(197\) 240229. 0.441021 0.220510 0.975385i \(-0.429228\pi\)
0.220510 + 0.975385i \(0.429228\pi\)
\(198\) −453682. −0.822410
\(199\) 436482. 0.781329 0.390664 0.920533i \(-0.372245\pi\)
0.390664 + 0.920533i \(0.372245\pi\)
\(200\) 0 0
\(201\) −887545. −1.54953
\(202\) −1.26833e6 −2.18703
\(203\) −1.10231e6 −1.87743
\(204\) 172847. 0.290794
\(205\) 0 0
\(206\) −1.58525e6 −2.60273
\(207\) −77105.9 −0.125072
\(208\) −727074. −1.16525
\(209\) −46147.3 −0.0730769
\(210\) 0 0
\(211\) −130210. −0.201344 −0.100672 0.994920i \(-0.532099\pi\)
−0.100672 + 0.994920i \(0.532099\pi\)
\(212\) −1.16483e6 −1.78001
\(213\) 1.02277e6 1.54464
\(214\) 1.09536e6 1.63502
\(215\) 0 0
\(216\) 27861.9 0.0406328
\(217\) 881270. 1.27046
\(218\) 1.52826e6 2.17799
\(219\) −504723. −0.711120
\(220\) 0 0
\(221\) 213414. 0.293929
\(222\) 1.22647e6 1.67022
\(223\) 1.27729e6 1.71999 0.859995 0.510302i \(-0.170466\pi\)
0.859995 + 0.510302i \(0.170466\pi\)
\(224\) −1.17630e6 −1.56638
\(225\) 0 0
\(226\) 830289. 1.08133
\(227\) 1.10351e6 1.42139 0.710695 0.703500i \(-0.248381\pi\)
0.710695 + 0.703500i \(0.248381\pi\)
\(228\) −40162.9 −0.0511667
\(229\) −426559. −0.537515 −0.268758 0.963208i \(-0.586613\pi\)
−0.268758 + 0.963208i \(0.586613\pi\)
\(230\) 0 0
\(231\) −1.76443e6 −2.17558
\(232\) −74189.7 −0.0904949
\(233\) −998389. −1.20479 −0.602393 0.798199i \(-0.705786\pi\)
−0.602393 + 0.798199i \(0.705786\pi\)
\(234\) −487520. −0.582040
\(235\) 0 0
\(236\) 796485. 0.930889
\(237\) 726755. 0.840460
\(238\) 332441. 0.380428
\(239\) 621754. 0.704083 0.352042 0.935984i \(-0.385488\pi\)
0.352042 + 0.935984i \(0.385488\pi\)
\(240\) 0 0
\(241\) 1.15433e6 1.28022 0.640112 0.768282i \(-0.278888\pi\)
0.640112 + 0.768282i \(0.278888\pi\)
\(242\) −2.51256e6 −2.75790
\(243\) −595664. −0.647121
\(244\) 1.09064e6 1.17276
\(245\) 0 0
\(246\) −1.07535e6 −1.13296
\(247\) −49589.2 −0.0517184
\(248\) 59312.8 0.0612378
\(249\) −530146. −0.541873
\(250\) 0 0
\(251\) −894344. −0.896025 −0.448013 0.894027i \(-0.647868\pi\)
−0.448013 + 0.894027i \(0.647868\pi\)
\(252\) −386629. −0.383525
\(253\) −648019. −0.636483
\(254\) −718974. −0.699245
\(255\) 0 0
\(256\) 966464. 0.921692
\(257\) −281866. −0.266201 −0.133101 0.991103i \(-0.542493\pi\)
−0.133101 + 0.991103i \(0.542493\pi\)
\(258\) −1.65430e6 −1.54727
\(259\) 1.20094e6 1.11243
\(260\) 0 0
\(261\) 632637. 0.574848
\(262\) −1.17995e6 −1.06196
\(263\) −100525. −0.0896160 −0.0448080 0.998996i \(-0.514268\pi\)
−0.0448080 + 0.998996i \(0.514268\pi\)
\(264\) −118753. −0.104866
\(265\) 0 0
\(266\) −77246.4 −0.0669382
\(267\) 1.15548e6 0.991936
\(268\) −1.63448e6 −1.39009
\(269\) 1.27364e6 1.07317 0.536584 0.843847i \(-0.319715\pi\)
0.536584 + 0.843847i \(0.319715\pi\)
\(270\) 0 0
\(271\) 1.86952e6 1.54635 0.773175 0.634193i \(-0.218668\pi\)
0.773175 + 0.634193i \(0.218668\pi\)
\(272\) −284545. −0.233200
\(273\) −1.89604e6 −1.53971
\(274\) −1.29847e6 −1.04485
\(275\) 0 0
\(276\) −563984. −0.445650
\(277\) −1.61032e6 −1.26099 −0.630496 0.776192i \(-0.717149\pi\)
−0.630496 + 0.776192i \(0.717149\pi\)
\(278\) −158571. −0.123059
\(279\) −505777. −0.388999
\(280\) 0 0
\(281\) −1.96805e6 −1.48686 −0.743432 0.668812i \(-0.766803\pi\)
−0.743432 + 0.668812i \(0.766803\pi\)
\(282\) −881044. −0.659743
\(283\) −591303. −0.438878 −0.219439 0.975626i \(-0.570423\pi\)
−0.219439 + 0.975626i \(0.570423\pi\)
\(284\) 1.88350e6 1.38570
\(285\) 0 0
\(286\) −4.09726e6 −2.96195
\(287\) −1.05297e6 −0.754590
\(288\) 675100. 0.479609
\(289\) 83521.0 0.0588235
\(290\) 0 0
\(291\) 1.77818e6 1.23096
\(292\) −929486. −0.637949
\(293\) 956964. 0.651219 0.325609 0.945504i \(-0.394431\pi\)
0.325609 + 0.945504i \(0.394431\pi\)
\(294\) −508049. −0.342797
\(295\) 0 0
\(296\) 80827.9 0.0536206
\(297\) −1.99674e6 −1.31350
\(298\) −1.27262e6 −0.830155
\(299\) −696352. −0.450455
\(300\) 0 0
\(301\) −1.61987e6 −1.03054
\(302\) −578500. −0.364994
\(303\) 2.83099e6 1.77146
\(304\) 66117.2 0.0410327
\(305\) 0 0
\(306\) −190794. −0.116483
\(307\) 350909. 0.212495 0.106247 0.994340i \(-0.466116\pi\)
0.106247 + 0.994340i \(0.466116\pi\)
\(308\) −3.24934e6 −1.95172
\(309\) 3.53835e6 2.10817
\(310\) 0 0
\(311\) 2.00404e6 1.17491 0.587456 0.809256i \(-0.300129\pi\)
0.587456 + 0.809256i \(0.300129\pi\)
\(312\) −127610. −0.0742163
\(313\) −971363. −0.560429 −0.280215 0.959937i \(-0.590406\pi\)
−0.280215 + 0.959937i \(0.590406\pi\)
\(314\) −1.07994e6 −0.618126
\(315\) 0 0
\(316\) 1.33838e6 0.753981
\(317\) −2.40304e6 −1.34311 −0.671557 0.740953i \(-0.734374\pi\)
−0.671557 + 0.740953i \(0.734374\pi\)
\(318\) 5.10687e6 2.83196
\(319\) 5.31686e6 2.92535
\(320\) 0 0
\(321\) −2.44490e6 −1.32434
\(322\) −1.08473e6 −0.583016
\(323\) −19407.0 −0.0103503
\(324\) −2.39723e6 −1.26867
\(325\) 0 0
\(326\) −2.88195e6 −1.50191
\(327\) −3.41115e6 −1.76413
\(328\) −70868.8 −0.0363723
\(329\) −862705. −0.439413
\(330\) 0 0
\(331\) −2.35993e6 −1.18394 −0.591970 0.805960i \(-0.701649\pi\)
−0.591970 + 0.805960i \(0.701649\pi\)
\(332\) −976305. −0.486116
\(333\) −689242. −0.340613
\(334\) −1.93710e6 −0.950136
\(335\) 0 0
\(336\) 2.52798e6 1.22159
\(337\) 3.46539e6 1.66218 0.831088 0.556141i \(-0.187719\pi\)
0.831088 + 0.556141i \(0.187719\pi\)
\(338\) −1.40508e6 −0.668972
\(339\) −1.85325e6 −0.875858
\(340\) 0 0
\(341\) −4.25069e6 −1.97958
\(342\) 44333.1 0.0204957
\(343\) 1.89708e6 0.870663
\(344\) −109023. −0.0496733
\(345\) 0 0
\(346\) −4.47833e6 −2.01106
\(347\) −3.98574e6 −1.77699 −0.888495 0.458885i \(-0.848249\pi\)
−0.888495 + 0.458885i \(0.848249\pi\)
\(348\) 4.62737e6 2.04826
\(349\) 1.94543e6 0.854972 0.427486 0.904022i \(-0.359399\pi\)
0.427486 + 0.904022i \(0.359399\pi\)
\(350\) 0 0
\(351\) −2.14567e6 −0.929599
\(352\) 5.67373e6 2.44069
\(353\) 1.26368e6 0.539761 0.269881 0.962894i \(-0.413016\pi\)
0.269881 + 0.962894i \(0.413016\pi\)
\(354\) −3.49197e6 −1.48103
\(355\) 0 0
\(356\) 2.12790e6 0.889871
\(357\) −742025. −0.308140
\(358\) 742985. 0.306388
\(359\) −2.86737e6 −1.17422 −0.587108 0.809509i \(-0.699734\pi\)
−0.587108 + 0.809509i \(0.699734\pi\)
\(360\) 0 0
\(361\) −2.47159e6 −0.998179
\(362\) 28329.9 0.0113625
\(363\) 5.60816e6 2.23385
\(364\) −3.49170e6 −1.38128
\(365\) 0 0
\(366\) −4.78162e6 −1.86583
\(367\) 3.47234e6 1.34573 0.672863 0.739767i \(-0.265064\pi\)
0.672863 + 0.739767i \(0.265064\pi\)
\(368\) 928445. 0.357385
\(369\) 604318. 0.231047
\(370\) 0 0
\(371\) 5.00057e6 1.88619
\(372\) −3.69946e6 −1.38606
\(373\) 4.52989e6 1.68584 0.842919 0.538041i \(-0.180835\pi\)
0.842919 + 0.538041i \(0.180835\pi\)
\(374\) −1.60349e6 −0.592770
\(375\) 0 0
\(376\) −58063.3 −0.0211803
\(377\) 5.71342e6 2.07035
\(378\) −3.34237e6 −1.20316
\(379\) 249026. 0.0890526 0.0445263 0.999008i \(-0.485822\pi\)
0.0445263 + 0.999008i \(0.485822\pi\)
\(380\) 0 0
\(381\) 1.60479e6 0.566376
\(382\) −287080. −0.100657
\(383\) −2.42097e6 −0.843320 −0.421660 0.906754i \(-0.638552\pi\)
−0.421660 + 0.906754i \(0.638552\pi\)
\(384\) 353664. 0.122395
\(385\) 0 0
\(386\) 705304. 0.240940
\(387\) 929673. 0.315539
\(388\) 3.27466e6 1.10430
\(389\) −4.83276e6 −1.61928 −0.809639 0.586928i \(-0.800337\pi\)
−0.809639 + 0.586928i \(0.800337\pi\)
\(390\) 0 0
\(391\) −272522. −0.0901487
\(392\) −33481.9 −0.0110051
\(393\) 2.63371e6 0.860173
\(394\) −1.93958e6 −0.629458
\(395\) 0 0
\(396\) 1.86486e6 0.597596
\(397\) 4.34939e6 1.38501 0.692503 0.721415i \(-0.256508\pi\)
0.692503 + 0.721415i \(0.256508\pi\)
\(398\) −3.52411e6 −1.11517
\(399\) 172418. 0.0542188
\(400\) 0 0
\(401\) 5.20421e6 1.61620 0.808098 0.589048i \(-0.200497\pi\)
0.808098 + 0.589048i \(0.200497\pi\)
\(402\) 7.16594e6 2.21161
\(403\) −4.56773e6 −1.40100
\(404\) 5.21348e6 1.58918
\(405\) 0 0
\(406\) 8.89994e6 2.67961
\(407\) −5.79258e6 −1.73335
\(408\) −49941.1 −0.0148528
\(409\) 3.68597e6 1.08954 0.544771 0.838585i \(-0.316617\pi\)
0.544771 + 0.838585i \(0.316617\pi\)
\(410\) 0 0
\(411\) 2.89825e6 0.846314
\(412\) 6.51615e6 1.89125
\(413\) −3.41928e6 −0.986416
\(414\) 622544. 0.178513
\(415\) 0 0
\(416\) 6.09691e6 1.72733
\(417\) 353939. 0.0996755
\(418\) 372588. 0.104301
\(419\) −184836. −0.0514341 −0.0257171 0.999669i \(-0.508187\pi\)
−0.0257171 + 0.999669i \(0.508187\pi\)
\(420\) 0 0
\(421\) −3.47811e6 −0.956397 −0.478198 0.878252i \(-0.658710\pi\)
−0.478198 + 0.878252i \(0.658710\pi\)
\(422\) 1.05130e6 0.287373
\(423\) 495122. 0.134543
\(424\) 336557. 0.0909169
\(425\) 0 0
\(426\) −8.25770e6 −2.20463
\(427\) −4.68209e6 −1.24271
\(428\) −4.50247e6 −1.18807
\(429\) 9.14528e6 2.39913
\(430\) 0 0
\(431\) −2.01973e6 −0.523721 −0.261860 0.965106i \(-0.584336\pi\)
−0.261860 + 0.965106i \(0.584336\pi\)
\(432\) 2.86082e6 0.737533
\(433\) −153136. −0.0392516 −0.0196258 0.999807i \(-0.506247\pi\)
−0.0196258 + 0.999807i \(0.506247\pi\)
\(434\) −7.11528e6 −1.81329
\(435\) 0 0
\(436\) −6.28189e6 −1.58261
\(437\) 63323.5 0.0158621
\(438\) 4.07507e6 1.01496
\(439\) 4.10685e6 1.01706 0.508531 0.861044i \(-0.330189\pi\)
0.508531 + 0.861044i \(0.330189\pi\)
\(440\) 0 0
\(441\) 285510. 0.0699076
\(442\) −1.72308e6 −0.419518
\(443\) 1.67255e6 0.404921 0.202460 0.979290i \(-0.435106\pi\)
0.202460 + 0.979290i \(0.435106\pi\)
\(444\) −5.04140e6 −1.21365
\(445\) 0 0
\(446\) −1.03127e7 −2.45490
\(447\) 2.84056e6 0.672412
\(448\) 5.00844e6 1.17898
\(449\) 5.87992e6 1.37643 0.688217 0.725505i \(-0.258394\pi\)
0.688217 + 0.725505i \(0.258394\pi\)
\(450\) 0 0
\(451\) 5.07886e6 1.17578
\(452\) −3.41289e6 −0.785736
\(453\) 1.29124e6 0.295639
\(454\) −8.90965e6 −2.02871
\(455\) 0 0
\(456\) 11604.4 0.00261342
\(457\) −3.94831e6 −0.884342 −0.442171 0.896931i \(-0.645792\pi\)
−0.442171 + 0.896931i \(0.645792\pi\)
\(458\) 3.44399e6 0.767182
\(459\) −839722. −0.186039
\(460\) 0 0
\(461\) 5.70622e6 1.25054 0.625268 0.780410i \(-0.284990\pi\)
0.625268 + 0.780410i \(0.284990\pi\)
\(462\) 1.42458e7 3.10515
\(463\) −2.81944e6 −0.611237 −0.305619 0.952154i \(-0.598863\pi\)
−0.305619 + 0.952154i \(0.598863\pi\)
\(464\) −7.61769e6 −1.64259
\(465\) 0 0
\(466\) 8.06088e6 1.71956
\(467\) 2.78639e6 0.591220 0.295610 0.955309i \(-0.404477\pi\)
0.295610 + 0.955309i \(0.404477\pi\)
\(468\) 2.00395e6 0.422933
\(469\) 7.01678e6 1.47301
\(470\) 0 0
\(471\) 2.41049e6 0.500672
\(472\) −230131. −0.0475466
\(473\) 7.81323e6 1.60575
\(474\) −5.86774e6 −1.19957
\(475\) 0 0
\(476\) −1.36650e6 −0.276434
\(477\) −2.86992e6 −0.577529
\(478\) −5.01997e6 −1.00492
\(479\) −6.30161e6 −1.25491 −0.627456 0.778652i \(-0.715904\pi\)
−0.627456 + 0.778652i \(0.715904\pi\)
\(480\) 0 0
\(481\) −6.22463e6 −1.22674
\(482\) −9.31990e6 −1.82723
\(483\) 2.42116e6 0.472233
\(484\) 1.03279e7 2.00400
\(485\) 0 0
\(486\) 4.80932e6 0.923620
\(487\) −7.39430e6 −1.41278 −0.706390 0.707823i \(-0.749677\pi\)
−0.706390 + 0.707823i \(0.749677\pi\)
\(488\) −315122. −0.0599004
\(489\) 6.43266e6 1.21652
\(490\) 0 0
\(491\) 4.20165e6 0.786531 0.393266 0.919425i \(-0.371345\pi\)
0.393266 + 0.919425i \(0.371345\pi\)
\(492\) 4.42023e6 0.823251
\(493\) 2.23598e6 0.414334
\(494\) 400378. 0.0738163
\(495\) 0 0
\(496\) 6.09015e6 1.11154
\(497\) −8.08581e6 −1.46836
\(498\) 4.28034e6 0.773401
\(499\) −6.73674e6 −1.21115 −0.605576 0.795787i \(-0.707057\pi\)
−0.605576 + 0.795787i \(0.707057\pi\)
\(500\) 0 0
\(501\) 4.32370e6 0.769594
\(502\) 7.22083e6 1.27887
\(503\) −1.02213e7 −1.80130 −0.900652 0.434540i \(-0.856911\pi\)
−0.900652 + 0.434540i \(0.856911\pi\)
\(504\) 111710. 0.0195891
\(505\) 0 0
\(506\) 5.23203e6 0.908436
\(507\) 3.13620e6 0.541856
\(508\) 2.95534e6 0.508099
\(509\) −3.08184e6 −0.527248 −0.263624 0.964625i \(-0.584918\pi\)
−0.263624 + 0.964625i \(0.584918\pi\)
\(510\) 0 0
\(511\) 3.99025e6 0.676002
\(512\) −8.43112e6 −1.42138
\(513\) 195119. 0.0327345
\(514\) 2.27575e6 0.379942
\(515\) 0 0
\(516\) 6.80001e6 1.12431
\(517\) 4.16115e6 0.684678
\(518\) −9.69627e6 −1.58774
\(519\) 9.99586e6 1.62893
\(520\) 0 0
\(521\) −1.11138e7 −1.79377 −0.896887 0.442261i \(-0.854177\pi\)
−0.896887 + 0.442261i \(0.854177\pi\)
\(522\) −5.10784e6 −0.820467
\(523\) 2.30091e6 0.367828 0.183914 0.982942i \(-0.441123\pi\)
0.183914 + 0.982942i \(0.441123\pi\)
\(524\) 4.85017e6 0.771665
\(525\) 0 0
\(526\) 811629. 0.127907
\(527\) −1.78761e6 −0.280380
\(528\) −1.21934e7 −1.90344
\(529\) −5.54713e6 −0.861845
\(530\) 0 0
\(531\) 1.96239e6 0.302029
\(532\) 317521. 0.0486399
\(533\) 5.45767e6 0.832126
\(534\) −9.32921e6 −1.41577
\(535\) 0 0
\(536\) 472256. 0.0710011
\(537\) −1.65838e6 −0.248169
\(538\) −1.02833e7 −1.53170
\(539\) 2.39950e6 0.355753
\(540\) 0 0
\(541\) −7.55092e6 −1.10919 −0.554596 0.832120i \(-0.687127\pi\)
−0.554596 + 0.832120i \(0.687127\pi\)
\(542\) −1.50943e7 −2.20707
\(543\) −63233.7 −0.00920341
\(544\) 2.38606e6 0.345688
\(545\) 0 0
\(546\) 1.53084e7 2.19759
\(547\) −3.95362e6 −0.564972 −0.282486 0.959271i \(-0.591159\pi\)
−0.282486 + 0.959271i \(0.591159\pi\)
\(548\) 5.33736e6 0.759232
\(549\) 2.68714e6 0.380504
\(550\) 0 0
\(551\) −519555. −0.0729043
\(552\) 162953. 0.0227623
\(553\) −5.74560e6 −0.798956
\(554\) 1.30015e7 1.79978
\(555\) 0 0
\(556\) 651806. 0.0894194
\(557\) −8.92128e6 −1.21840 −0.609199 0.793017i \(-0.708509\pi\)
−0.609199 + 0.793017i \(0.708509\pi\)
\(558\) 4.08359e6 0.555209
\(559\) 8.39599e6 1.13643
\(560\) 0 0
\(561\) 3.57906e6 0.480133
\(562\) 1.58898e7 2.12216
\(563\) −7.62831e6 −1.01428 −0.507139 0.861864i \(-0.669297\pi\)
−0.507139 + 0.861864i \(0.669297\pi\)
\(564\) 3.62153e6 0.479395
\(565\) 0 0
\(566\) 4.77411e6 0.626400
\(567\) 1.02912e7 1.34434
\(568\) −544206. −0.0707770
\(569\) −1.44032e7 −1.86500 −0.932501 0.361168i \(-0.882378\pi\)
−0.932501 + 0.361168i \(0.882378\pi\)
\(570\) 0 0
\(571\) −8.41065e6 −1.07954 −0.539771 0.841812i \(-0.681489\pi\)
−0.539771 + 0.841812i \(0.681489\pi\)
\(572\) 1.68417e7 2.15227
\(573\) 640776. 0.0815305
\(574\) 8.50155e6 1.07701
\(575\) 0 0
\(576\) −2.87444e6 −0.360991
\(577\) −3.17986e6 −0.397620 −0.198810 0.980038i \(-0.563708\pi\)
−0.198810 + 0.980038i \(0.563708\pi\)
\(578\) −674339. −0.0839574
\(579\) −1.57428e6 −0.195157
\(580\) 0 0
\(581\) 4.19124e6 0.515113
\(582\) −1.43568e7 −1.75692
\(583\) −2.41196e7 −2.93900
\(584\) 268559. 0.0325842
\(585\) 0 0
\(586\) −7.72642e6 −0.929468
\(587\) 7.17871e6 0.859906 0.429953 0.902851i \(-0.358530\pi\)
0.429953 + 0.902851i \(0.358530\pi\)
\(588\) 2.08833e6 0.249090
\(589\) 415371. 0.0493342
\(590\) 0 0
\(591\) 4.32924e6 0.509850
\(592\) 8.29929e6 0.973277
\(593\) −9.25867e6 −1.08121 −0.540607 0.841275i \(-0.681806\pi\)
−0.540607 + 0.841275i \(0.681806\pi\)
\(594\) 1.61215e7 1.87473
\(595\) 0 0
\(596\) 5.23111e6 0.603223
\(597\) 7.86599e6 0.903270
\(598\) 5.62227e6 0.642923
\(599\) −399594. −0.0455042 −0.0227521 0.999741i \(-0.507243\pi\)
−0.0227521 + 0.999741i \(0.507243\pi\)
\(600\) 0 0
\(601\) 1.33812e6 0.151115 0.0755577 0.997141i \(-0.475926\pi\)
0.0755577 + 0.997141i \(0.475926\pi\)
\(602\) 1.30786e7 1.47086
\(603\) −4.02706e6 −0.451019
\(604\) 2.37792e6 0.265219
\(605\) 0 0
\(606\) −2.28571e7 −2.52836
\(607\) −1.48763e7 −1.63878 −0.819392 0.573233i \(-0.805689\pi\)
−0.819392 + 0.573233i \(0.805689\pi\)
\(608\) −554428. −0.0608256
\(609\) −1.98651e7 −2.17044
\(610\) 0 0
\(611\) 4.47151e6 0.484564
\(612\) 784257. 0.0846409
\(613\) −2.23381e6 −0.240102 −0.120051 0.992768i \(-0.538306\pi\)
−0.120051 + 0.992768i \(0.538306\pi\)
\(614\) −2.83320e6 −0.303288
\(615\) 0 0
\(616\) 938841. 0.0996874
\(617\) 8.43176e6 0.891672 0.445836 0.895115i \(-0.352906\pi\)
0.445836 + 0.895115i \(0.352906\pi\)
\(618\) −2.85683e7 −3.00893
\(619\) −6.74772e6 −0.707832 −0.353916 0.935277i \(-0.615150\pi\)
−0.353916 + 0.935277i \(0.615150\pi\)
\(620\) 0 0
\(621\) 2.73994e6 0.285110
\(622\) −1.61804e7 −1.67692
\(623\) −9.13502e6 −0.942951
\(624\) −1.31028e7 −1.34711
\(625\) 0 0
\(626\) 7.84267e6 0.799886
\(627\) −831635. −0.0844819
\(628\) 4.43910e6 0.449155
\(629\) −2.43605e6 −0.245504
\(630\) 0 0
\(631\) −1.02310e6 −0.102293 −0.0511466 0.998691i \(-0.516288\pi\)
−0.0511466 + 0.998691i \(0.516288\pi\)
\(632\) −386701. −0.0385108
\(633\) −2.34656e6 −0.232767
\(634\) 1.94019e7 1.91699
\(635\) 0 0
\(636\) −2.09918e7 −2.05781
\(637\) 2.57847e6 0.251776
\(638\) −4.29277e7 −4.17528
\(639\) 4.64060e6 0.449595
\(640\) 0 0
\(641\) 3.27709e6 0.315024 0.157512 0.987517i \(-0.449653\pi\)
0.157512 + 0.987517i \(0.449653\pi\)
\(642\) 1.97398e7 1.89019
\(643\) 1.81703e7 1.73314 0.866571 0.499054i \(-0.166319\pi\)
0.866571 + 0.499054i \(0.166319\pi\)
\(644\) 4.45876e6 0.423642
\(645\) 0 0
\(646\) 156690. 0.0147727
\(647\) −1.11777e7 −1.04976 −0.524882 0.851175i \(-0.675891\pi\)
−0.524882 + 0.851175i \(0.675891\pi\)
\(648\) 692639. 0.0647992
\(649\) 1.64925e7 1.53700
\(650\) 0 0
\(651\) 1.58817e7 1.46873
\(652\) 1.18462e7 1.09134
\(653\) 1.46182e7 1.34156 0.670782 0.741655i \(-0.265959\pi\)
0.670782 + 0.741655i \(0.265959\pi\)
\(654\) 2.75412e7 2.51790
\(655\) 0 0
\(656\) −7.27670e6 −0.660199
\(657\) −2.29008e6 −0.206984
\(658\) 6.96538e6 0.627163
\(659\) 3.39727e6 0.304731 0.152365 0.988324i \(-0.451311\pi\)
0.152365 + 0.988324i \(0.451311\pi\)
\(660\) 0 0
\(661\) −1.77397e7 −1.57922 −0.789611 0.613608i \(-0.789718\pi\)
−0.789611 + 0.613608i \(0.789718\pi\)
\(662\) 1.90538e7 1.68981
\(663\) 3.84601e6 0.339802
\(664\) 282087. 0.0248292
\(665\) 0 0
\(666\) 5.56487e6 0.486149
\(667\) −7.29582e6 −0.634979
\(668\) 7.96243e6 0.690406
\(669\) 2.30184e7 1.98843
\(670\) 0 0
\(671\) 2.25835e7 1.93635
\(672\) −2.11985e7 −1.81085
\(673\) 6.45698e6 0.549530 0.274765 0.961511i \(-0.411400\pi\)
0.274765 + 0.961511i \(0.411400\pi\)
\(674\) −2.79791e7 −2.37238
\(675\) 0 0
\(676\) 5.77555e6 0.486101
\(677\) −1.08873e7 −0.912953 −0.456477 0.889735i \(-0.650889\pi\)
−0.456477 + 0.889735i \(0.650889\pi\)
\(678\) 1.49629e7 1.25009
\(679\) −1.40580e7 −1.17017
\(680\) 0 0
\(681\) 1.98868e7 1.64322
\(682\) 3.43196e7 2.82541
\(683\) 6.23075e6 0.511080 0.255540 0.966798i \(-0.417747\pi\)
0.255540 + 0.966798i \(0.417747\pi\)
\(684\) −182231. −0.0148930
\(685\) 0 0
\(686\) −1.53168e7 −1.24267
\(687\) −7.68716e6 −0.621404
\(688\) −1.11944e7 −0.901629
\(689\) −2.59186e7 −2.08000
\(690\) 0 0
\(691\) −1.16135e7 −0.925270 −0.462635 0.886549i \(-0.653096\pi\)
−0.462635 + 0.886549i \(0.653096\pi\)
\(692\) 1.84081e7 1.46132
\(693\) −8.00576e6 −0.633242
\(694\) 3.21804e7 2.53626
\(695\) 0 0
\(696\) −1.33700e6 −0.104618
\(697\) 2.13589e6 0.166532
\(698\) −1.57072e7 −1.22028
\(699\) −1.79923e7 −1.39282
\(700\) 0 0
\(701\) 2.42677e7 1.86523 0.932617 0.360869i \(-0.117520\pi\)
0.932617 + 0.360869i \(0.117520\pi\)
\(702\) 1.73239e7 1.32679
\(703\) 566043. 0.0431977
\(704\) −2.41576e7 −1.83705
\(705\) 0 0
\(706\) −1.02028e7 −0.770388
\(707\) −2.23813e7 −1.68398
\(708\) 1.43537e7 1.07617
\(709\) −4.96806e6 −0.371168 −0.185584 0.982628i \(-0.559418\pi\)
−0.185584 + 0.982628i \(0.559418\pi\)
\(710\) 0 0
\(711\) 3.29751e6 0.244631
\(712\) −614821. −0.0454516
\(713\) 5.83282e6 0.429689
\(714\) 5.99103e6 0.439801
\(715\) 0 0
\(716\) −3.05403e6 −0.222634
\(717\) 1.12048e7 0.813969
\(718\) 2.31508e7 1.67593
\(719\) 2.62046e7 1.89041 0.945204 0.326481i \(-0.105863\pi\)
0.945204 + 0.326481i \(0.105863\pi\)
\(720\) 0 0
\(721\) −2.79736e7 −2.00406
\(722\) 1.99553e7 1.42468
\(723\) 2.08025e7 1.48003
\(724\) −116450. −0.00825642
\(725\) 0 0
\(726\) −4.52797e7 −3.18832
\(727\) −1.77981e7 −1.24893 −0.624465 0.781053i \(-0.714683\pi\)
−0.624465 + 0.781053i \(0.714683\pi\)
\(728\) 1.00887e6 0.0705513
\(729\) 6.81787e6 0.475149
\(730\) 0 0
\(731\) 3.28582e6 0.227431
\(732\) 1.96548e7 1.35579
\(733\) 2.30093e7 1.58177 0.790884 0.611966i \(-0.209621\pi\)
0.790884 + 0.611966i \(0.209621\pi\)
\(734\) −2.80353e7 −1.92072
\(735\) 0 0
\(736\) −7.78551e6 −0.529777
\(737\) −3.38445e7 −2.29519
\(738\) −4.87920e6 −0.329767
\(739\) 1.89314e7 1.27518 0.637591 0.770375i \(-0.279931\pi\)
0.637591 + 0.770375i \(0.279931\pi\)
\(740\) 0 0
\(741\) −893663. −0.0597900
\(742\) −4.03741e7 −2.69211
\(743\) 8.23748e6 0.547422 0.273711 0.961812i \(-0.411749\pi\)
0.273711 + 0.961812i \(0.411749\pi\)
\(744\) 1.06890e6 0.0707950
\(745\) 0 0
\(746\) −3.65738e7 −2.40615
\(747\) −2.40543e6 −0.157722
\(748\) 6.59112e6 0.430730
\(749\) 1.93290e7 1.25894
\(750\) 0 0
\(751\) 1.40581e7 0.909552 0.454776 0.890606i \(-0.349719\pi\)
0.454776 + 0.890606i \(0.349719\pi\)
\(752\) −5.96185e6 −0.384447
\(753\) −1.61173e7 −1.03587
\(754\) −4.61295e7 −2.95495
\(755\) 0 0
\(756\) 1.37388e7 0.874266
\(757\) 9.05387e6 0.574241 0.287121 0.957894i \(-0.407302\pi\)
0.287121 + 0.957894i \(0.407302\pi\)
\(758\) −2.01061e6 −0.127103
\(759\) −1.16782e7 −0.735818
\(760\) 0 0
\(761\) −7.36583e6 −0.461063 −0.230531 0.973065i \(-0.574046\pi\)
−0.230531 + 0.973065i \(0.574046\pi\)
\(762\) −1.29569e7 −0.808375
\(763\) 2.69679e7 1.67701
\(764\) 1.18004e6 0.0731413
\(765\) 0 0
\(766\) 1.95466e7 1.20365
\(767\) 1.77226e7 1.08777
\(768\) 1.74170e7 1.06554
\(769\) −1.42854e7 −0.871116 −0.435558 0.900161i \(-0.643449\pi\)
−0.435558 + 0.900161i \(0.643449\pi\)
\(770\) 0 0
\(771\) −5.07960e6 −0.307747
\(772\) −2.89915e6 −0.175076
\(773\) 1.87743e7 1.13009 0.565047 0.825058i \(-0.308858\pi\)
0.565047 + 0.825058i \(0.308858\pi\)
\(774\) −7.50607e6 −0.450361
\(775\) 0 0
\(776\) −946156. −0.0564038
\(777\) 2.16426e7 1.28604
\(778\) 3.90192e7 2.31115
\(779\) −496298. −0.0293021
\(780\) 0 0
\(781\) 3.90009e7 2.28795
\(782\) 2.20031e6 0.128667
\(783\) −2.24806e7 −1.31040
\(784\) −3.43787e6 −0.199756
\(785\) 0 0
\(786\) −2.12643e7 −1.22770
\(787\) −1.21169e7 −0.697355 −0.348678 0.937243i \(-0.613369\pi\)
−0.348678 + 0.937243i \(0.613369\pi\)
\(788\) 7.97262e6 0.457389
\(789\) −1.81160e6 −0.103602
\(790\) 0 0
\(791\) 1.46514e7 0.832605
\(792\) −538818. −0.0305231
\(793\) 2.42679e7 1.37040
\(794\) −3.51165e7 −1.97678
\(795\) 0 0
\(796\) 1.44858e7 0.810327
\(797\) 1.46452e6 0.0816676 0.0408338 0.999166i \(-0.486999\pi\)
0.0408338 + 0.999166i \(0.486999\pi\)
\(798\) −1.39208e6 −0.0773851
\(799\) 1.74995e6 0.0969749
\(800\) 0 0
\(801\) 5.24275e6 0.288721
\(802\) −4.20182e7 −2.30676
\(803\) −1.92465e7 −1.05332
\(804\) −2.94555e7 −1.60704
\(805\) 0 0
\(806\) 3.68794e7 1.99961
\(807\) 2.29528e7 1.24065
\(808\) −1.50635e6 −0.0811701
\(809\) 3.18740e7 1.71224 0.856121 0.516775i \(-0.172868\pi\)
0.856121 + 0.516775i \(0.172868\pi\)
\(810\) 0 0
\(811\) 4.64580e6 0.248032 0.124016 0.992280i \(-0.460423\pi\)
0.124016 + 0.992280i \(0.460423\pi\)
\(812\) −3.65832e7 −1.94711
\(813\) 3.36913e7 1.78769
\(814\) 4.67687e7 2.47397
\(815\) 0 0
\(816\) −5.12788e6 −0.269595
\(817\) −763497. −0.0400177
\(818\) −2.97601e7 −1.55508
\(819\) −8.60288e6 −0.448161
\(820\) 0 0
\(821\) −1.96226e7 −1.01601 −0.508006 0.861353i \(-0.669617\pi\)
−0.508006 + 0.861353i \(0.669617\pi\)
\(822\) −2.34002e7 −1.20792
\(823\) 1.06690e7 0.549067 0.274534 0.961577i \(-0.411477\pi\)
0.274534 + 0.961577i \(0.411477\pi\)
\(824\) −1.88273e6 −0.0965984
\(825\) 0 0
\(826\) 2.76069e7 1.40789
\(827\) −1.48270e7 −0.753856 −0.376928 0.926243i \(-0.623020\pi\)
−0.376928 + 0.926243i \(0.623020\pi\)
\(828\) −2.55896e6 −0.129714
\(829\) 3.33182e6 0.168382 0.0841908 0.996450i \(-0.473169\pi\)
0.0841908 + 0.996450i \(0.473169\pi\)
\(830\) 0 0
\(831\) −2.90201e7 −1.45779
\(832\) −2.59594e7 −1.30013
\(833\) 1.00910e6 0.0503874
\(834\) −2.85767e6 −0.142264
\(835\) 0 0
\(836\) −1.53152e6 −0.0757891
\(837\) 1.79727e7 0.886745
\(838\) 1.49234e6 0.0734107
\(839\) −2.10707e7 −1.03341 −0.516707 0.856162i \(-0.672842\pi\)
−0.516707 + 0.856162i \(0.672842\pi\)
\(840\) 0 0
\(841\) 3.93494e7 1.91844
\(842\) 2.80819e7 1.36504
\(843\) −3.54669e7 −1.71892
\(844\) −4.32136e6 −0.208816
\(845\) 0 0
\(846\) −3.99756e6 −0.192030
\(847\) −4.43372e7 −2.12354
\(848\) 3.45572e7 1.65025
\(849\) −1.06561e7 −0.507373
\(850\) 0 0
\(851\) 7.94861e6 0.376242
\(852\) 3.39432e7 1.60197
\(853\) −3.97315e6 −0.186966 −0.0934830 0.995621i \(-0.529800\pi\)
−0.0934830 + 0.995621i \(0.529800\pi\)
\(854\) 3.78027e7 1.77369
\(855\) 0 0
\(856\) 1.30091e6 0.0606825
\(857\) 2.04907e7 0.953026 0.476513 0.879167i \(-0.341901\pi\)
0.476513 + 0.879167i \(0.341901\pi\)
\(858\) −7.38380e7 −3.42422
\(859\) −1.18282e6 −0.0546934 −0.0273467 0.999626i \(-0.508706\pi\)
−0.0273467 + 0.999626i \(0.508706\pi\)
\(860\) 0 0
\(861\) −1.89759e7 −0.872357
\(862\) 1.63071e7 0.747493
\(863\) 1.71400e7 0.783402 0.391701 0.920093i \(-0.371887\pi\)
0.391701 + 0.920093i \(0.371887\pi\)
\(864\) −2.39895e7 −1.09329
\(865\) 0 0
\(866\) 1.23640e6 0.0560228
\(867\) 1.50516e6 0.0680040
\(868\) 2.92473e7 1.31761
\(869\) 2.77132e7 1.24491
\(870\) 0 0
\(871\) −3.63688e7 −1.62437
\(872\) 1.81504e6 0.0808343
\(873\) 8.06814e6 0.358293
\(874\) −511267. −0.0226396
\(875\) 0 0
\(876\) −1.67506e7 −0.737512
\(877\) −2.63710e7 −1.15778 −0.578891 0.815405i \(-0.696514\pi\)
−0.578891 + 0.815405i \(0.696514\pi\)
\(878\) −3.31582e7 −1.45163
\(879\) 1.72458e7 0.752853
\(880\) 0 0
\(881\) 3.70376e7 1.60769 0.803846 0.594838i \(-0.202784\pi\)
0.803846 + 0.594838i \(0.202784\pi\)
\(882\) −2.30517e6 −0.0997773
\(883\) −6.32717e6 −0.273091 −0.136546 0.990634i \(-0.543600\pi\)
−0.136546 + 0.990634i \(0.543600\pi\)
\(884\) 7.08272e6 0.304838
\(885\) 0 0
\(886\) −1.35040e7 −0.577934
\(887\) 2.10310e7 0.897535 0.448768 0.893648i \(-0.351863\pi\)
0.448768 + 0.893648i \(0.351863\pi\)
\(888\) 1.45663e6 0.0619891
\(889\) −1.26872e7 −0.538407
\(890\) 0 0
\(891\) −4.96384e7 −2.09471
\(892\) 4.23901e7 1.78383
\(893\) −406621. −0.0170632
\(894\) −2.29344e7 −0.959716
\(895\) 0 0
\(896\) −2.79601e6 −0.116350
\(897\) −1.25492e7 −0.520757
\(898\) −4.74738e7 −1.96455
\(899\) −4.78570e7 −1.97491
\(900\) 0 0
\(901\) −1.01434e7 −0.416267
\(902\) −4.10061e7 −1.67816
\(903\) −2.91922e7 −1.19137
\(904\) 986097. 0.0401327
\(905\) 0 0
\(906\) −1.04253e7 −0.421959
\(907\) 7.25520e6 0.292840 0.146420 0.989222i \(-0.453225\pi\)
0.146420 + 0.989222i \(0.453225\pi\)
\(908\) 3.66230e7 1.47414
\(909\) 1.28450e7 0.515615
\(910\) 0 0
\(911\) 2.53484e7 1.01194 0.505969 0.862552i \(-0.331135\pi\)
0.505969 + 0.862552i \(0.331135\pi\)
\(912\) 1.19152e6 0.0474366
\(913\) −2.02159e7 −0.802632
\(914\) 3.18782e7 1.26220
\(915\) 0 0
\(916\) −1.41565e7 −0.557465
\(917\) −2.08216e7 −0.817695
\(918\) 6.77982e6 0.265529
\(919\) −2.44762e7 −0.955994 −0.477997 0.878361i \(-0.658637\pi\)
−0.477997 + 0.878361i \(0.658637\pi\)
\(920\) 0 0
\(921\) 6.32384e6 0.245658
\(922\) −4.60713e7 −1.78486
\(923\) 4.19098e7 1.61924
\(924\) −5.85574e7 −2.25633
\(925\) 0 0
\(926\) 2.27638e7 0.872404
\(927\) 1.60546e7 0.613620
\(928\) 6.38785e7 2.43492
\(929\) −4.39257e7 −1.66986 −0.834928 0.550359i \(-0.814491\pi\)
−0.834928 + 0.550359i \(0.814491\pi\)
\(930\) 0 0
\(931\) −234476. −0.00886592
\(932\) −3.31342e7 −1.24950
\(933\) 3.61155e7 1.35828
\(934\) −2.24970e7 −0.843834
\(935\) 0 0
\(936\) −579006. −0.0216020
\(937\) 4.94066e7 1.83838 0.919191 0.393811i \(-0.128844\pi\)
0.919191 + 0.393811i \(0.128844\pi\)
\(938\) −5.66527e7 −2.10239
\(939\) −1.75052e7 −0.647894
\(940\) 0 0
\(941\) −3.99442e7 −1.47055 −0.735275 0.677769i \(-0.762947\pi\)
−0.735275 + 0.677769i \(0.762947\pi\)
\(942\) −1.94620e7 −0.714596
\(943\) −6.96923e6 −0.255215
\(944\) −2.36295e7 −0.863027
\(945\) 0 0
\(946\) −6.30831e7 −2.29185
\(947\) −5.16182e7 −1.87037 −0.935186 0.354158i \(-0.884768\pi\)
−0.935186 + 0.354158i \(0.884768\pi\)
\(948\) 2.41193e7 0.871653
\(949\) −2.06820e7 −0.745464
\(950\) 0 0
\(951\) −4.33060e7 −1.55273
\(952\) 394826. 0.0141193
\(953\) −6.34618e6 −0.226350 −0.113175 0.993575i \(-0.536102\pi\)
−0.113175 + 0.993575i \(0.536102\pi\)
\(954\) 2.31714e7 0.824293
\(955\) 0 0
\(956\) 2.06346e7 0.730215
\(957\) 9.58168e7 3.38191
\(958\) 5.08785e7 1.79110
\(959\) −2.29131e7 −0.804521
\(960\) 0 0
\(961\) 9.63131e6 0.336416
\(962\) 5.02570e7 1.75089
\(963\) −1.10932e7 −0.385472
\(964\) 3.83094e7 1.32774
\(965\) 0 0
\(966\) −1.95482e7 −0.674006
\(967\) 5.14875e6 0.177066 0.0885330 0.996073i \(-0.471782\pi\)
0.0885330 + 0.996073i \(0.471782\pi\)
\(968\) −2.98406e6 −0.102357
\(969\) −349741. −0.0119657
\(970\) 0 0
\(971\) 6.52365e6 0.222046 0.111023 0.993818i \(-0.464587\pi\)
0.111023 + 0.993818i \(0.464587\pi\)
\(972\) −1.97687e7 −0.671139
\(973\) −2.79818e6 −0.0947532
\(974\) 5.97007e7 2.01643
\(975\) 0 0
\(976\) −3.23563e7 −1.08726
\(977\) 1.04754e7 0.351104 0.175552 0.984470i \(-0.443829\pi\)
0.175552 + 0.984470i \(0.443829\pi\)
\(978\) −5.19366e7 −1.73631
\(979\) 4.40616e7 1.46928
\(980\) 0 0
\(981\) −1.54774e7 −0.513482
\(982\) −3.39236e7 −1.12260
\(983\) 6.70566e6 0.221339 0.110669 0.993857i \(-0.464701\pi\)
0.110669 + 0.993857i \(0.464701\pi\)
\(984\) −1.27715e6 −0.0420488
\(985\) 0 0
\(986\) −1.80531e7 −0.591369
\(987\) −1.55471e7 −0.507991
\(988\) −1.64575e6 −0.0536378
\(989\) −1.07213e7 −0.348545
\(990\) 0 0
\(991\) 1.62174e7 0.524563 0.262281 0.964991i \(-0.415525\pi\)
0.262281 + 0.964991i \(0.415525\pi\)
\(992\) −5.10692e7 −1.64771
\(993\) −4.25291e7 −1.36871
\(994\) 6.52839e7 2.09575
\(995\) 0 0
\(996\) −1.75943e7 −0.561984
\(997\) 4.85435e6 0.154665 0.0773327 0.997005i \(-0.475360\pi\)
0.0773327 + 0.997005i \(0.475360\pi\)
\(998\) 5.43917e7 1.72865
\(999\) 2.44921e7 0.776447
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.6.a.k.1.3 yes 15
5.4 even 2 425.6.a.j.1.13 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.6.a.j.1.13 15 5.4 even 2
425.6.a.k.1.3 yes 15 1.1 even 1 trivial