Properties

Label 425.6
Level 425
Weight 6
Dimension 32642
Nonzero newspaces 20
Sturm bound 86400
Trace bound 8

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(86400\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(425))\).

Total New Old
Modular forms 36448 33256 3192
Cusp forms 35552 32642 2910
Eisenstein series 896 614 282

Trace form

\( 32642 q - 76 q^{2} - 100 q^{3} - 292 q^{4} - 238 q^{5} + 892 q^{6} + 684 q^{7} - 564 q^{8} - 2216 q^{9} - 888 q^{10} + 1924 q^{11} + 4588 q^{12} + 1868 q^{13} + 3916 q^{14} + 2332 q^{15} - 6604 q^{16} - 3452 q^{17}+ \cdots - 763320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(425))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
425.6.a \(\chi_{425}(1, \cdot)\) 425.6.a.a 1 1
425.6.a.b 1
425.6.a.c 4
425.6.a.d 5
425.6.a.e 7
425.6.a.f 8
425.6.a.g 8
425.6.a.h 11
425.6.a.i 11
425.6.a.j 15
425.6.a.k 15
425.6.a.l 20
425.6.a.m 20
425.6.b \(\chi_{425}(324, \cdot)\) n/a 120 1
425.6.c \(\chi_{425}(424, \cdot)\) n/a 132 1
425.6.d \(\chi_{425}(101, \cdot)\) n/a 140 1
425.6.e \(\chi_{425}(251, \cdot)\) n/a 280 2
425.6.j \(\chi_{425}(149, \cdot)\) n/a 264 2
425.6.k \(\chi_{425}(86, \cdot)\) n/a 800 4
425.6.m \(\chi_{425}(26, \cdot)\) n/a 556 4
425.6.n \(\chi_{425}(49, \cdot)\) n/a 536 4
425.6.p \(\chi_{425}(16, \cdot)\) n/a 888 4
425.6.q \(\chi_{425}(84, \cdot)\) n/a 896 4
425.6.r \(\chi_{425}(69, \cdot)\) n/a 800 4
425.6.s \(\chi_{425}(7, \cdot)\) n/a 1064 8
425.6.v \(\chi_{425}(82, \cdot)\) n/a 1064 8
425.6.w \(\chi_{425}(4, \cdot)\) n/a 1792 8
425.6.bb \(\chi_{425}(21, \cdot)\) n/a 1776 8
425.6.bd \(\chi_{425}(9, \cdot)\) n/a 3552 16
425.6.be \(\chi_{425}(36, \cdot)\) n/a 3584 16
425.6.bg \(\chi_{425}(12, \cdot)\) n/a 7136 32
425.6.bj \(\chi_{425}(3, \cdot)\) n/a 7136 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(425))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(425)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 2}\)