Properties

Label 425.6.a.k.1.12
Level $425$
Weight $6$
Character 425.1
Self dual yes
Analytic conductor $68.163$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,6,Mod(1,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.1631234205\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 378 x^{13} + 106 x^{12} + 55677 x^{11} + 23739 x^{10} - 4018640 x^{9} + \cdots - 45034730496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{9}\cdot 5^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(8.32336\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.32336 q^{2} -15.0453 q^{3} +37.2783 q^{4} -125.228 q^{6} -79.5600 q^{7} +43.9329 q^{8} -16.6383 q^{9} -577.854 q^{11} -560.864 q^{12} +319.284 q^{13} -662.206 q^{14} -827.235 q^{16} +289.000 q^{17} -138.487 q^{18} +1760.25 q^{19} +1197.01 q^{21} -4809.69 q^{22} +3755.20 q^{23} -660.985 q^{24} +2657.52 q^{26} +3906.34 q^{27} -2965.86 q^{28} +398.563 q^{29} +5762.11 q^{31} -8291.23 q^{32} +8694.01 q^{33} +2405.45 q^{34} -620.248 q^{36} -7138.85 q^{37} +14651.2 q^{38} -4803.73 q^{39} +14410.3 q^{41} +9963.10 q^{42} -18493.9 q^{43} -21541.4 q^{44} +31255.8 q^{46} +1609.02 q^{47} +12446.0 q^{48} -10477.2 q^{49} -4348.10 q^{51} +11902.4 q^{52} +5575.72 q^{53} +32513.9 q^{54} -3495.30 q^{56} -26483.5 q^{57} +3317.38 q^{58} +18038.2 q^{59} +34905.8 q^{61} +47960.1 q^{62} +1323.74 q^{63} -42539.3 q^{64} +72363.3 q^{66} +8036.23 q^{67} +10773.4 q^{68} -56498.1 q^{69} +45301.1 q^{71} -730.970 q^{72} +57817.7 q^{73} -59419.2 q^{74} +65619.1 q^{76} +45974.1 q^{77} -39983.2 q^{78} -41409.2 q^{79} -54729.1 q^{81} +119942. q^{82} +34525.5 q^{83} +44622.3 q^{84} -153931. q^{86} -5996.50 q^{87} -25386.8 q^{88} +39956.1 q^{89} -25402.2 q^{91} +139987. q^{92} -86692.7 q^{93} +13392.5 q^{94} +124744. q^{96} -24119.7 q^{97} -87205.6 q^{98} +9614.52 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + q^{2} + 9 q^{3} + 277 q^{4} + 169 q^{6} + 181 q^{7} + 753 q^{8} + 1826 q^{9} + 172 q^{11} - 2109 q^{12} - 389 q^{13} + 3635 q^{14} + 6837 q^{16} + 4335 q^{17} + 6742 q^{18} + 5150 q^{19} - 6891 q^{21}+ \cdots - 183214 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.32336 1.47138 0.735688 0.677321i \(-0.236859\pi\)
0.735688 + 0.677321i \(0.236859\pi\)
\(3\) −15.0453 −0.965158 −0.482579 0.875853i \(-0.660300\pi\)
−0.482579 + 0.875853i \(0.660300\pi\)
\(4\) 37.2783 1.16495
\(5\) 0 0
\(6\) −125.228 −1.42011
\(7\) −79.5600 −0.613691 −0.306845 0.951759i \(-0.599273\pi\)
−0.306845 + 0.951759i \(0.599273\pi\)
\(8\) 43.9329 0.242697
\(9\) −16.6383 −0.0684704
\(10\) 0 0
\(11\) −577.854 −1.43991 −0.719957 0.694018i \(-0.755839\pi\)
−0.719957 + 0.694018i \(0.755839\pi\)
\(12\) −560.864 −1.12436
\(13\) 319.284 0.523985 0.261993 0.965070i \(-0.415620\pi\)
0.261993 + 0.965070i \(0.415620\pi\)
\(14\) −662.206 −0.902970
\(15\) 0 0
\(16\) −827.235 −0.807847
\(17\) 289.000 0.242536
\(18\) −138.487 −0.100746
\(19\) 1760.25 1.11864 0.559320 0.828952i \(-0.311062\pi\)
0.559320 + 0.828952i \(0.311062\pi\)
\(20\) 0 0
\(21\) 1197.01 0.592308
\(22\) −4809.69 −2.11866
\(23\) 3755.20 1.48017 0.740087 0.672511i \(-0.234784\pi\)
0.740087 + 0.672511i \(0.234784\pi\)
\(24\) −660.985 −0.234241
\(25\) 0 0
\(26\) 2657.52 0.770979
\(27\) 3906.34 1.03124
\(28\) −2965.86 −0.714917
\(29\) 398.563 0.0880038 0.0440019 0.999031i \(-0.485989\pi\)
0.0440019 + 0.999031i \(0.485989\pi\)
\(30\) 0 0
\(31\) 5762.11 1.07690 0.538452 0.842656i \(-0.319009\pi\)
0.538452 + 0.842656i \(0.319009\pi\)
\(32\) −8291.23 −1.43134
\(33\) 8694.01 1.38974
\(34\) 2405.45 0.356861
\(35\) 0 0
\(36\) −620.248 −0.0797643
\(37\) −7138.85 −0.857282 −0.428641 0.903475i \(-0.641007\pi\)
−0.428641 + 0.903475i \(0.641007\pi\)
\(38\) 14651.2 1.64594
\(39\) −4803.73 −0.505729
\(40\) 0 0
\(41\) 14410.3 1.33880 0.669398 0.742904i \(-0.266552\pi\)
0.669398 + 0.742904i \(0.266552\pi\)
\(42\) 9963.10 0.871508
\(43\) −18493.9 −1.52531 −0.762654 0.646807i \(-0.776104\pi\)
−0.762654 + 0.646807i \(0.776104\pi\)
\(44\) −21541.4 −1.67742
\(45\) 0 0
\(46\) 31255.8 2.17789
\(47\) 1609.02 0.106247 0.0531236 0.998588i \(-0.483082\pi\)
0.0531236 + 0.998588i \(0.483082\pi\)
\(48\) 12446.0 0.779700
\(49\) −10477.2 −0.623384
\(50\) 0 0
\(51\) −4348.10 −0.234085
\(52\) 11902.4 0.610415
\(53\) 5575.72 0.272654 0.136327 0.990664i \(-0.456470\pi\)
0.136327 + 0.990664i \(0.456470\pi\)
\(54\) 32513.9 1.51735
\(55\) 0 0
\(56\) −3495.30 −0.148941
\(57\) −26483.5 −1.07966
\(58\) 3317.38 0.129487
\(59\) 18038.2 0.674626 0.337313 0.941392i \(-0.390482\pi\)
0.337313 + 0.941392i \(0.390482\pi\)
\(60\) 0 0
\(61\) 34905.8 1.20108 0.600542 0.799593i \(-0.294952\pi\)
0.600542 + 0.799593i \(0.294952\pi\)
\(62\) 47960.1 1.58453
\(63\) 1323.74 0.0420197
\(64\) −42539.3 −1.29820
\(65\) 0 0
\(66\) 72363.3 2.04484
\(67\) 8036.23 0.218708 0.109354 0.994003i \(-0.465122\pi\)
0.109354 + 0.994003i \(0.465122\pi\)
\(68\) 10773.4 0.282541
\(69\) −56498.1 −1.42860
\(70\) 0 0
\(71\) 45301.1 1.06651 0.533253 0.845956i \(-0.320969\pi\)
0.533253 + 0.845956i \(0.320969\pi\)
\(72\) −730.970 −0.0166176
\(73\) 57817.7 1.26985 0.634926 0.772573i \(-0.281030\pi\)
0.634926 + 0.772573i \(0.281030\pi\)
\(74\) −59419.2 −1.26138
\(75\) 0 0
\(76\) 65619.1 1.30316
\(77\) 45974.1 0.883662
\(78\) −39983.2 −0.744117
\(79\) −41409.2 −0.746498 −0.373249 0.927731i \(-0.621756\pi\)
−0.373249 + 0.927731i \(0.621756\pi\)
\(80\) 0 0
\(81\) −54729.1 −0.926841
\(82\) 119942. 1.96987
\(83\) 34525.5 0.550104 0.275052 0.961429i \(-0.411305\pi\)
0.275052 + 0.961429i \(0.411305\pi\)
\(84\) 44622.3 0.690007
\(85\) 0 0
\(86\) −153931. −2.24430
\(87\) −5996.50 −0.0849376
\(88\) −25386.8 −0.349464
\(89\) 39956.1 0.534697 0.267349 0.963600i \(-0.413852\pi\)
0.267349 + 0.963600i \(0.413852\pi\)
\(90\) 0 0
\(91\) −25402.2 −0.321565
\(92\) 139987. 1.72432
\(93\) −86692.7 −1.03938
\(94\) 13392.5 0.156330
\(95\) 0 0
\(96\) 124744. 1.38147
\(97\) −24119.7 −0.260281 −0.130140 0.991496i \(-0.541543\pi\)
−0.130140 + 0.991496i \(0.541543\pi\)
\(98\) −87205.6 −0.917231
\(99\) 9614.52 0.0985916
\(100\) 0 0
\(101\) −50783.4 −0.495357 −0.247679 0.968842i \(-0.579668\pi\)
−0.247679 + 0.968842i \(0.579668\pi\)
\(102\) −36190.8 −0.344427
\(103\) 16310.0 0.151482 0.0757408 0.997128i \(-0.475868\pi\)
0.0757408 + 0.997128i \(0.475868\pi\)
\(104\) 14027.1 0.127170
\(105\) 0 0
\(106\) 46408.7 0.401176
\(107\) −119473. −1.00881 −0.504406 0.863467i \(-0.668289\pi\)
−0.504406 + 0.863467i \(0.668289\pi\)
\(108\) 145622. 1.20134
\(109\) 201437. 1.62395 0.811974 0.583694i \(-0.198393\pi\)
0.811974 + 0.583694i \(0.198393\pi\)
\(110\) 0 0
\(111\) 107406. 0.827412
\(112\) 65814.8 0.495768
\(113\) 141994. 1.04610 0.523049 0.852303i \(-0.324794\pi\)
0.523049 + 0.852303i \(0.324794\pi\)
\(114\) −220432. −1.58859
\(115\) 0 0
\(116\) 14857.7 0.102520
\(117\) −5312.35 −0.0358775
\(118\) 150138. 0.992629
\(119\) −22992.8 −0.148842
\(120\) 0 0
\(121\) 172865. 1.07335
\(122\) 290534. 1.76724
\(123\) −216808. −1.29215
\(124\) 214801. 1.25454
\(125\) 0 0
\(126\) 11018.0 0.0618267
\(127\) −63707.3 −0.350493 −0.175247 0.984525i \(-0.556072\pi\)
−0.175247 + 0.984525i \(0.556072\pi\)
\(128\) −88750.7 −0.478792
\(129\) 278247. 1.47216
\(130\) 0 0
\(131\) 82424.9 0.419643 0.209822 0.977740i \(-0.432712\pi\)
0.209822 + 0.977740i \(0.432712\pi\)
\(132\) 324098. 1.61898
\(133\) −140045. −0.686499
\(134\) 66888.4 0.321802
\(135\) 0 0
\(136\) 12696.6 0.0588628
\(137\) −380341. −1.73130 −0.865649 0.500652i \(-0.833094\pi\)
−0.865649 + 0.500652i \(0.833094\pi\)
\(138\) −470254. −2.10201
\(139\) 294407. 1.29244 0.646221 0.763150i \(-0.276348\pi\)
0.646221 + 0.763150i \(0.276348\pi\)
\(140\) 0 0
\(141\) −24208.3 −0.102545
\(142\) 377058. 1.56923
\(143\) −184500. −0.754494
\(144\) 13763.8 0.0553136
\(145\) 0 0
\(146\) 481237. 1.86843
\(147\) 157633. 0.601664
\(148\) −266124. −0.998687
\(149\) 218027. 0.804534 0.402267 0.915522i \(-0.368222\pi\)
0.402267 + 0.915522i \(0.368222\pi\)
\(150\) 0 0
\(151\) 453378. 1.61815 0.809074 0.587707i \(-0.199969\pi\)
0.809074 + 0.587707i \(0.199969\pi\)
\(152\) 77332.9 0.271491
\(153\) −4808.47 −0.0166065
\(154\) 382659. 1.30020
\(155\) 0 0
\(156\) −179075. −0.589146
\(157\) −269922. −0.873956 −0.436978 0.899472i \(-0.643951\pi\)
−0.436978 + 0.899472i \(0.643951\pi\)
\(158\) −344663. −1.09838
\(159\) −83888.5 −0.263154
\(160\) 0 0
\(161\) −298763. −0.908369
\(162\) −455529. −1.36373
\(163\) −278526. −0.821100 −0.410550 0.911838i \(-0.634663\pi\)
−0.410550 + 0.911838i \(0.634663\pi\)
\(164\) 537192. 1.55962
\(165\) 0 0
\(166\) 287368. 0.809410
\(167\) 407732. 1.13131 0.565657 0.824640i \(-0.308623\pi\)
0.565657 + 0.824640i \(0.308623\pi\)
\(168\) 52588.0 0.143752
\(169\) −269351. −0.725439
\(170\) 0 0
\(171\) −29287.6 −0.0765938
\(172\) −689421. −1.77690
\(173\) −379209. −0.963305 −0.481652 0.876362i \(-0.659963\pi\)
−0.481652 + 0.876362i \(0.659963\pi\)
\(174\) −49911.0 −0.124975
\(175\) 0 0
\(176\) 478022. 1.16323
\(177\) −271391. −0.651121
\(178\) 332569. 0.786741
\(179\) −101490. −0.236751 −0.118376 0.992969i \(-0.537769\pi\)
−0.118376 + 0.992969i \(0.537769\pi\)
\(180\) 0 0
\(181\) −657822. −1.49249 −0.746246 0.665670i \(-0.768146\pi\)
−0.746246 + 0.665670i \(0.768146\pi\)
\(182\) −211432. −0.473143
\(183\) −525169. −1.15924
\(184\) 164977. 0.359235
\(185\) 0 0
\(186\) −721575. −1.52932
\(187\) −167000. −0.349231
\(188\) 59981.6 0.123772
\(189\) −310788. −0.632864
\(190\) 0 0
\(191\) −500994. −0.993685 −0.496843 0.867841i \(-0.665507\pi\)
−0.496843 + 0.867841i \(0.665507\pi\)
\(192\) 640018. 1.25296
\(193\) −518302. −1.00159 −0.500795 0.865566i \(-0.666959\pi\)
−0.500795 + 0.865566i \(0.666959\pi\)
\(194\) −200756. −0.382970
\(195\) 0 0
\(196\) −390572. −0.726208
\(197\) −516158. −0.947583 −0.473792 0.880637i \(-0.657115\pi\)
−0.473792 + 0.880637i \(0.657115\pi\)
\(198\) 80025.1 0.145065
\(199\) 128960. 0.230847 0.115423 0.993316i \(-0.463178\pi\)
0.115423 + 0.993316i \(0.463178\pi\)
\(200\) 0 0
\(201\) −120908. −0.211088
\(202\) −422689. −0.728857
\(203\) −31709.6 −0.0540071
\(204\) −162090. −0.272697
\(205\) 0 0
\(206\) 135754. 0.222886
\(207\) −62480.1 −0.101348
\(208\) −264123. −0.423300
\(209\) −1.01717e6 −1.61075
\(210\) 0 0
\(211\) 1.14181e6 1.76558 0.882788 0.469771i \(-0.155664\pi\)
0.882788 + 0.469771i \(0.155664\pi\)
\(212\) 207853. 0.317627
\(213\) −681570. −1.02935
\(214\) −994416. −1.48434
\(215\) 0 0
\(216\) 171617. 0.250280
\(217\) −458433. −0.660886
\(218\) 1.67663e6 2.38944
\(219\) −869885. −1.22561
\(220\) 0 0
\(221\) 92273.1 0.127085
\(222\) 893980. 1.21743
\(223\) 700467. 0.943247 0.471623 0.881800i \(-0.343668\pi\)
0.471623 + 0.881800i \(0.343668\pi\)
\(224\) 659650. 0.878402
\(225\) 0 0
\(226\) 1.18186e6 1.53920
\(227\) 664426. 0.855820 0.427910 0.903821i \(-0.359250\pi\)
0.427910 + 0.903821i \(0.359250\pi\)
\(228\) −987260. −1.25775
\(229\) −546361. −0.688480 −0.344240 0.938882i \(-0.611863\pi\)
−0.344240 + 0.938882i \(0.611863\pi\)
\(230\) 0 0
\(231\) −691695. −0.852874
\(232\) 17510.0 0.0213583
\(233\) 1.21671e6 1.46824 0.734120 0.679020i \(-0.237595\pi\)
0.734120 + 0.679020i \(0.237595\pi\)
\(234\) −44216.6 −0.0527893
\(235\) 0 0
\(236\) 672433. 0.785903
\(237\) 623014. 0.720488
\(238\) −191378. −0.219002
\(239\) 994192. 1.12584 0.562918 0.826513i \(-0.309679\pi\)
0.562918 + 0.826513i \(0.309679\pi\)
\(240\) 0 0
\(241\) 705904. 0.782894 0.391447 0.920201i \(-0.371975\pi\)
0.391447 + 0.920201i \(0.371975\pi\)
\(242\) 1.43882e6 1.57931
\(243\) −125825. −0.136694
\(244\) 1.30123e6 1.39920
\(245\) 0 0
\(246\) −1.80457e6 −1.90124
\(247\) 562020. 0.586151
\(248\) 253146. 0.261362
\(249\) −519448. −0.530937
\(250\) 0 0
\(251\) −819519. −0.821060 −0.410530 0.911847i \(-0.634656\pi\)
−0.410530 + 0.911847i \(0.634656\pi\)
\(252\) 49346.9 0.0489506
\(253\) −2.16996e6 −2.13133
\(254\) −530258. −0.515707
\(255\) 0 0
\(256\) 622555. 0.593715
\(257\) −1.62712e6 −1.53669 −0.768346 0.640035i \(-0.778920\pi\)
−0.768346 + 0.640035i \(0.778920\pi\)
\(258\) 2.31595e6 2.16610
\(259\) 567966. 0.526106
\(260\) 0 0
\(261\) −6631.41 −0.00602566
\(262\) 686052. 0.617453
\(263\) 1.69628e6 1.51220 0.756099 0.654457i \(-0.227103\pi\)
0.756099 + 0.654457i \(0.227103\pi\)
\(264\) 381953. 0.337288
\(265\) 0 0
\(266\) −1.16565e6 −1.01010
\(267\) −601152. −0.516067
\(268\) 299577. 0.254783
\(269\) 383907. 0.323478 0.161739 0.986834i \(-0.448290\pi\)
0.161739 + 0.986834i \(0.448290\pi\)
\(270\) 0 0
\(271\) 2.24637e6 1.85805 0.929027 0.370012i \(-0.120646\pi\)
0.929027 + 0.370012i \(0.120646\pi\)
\(272\) −239071. −0.195932
\(273\) 382185. 0.310361
\(274\) −3.16571e6 −2.54739
\(275\) 0 0
\(276\) −2.10615e6 −1.66424
\(277\) −508909. −0.398511 −0.199256 0.979948i \(-0.563852\pi\)
−0.199256 + 0.979948i \(0.563852\pi\)
\(278\) 2.45045e6 1.90167
\(279\) −95871.7 −0.0737361
\(280\) 0 0
\(281\) 1.23385e6 0.932170 0.466085 0.884740i \(-0.345664\pi\)
0.466085 + 0.884740i \(0.345664\pi\)
\(282\) −201494. −0.150883
\(283\) 12391.5 0.00919728 0.00459864 0.999989i \(-0.498536\pi\)
0.00459864 + 0.999989i \(0.498536\pi\)
\(284\) 1.68875e6 1.24242
\(285\) 0 0
\(286\) −1.53566e6 −1.11014
\(287\) −1.14649e6 −0.821606
\(288\) 137952. 0.0980047
\(289\) 83521.0 0.0588235
\(290\) 0 0
\(291\) 362888. 0.251212
\(292\) 2.15534e6 1.47931
\(293\) 241619. 0.164423 0.0822113 0.996615i \(-0.473802\pi\)
0.0822113 + 0.996615i \(0.473802\pi\)
\(294\) 1.31204e6 0.885273
\(295\) 0 0
\(296\) −313630. −0.208060
\(297\) −2.25730e6 −1.48490
\(298\) 1.81472e6 1.18377
\(299\) 1.19897e6 0.775590
\(300\) 0 0
\(301\) 1.47137e6 0.936067
\(302\) 3.77363e6 2.38090
\(303\) 764053. 0.478098
\(304\) −1.45614e6 −0.903690
\(305\) 0 0
\(306\) −40022.6 −0.0244344
\(307\) −627528. −0.380003 −0.190002 0.981784i \(-0.560849\pi\)
−0.190002 + 0.981784i \(0.560849\pi\)
\(308\) 1.71383e6 1.02942
\(309\) −245388. −0.146204
\(310\) 0 0
\(311\) −2.03408e6 −1.19252 −0.596262 0.802790i \(-0.703348\pi\)
−0.596262 + 0.802790i \(0.703348\pi\)
\(312\) −211042. −0.122739
\(313\) 2.92011e6 1.68476 0.842382 0.538881i \(-0.181153\pi\)
0.842382 + 0.538881i \(0.181153\pi\)
\(314\) −2.24666e6 −1.28592
\(315\) 0 0
\(316\) −1.54366e6 −0.869630
\(317\) −700960. −0.391783 −0.195891 0.980626i \(-0.562760\pi\)
−0.195891 + 0.980626i \(0.562760\pi\)
\(318\) −698234. −0.387198
\(319\) −230311. −0.126718
\(320\) 0 0
\(321\) 1.79751e6 0.973663
\(322\) −2.48671e6 −1.33655
\(323\) 508712. 0.271310
\(324\) −2.04020e6 −1.07972
\(325\) 0 0
\(326\) −2.31827e6 −1.20815
\(327\) −3.03068e6 −1.56737
\(328\) 633088. 0.324922
\(329\) −128014. −0.0652029
\(330\) 0 0
\(331\) 1.74718e6 0.876534 0.438267 0.898845i \(-0.355592\pi\)
0.438267 + 0.898845i \(0.355592\pi\)
\(332\) 1.28705e6 0.640842
\(333\) 118778. 0.0586985
\(334\) 3.39370e6 1.66459
\(335\) 0 0
\(336\) −990205. −0.478495
\(337\) 2.10556e6 1.00993 0.504966 0.863139i \(-0.331505\pi\)
0.504966 + 0.863139i \(0.331505\pi\)
\(338\) −2.24190e6 −1.06739
\(339\) −2.13634e6 −1.00965
\(340\) 0 0
\(341\) −3.32966e6 −1.55065
\(342\) −243771. −0.112698
\(343\) 2.17073e6 0.996256
\(344\) −812491. −0.370188
\(345\) 0 0
\(346\) −3.15629e6 −1.41738
\(347\) −4.02369e6 −1.79391 −0.896956 0.442119i \(-0.854227\pi\)
−0.896956 + 0.442119i \(0.854227\pi\)
\(348\) −223539. −0.0989477
\(349\) 3.47512e6 1.52724 0.763618 0.645668i \(-0.223421\pi\)
0.763618 + 0.645668i \(0.223421\pi\)
\(350\) 0 0
\(351\) 1.24723e6 0.540356
\(352\) 4.79112e6 2.06101
\(353\) 1.45843e6 0.622943 0.311472 0.950255i \(-0.399178\pi\)
0.311472 + 0.950255i \(0.399178\pi\)
\(354\) −2.25888e6 −0.958043
\(355\) 0 0
\(356\) 1.48949e6 0.622894
\(357\) 345935. 0.143656
\(358\) −844740. −0.348350
\(359\) 61017.9 0.0249874 0.0124937 0.999922i \(-0.496023\pi\)
0.0124937 + 0.999922i \(0.496023\pi\)
\(360\) 0 0
\(361\) 622381. 0.251355
\(362\) −5.47529e6 −2.19602
\(363\) −2.60081e6 −1.03596
\(364\) −946952. −0.374606
\(365\) 0 0
\(366\) −4.37117e6 −1.70567
\(367\) 1.26083e6 0.488644 0.244322 0.969694i \(-0.421435\pi\)
0.244322 + 0.969694i \(0.421435\pi\)
\(368\) −3.10643e6 −1.19575
\(369\) −239764. −0.0916679
\(370\) 0 0
\(371\) −443604. −0.167325
\(372\) −3.23176e6 −1.21082
\(373\) 1.99577e6 0.742741 0.371371 0.928485i \(-0.378888\pi\)
0.371371 + 0.928485i \(0.378888\pi\)
\(374\) −1.39000e6 −0.513849
\(375\) 0 0
\(376\) 70689.1 0.0257859
\(377\) 127255. 0.0461127
\(378\) −2.58680e6 −0.931181
\(379\) −2.40574e6 −0.860303 −0.430151 0.902757i \(-0.641540\pi\)
−0.430151 + 0.902757i \(0.641540\pi\)
\(380\) 0 0
\(381\) 958496. 0.338281
\(382\) −4.16995e6 −1.46208
\(383\) −106112. −0.0369632 −0.0184816 0.999829i \(-0.505883\pi\)
−0.0184816 + 0.999829i \(0.505883\pi\)
\(384\) 1.33528e6 0.462110
\(385\) 0 0
\(386\) −4.31401e6 −1.47371
\(387\) 307707. 0.104438
\(388\) −899139. −0.303213
\(389\) −2.18277e6 −0.731363 −0.365682 0.930740i \(-0.619164\pi\)
−0.365682 + 0.930740i \(0.619164\pi\)
\(390\) 0 0
\(391\) 1.08525e6 0.358995
\(392\) −460294. −0.151294
\(393\) −1.24011e6 −0.405022
\(394\) −4.29617e6 −1.39425
\(395\) 0 0
\(396\) 358413. 0.114854
\(397\) −2.04018e6 −0.649669 −0.324835 0.945771i \(-0.605309\pi\)
−0.324835 + 0.945771i \(0.605309\pi\)
\(398\) 1.07338e6 0.339662
\(399\) 2.10703e6 0.662580
\(400\) 0 0
\(401\) −1.83789e6 −0.570765 −0.285383 0.958414i \(-0.592121\pi\)
−0.285383 + 0.958414i \(0.592121\pi\)
\(402\) −1.00636e6 −0.310590
\(403\) 1.83975e6 0.564282
\(404\) −1.89312e6 −0.577065
\(405\) 0 0
\(406\) −263931. −0.0794648
\(407\) 4.12521e6 1.23441
\(408\) −191025. −0.0568119
\(409\) 3.46310e6 1.02366 0.511831 0.859086i \(-0.328968\pi\)
0.511831 + 0.859086i \(0.328968\pi\)
\(410\) 0 0
\(411\) 5.72235e6 1.67098
\(412\) 608007. 0.176468
\(413\) −1.43512e6 −0.414012
\(414\) −520044. −0.149121
\(415\) 0 0
\(416\) −2.64726e6 −0.750003
\(417\) −4.42945e6 −1.24741
\(418\) −8.46625e6 −2.37001
\(419\) 5.79397e6 1.61228 0.806142 0.591723i \(-0.201552\pi\)
0.806142 + 0.591723i \(0.201552\pi\)
\(420\) 0 0
\(421\) 1.69084e6 0.464941 0.232471 0.972603i \(-0.425319\pi\)
0.232471 + 0.972603i \(0.425319\pi\)
\(422\) 9.50367e6 2.59783
\(423\) −26771.4 −0.00727479
\(424\) 244958. 0.0661723
\(425\) 0 0
\(426\) −5.67295e6 −1.51456
\(427\) −2.77711e6 −0.737094
\(428\) −4.45375e6 −1.17521
\(429\) 2.77586e6 0.728206
\(430\) 0 0
\(431\) −3.93166e6 −1.01949 −0.509744 0.860326i \(-0.670260\pi\)
−0.509744 + 0.860326i \(0.670260\pi\)
\(432\) −3.23146e6 −0.833086
\(433\) −7.27742e6 −1.86534 −0.932669 0.360734i \(-0.882526\pi\)
−0.932669 + 0.360734i \(0.882526\pi\)
\(434\) −3.81570e6 −0.972412
\(435\) 0 0
\(436\) 7.50921e6 1.89181
\(437\) 6.61008e6 1.65578
\(438\) −7.24037e6 −1.80333
\(439\) −5.21405e6 −1.29126 −0.645631 0.763650i \(-0.723405\pi\)
−0.645631 + 0.763650i \(0.723405\pi\)
\(440\) 0 0
\(441\) 174323. 0.0426833
\(442\) 768022. 0.186990
\(443\) 4.83492e6 1.17052 0.585261 0.810845i \(-0.300992\pi\)
0.585261 + 0.810845i \(0.300992\pi\)
\(444\) 4.00392e6 0.963891
\(445\) 0 0
\(446\) 5.83023e6 1.38787
\(447\) −3.28029e6 −0.776502
\(448\) 3.38443e6 0.796692
\(449\) 1.71605e6 0.401712 0.200856 0.979621i \(-0.435628\pi\)
0.200856 + 0.979621i \(0.435628\pi\)
\(450\) 0 0
\(451\) −8.32707e6 −1.92775
\(452\) 5.29327e6 1.21865
\(453\) −6.82122e6 −1.56177
\(454\) 5.53026e6 1.25923
\(455\) 0 0
\(456\) −1.16350e6 −0.262032
\(457\) −8.14043e6 −1.82329 −0.911647 0.410974i \(-0.865189\pi\)
−0.911647 + 0.410974i \(0.865189\pi\)
\(458\) −4.54756e6 −1.01301
\(459\) 1.12893e6 0.250113
\(460\) 0 0
\(461\) 4.56850e6 1.00120 0.500601 0.865678i \(-0.333112\pi\)
0.500601 + 0.865678i \(0.333112\pi\)
\(462\) −5.75722e6 −1.25490
\(463\) −5.79664e6 −1.25668 −0.628339 0.777940i \(-0.716265\pi\)
−0.628339 + 0.777940i \(0.716265\pi\)
\(464\) −329705. −0.0710936
\(465\) 0 0
\(466\) 1.01271e7 2.16033
\(467\) 2.13263e6 0.452505 0.226252 0.974069i \(-0.427353\pi\)
0.226252 + 0.974069i \(0.427353\pi\)
\(468\) −198035. −0.0417953
\(469\) −639362. −0.134219
\(470\) 0 0
\(471\) 4.06107e6 0.843506
\(472\) 792471. 0.163730
\(473\) 1.06868e7 2.19631
\(474\) 5.18557e6 1.06011
\(475\) 0 0
\(476\) −857133. −0.173393
\(477\) −92770.6 −0.0186687
\(478\) 8.27501e6 1.65653
\(479\) −1.43546e6 −0.285859 −0.142930 0.989733i \(-0.545652\pi\)
−0.142930 + 0.989733i \(0.545652\pi\)
\(480\) 0 0
\(481\) −2.27932e6 −0.449203
\(482\) 5.87549e6 1.15193
\(483\) 4.49499e6 0.876720
\(484\) 6.44410e6 1.25040
\(485\) 0 0
\(486\) −1.04728e6 −0.201129
\(487\) 8.03771e6 1.53571 0.767857 0.640622i \(-0.221323\pi\)
0.767857 + 0.640622i \(0.221323\pi\)
\(488\) 1.53351e6 0.291500
\(489\) 4.19051e6 0.792491
\(490\) 0 0
\(491\) 2.15660e6 0.403706 0.201853 0.979416i \(-0.435304\pi\)
0.201853 + 0.979416i \(0.435304\pi\)
\(492\) −8.08223e6 −1.50528
\(493\) 115185. 0.0213441
\(494\) 4.67789e6 0.862448
\(495\) 0 0
\(496\) −4.76662e6 −0.869974
\(497\) −3.60416e6 −0.654505
\(498\) −4.32355e6 −0.781208
\(499\) 3.89550e6 0.700345 0.350173 0.936685i \(-0.386123\pi\)
0.350173 + 0.936685i \(0.386123\pi\)
\(500\) 0 0
\(501\) −6.13446e6 −1.09190
\(502\) −6.82115e6 −1.20809
\(503\) −6.04036e6 −1.06449 −0.532247 0.846589i \(-0.678652\pi\)
−0.532247 + 0.846589i \(0.678652\pi\)
\(504\) 58155.9 0.0101981
\(505\) 0 0
\(506\) −1.80613e7 −3.13598
\(507\) 4.05247e6 0.700163
\(508\) −2.37490e6 −0.408306
\(509\) −3.74827e6 −0.641264 −0.320632 0.947204i \(-0.603895\pi\)
−0.320632 + 0.947204i \(0.603895\pi\)
\(510\) 0 0
\(511\) −4.59997e6 −0.779297
\(512\) 8.02177e6 1.35237
\(513\) 6.87614e6 1.15359
\(514\) −1.35431e7 −2.26105
\(515\) 0 0
\(516\) 1.03726e7 1.71499
\(517\) −929781. −0.152987
\(518\) 4.72739e6 0.774100
\(519\) 5.70532e6 0.929741
\(520\) 0 0
\(521\) 6.22989e6 1.00551 0.502755 0.864429i \(-0.332320\pi\)
0.502755 + 0.864429i \(0.332320\pi\)
\(522\) −55195.6 −0.00886601
\(523\) 9.16914e6 1.46580 0.732899 0.680337i \(-0.238167\pi\)
0.732899 + 0.680337i \(0.238167\pi\)
\(524\) 3.07266e6 0.488862
\(525\) 0 0
\(526\) 1.41188e7 2.22501
\(527\) 1.66525e6 0.261188
\(528\) −7.19199e6 −1.12270
\(529\) 7.66515e6 1.19092
\(530\) 0 0
\(531\) −300125. −0.0461920
\(532\) −5.22065e6 −0.799734
\(533\) 4.60099e6 0.701509
\(534\) −5.00361e6 −0.759329
\(535\) 0 0
\(536\) 353055. 0.0530799
\(537\) 1.52695e6 0.228502
\(538\) 3.19539e6 0.475958
\(539\) 6.05430e6 0.897619
\(540\) 0 0
\(541\) 7.04683e6 1.03514 0.517572 0.855640i \(-0.326836\pi\)
0.517572 + 0.855640i \(0.326836\pi\)
\(542\) 1.86974e7 2.73390
\(543\) 9.89714e6 1.44049
\(544\) −2.39616e6 −0.347152
\(545\) 0 0
\(546\) 3.18106e6 0.456657
\(547\) −2.21405e6 −0.316388 −0.158194 0.987408i \(-0.550567\pi\)
−0.158194 + 0.987408i \(0.550567\pi\)
\(548\) −1.41785e7 −2.01687
\(549\) −580774. −0.0822387
\(550\) 0 0
\(551\) 701570. 0.0984446
\(552\) −2.48213e6 −0.346718
\(553\) 3.29451e6 0.458119
\(554\) −4.23583e6 −0.586360
\(555\) 0 0
\(556\) 1.09750e7 1.50563
\(557\) 9.39143e6 1.28261 0.641304 0.767287i \(-0.278394\pi\)
0.641304 + 0.767287i \(0.278394\pi\)
\(558\) −797975. −0.108493
\(559\) −5.90481e6 −0.799239
\(560\) 0 0
\(561\) 2.51257e6 0.337063
\(562\) 1.02697e7 1.37157
\(563\) 9.33692e6 1.24146 0.620730 0.784025i \(-0.286836\pi\)
0.620730 + 0.784025i \(0.286836\pi\)
\(564\) −902442. −0.119460
\(565\) 0 0
\(566\) 103139. 0.0135326
\(567\) 4.35424e6 0.568794
\(568\) 1.99021e6 0.258838
\(569\) −1.25243e7 −1.62170 −0.810852 0.585252i \(-0.800996\pi\)
−0.810852 + 0.585252i \(0.800996\pi\)
\(570\) 0 0
\(571\) −7.46956e6 −0.958748 −0.479374 0.877611i \(-0.659136\pi\)
−0.479374 + 0.877611i \(0.659136\pi\)
\(572\) −6.87783e6 −0.878945
\(573\) 7.53761e6 0.959063
\(574\) −9.54261e6 −1.20889
\(575\) 0 0
\(576\) 707783. 0.0888881
\(577\) 556852. 0.0696306 0.0348153 0.999394i \(-0.488916\pi\)
0.0348153 + 0.999394i \(0.488916\pi\)
\(578\) 695175. 0.0865515
\(579\) 7.79802e6 0.966692
\(580\) 0 0
\(581\) −2.74685e6 −0.337594
\(582\) 3.02045e6 0.369627
\(583\) −3.22195e6 −0.392598
\(584\) 2.54010e6 0.308190
\(585\) 0 0
\(586\) 2.01108e6 0.241927
\(587\) 9.46255e6 1.13348 0.566739 0.823898i \(-0.308205\pi\)
0.566739 + 0.823898i \(0.308205\pi\)
\(588\) 5.87628e6 0.700906
\(589\) 1.01427e7 1.20467
\(590\) 0 0
\(591\) 7.76577e6 0.914567
\(592\) 5.90551e6 0.692553
\(593\) −3.49579e6 −0.408234 −0.204117 0.978947i \(-0.565432\pi\)
−0.204117 + 0.978947i \(0.565432\pi\)
\(594\) −1.87883e7 −2.18485
\(595\) 0 0
\(596\) 8.12767e6 0.937239
\(597\) −1.94025e6 −0.222804
\(598\) 9.97949e6 1.14118
\(599\) 1.60039e7 1.82246 0.911231 0.411895i \(-0.135133\pi\)
0.911231 + 0.411895i \(0.135133\pi\)
\(600\) 0 0
\(601\) 1.17281e7 1.32447 0.662234 0.749297i \(-0.269609\pi\)
0.662234 + 0.749297i \(0.269609\pi\)
\(602\) 1.22468e7 1.37731
\(603\) −133709. −0.0149751
\(604\) 1.69012e7 1.88505
\(605\) 0 0
\(606\) 6.35949e6 0.703462
\(607\) 1.85236e6 0.204058 0.102029 0.994781i \(-0.467467\pi\)
0.102029 + 0.994781i \(0.467467\pi\)
\(608\) −1.45946e7 −1.60116
\(609\) 477082. 0.0521254
\(610\) 0 0
\(611\) 513736. 0.0556720
\(612\) −179252. −0.0193457
\(613\) −1.52983e7 −1.64434 −0.822169 0.569244i \(-0.807236\pi\)
−0.822169 + 0.569244i \(0.807236\pi\)
\(614\) −5.22314e6 −0.559127
\(615\) 0 0
\(616\) 2.01978e6 0.214463
\(617\) −3.48814e6 −0.368876 −0.184438 0.982844i \(-0.559047\pi\)
−0.184438 + 0.982844i \(0.559047\pi\)
\(618\) −2.04246e6 −0.215120
\(619\) 2.45152e6 0.257163 0.128582 0.991699i \(-0.458958\pi\)
0.128582 + 0.991699i \(0.458958\pi\)
\(620\) 0 0
\(621\) 1.46691e7 1.52642
\(622\) −1.69304e7 −1.75465
\(623\) −3.17891e6 −0.328139
\(624\) 3.97382e6 0.408551
\(625\) 0 0
\(626\) 2.43052e7 2.47892
\(627\) 1.53036e7 1.55462
\(628\) −1.00622e7 −1.01811
\(629\) −2.06313e6 −0.207921
\(630\) 0 0
\(631\) −1.72457e7 −1.72428 −0.862139 0.506672i \(-0.830876\pi\)
−0.862139 + 0.506672i \(0.830876\pi\)
\(632\) −1.81923e6 −0.181173
\(633\) −1.71789e7 −1.70406
\(634\) −5.83434e6 −0.576460
\(635\) 0 0
\(636\) −3.12722e6 −0.306560
\(637\) −3.34521e6 −0.326644
\(638\) −1.91696e6 −0.186450
\(639\) −753735. −0.0730241
\(640\) 0 0
\(641\) 2.31048e6 0.222104 0.111052 0.993815i \(-0.464578\pi\)
0.111052 + 0.993815i \(0.464578\pi\)
\(642\) 1.49613e7 1.43262
\(643\) 6.15366e6 0.586956 0.293478 0.955966i \(-0.405187\pi\)
0.293478 + 0.955966i \(0.405187\pi\)
\(644\) −1.11374e7 −1.05820
\(645\) 0 0
\(646\) 4.23419e6 0.399199
\(647\) −8.01993e6 −0.753199 −0.376600 0.926376i \(-0.622907\pi\)
−0.376600 + 0.926376i \(0.622907\pi\)
\(648\) −2.40441e6 −0.224942
\(649\) −1.04235e7 −0.971404
\(650\) 0 0
\(651\) 6.89727e6 0.637859
\(652\) −1.03830e7 −0.956537
\(653\) −5.87832e6 −0.539474 −0.269737 0.962934i \(-0.586937\pi\)
−0.269737 + 0.962934i \(0.586937\pi\)
\(654\) −2.52254e7 −2.30618
\(655\) 0 0
\(656\) −1.19207e7 −1.08154
\(657\) −961988. −0.0869474
\(658\) −1.06550e6 −0.0959380
\(659\) −4.40573e6 −0.395188 −0.197594 0.980284i \(-0.563313\pi\)
−0.197594 + 0.980284i \(0.563313\pi\)
\(660\) 0 0
\(661\) 8.97238e6 0.798738 0.399369 0.916790i \(-0.369229\pi\)
0.399369 + 0.916790i \(0.369229\pi\)
\(662\) 1.45424e7 1.28971
\(663\) −1.38828e6 −0.122657
\(664\) 1.51681e6 0.133509
\(665\) 0 0
\(666\) 988635. 0.0863675
\(667\) 1.49668e6 0.130261
\(668\) 1.51995e7 1.31792
\(669\) −1.05387e7 −0.910382
\(670\) 0 0
\(671\) −2.01705e7 −1.72946
\(672\) −9.92464e6 −0.847797
\(673\) 4.76321e6 0.405380 0.202690 0.979243i \(-0.435032\pi\)
0.202690 + 0.979243i \(0.435032\pi\)
\(674\) 1.75253e7 1.48599
\(675\) 0 0
\(676\) −1.00409e7 −0.845098
\(677\) 485340. 0.0406981 0.0203491 0.999793i \(-0.493522\pi\)
0.0203491 + 0.999793i \(0.493522\pi\)
\(678\) −1.77815e7 −1.48557
\(679\) 1.91896e6 0.159732
\(680\) 0 0
\(681\) −9.99651e6 −0.826001
\(682\) −2.77139e7 −2.28159
\(683\) 1.24004e7 1.01715 0.508573 0.861019i \(-0.330173\pi\)
0.508573 + 0.861019i \(0.330173\pi\)
\(684\) −1.09179e6 −0.0892276
\(685\) 0 0
\(686\) 1.80678e7 1.46587
\(687\) 8.22018e6 0.664492
\(688\) 1.52988e7 1.23221
\(689\) 1.78024e6 0.142867
\(690\) 0 0
\(691\) 205047. 0.0163365 0.00816823 0.999967i \(-0.497400\pi\)
0.00816823 + 0.999967i \(0.497400\pi\)
\(692\) −1.41363e7 −1.12220
\(693\) −764931. −0.0605047
\(694\) −3.34906e7 −2.63952
\(695\) 0 0
\(696\) −263444. −0.0206141
\(697\) 4.16458e6 0.324706
\(698\) 2.89247e7 2.24714
\(699\) −1.83058e7 −1.41708
\(700\) 0 0
\(701\) −1.03727e7 −0.797257 −0.398628 0.917113i \(-0.630514\pi\)
−0.398628 + 0.917113i \(0.630514\pi\)
\(702\) 1.03812e7 0.795067
\(703\) −1.25662e7 −0.958990
\(704\) 2.45815e7 1.86929
\(705\) 0 0
\(706\) 1.21390e7 0.916583
\(707\) 4.04033e6 0.303996
\(708\) −1.01170e7 −0.758521
\(709\) −9.03252e6 −0.674829 −0.337414 0.941356i \(-0.609552\pi\)
−0.337414 + 0.941356i \(0.609552\pi\)
\(710\) 0 0
\(711\) 688978. 0.0511130
\(712\) 1.75539e6 0.129770
\(713\) 2.16378e7 1.59401
\(714\) 2.87934e6 0.211372
\(715\) 0 0
\(716\) −3.78338e6 −0.275802
\(717\) −1.49579e7 −1.08661
\(718\) 507873. 0.0367658
\(719\) 2.62860e7 1.89628 0.948141 0.317849i \(-0.102961\pi\)
0.948141 + 0.317849i \(0.102961\pi\)
\(720\) 0 0
\(721\) −1.29762e6 −0.0929628
\(722\) 5.18030e6 0.369838
\(723\) −1.06206e7 −0.755616
\(724\) −2.45225e7 −1.73867
\(725\) 0 0
\(726\) −2.16474e7 −1.52428
\(727\) −1.65670e7 −1.16254 −0.581271 0.813710i \(-0.697444\pi\)
−0.581271 + 0.813710i \(0.697444\pi\)
\(728\) −1.11600e6 −0.0780430
\(729\) 1.51922e7 1.05877
\(730\) 0 0
\(731\) −5.34474e6 −0.369941
\(732\) −1.95774e7 −1.35045
\(733\) 2.11043e7 1.45081 0.725407 0.688321i \(-0.241652\pi\)
0.725407 + 0.688321i \(0.241652\pi\)
\(734\) 1.04944e7 0.718979
\(735\) 0 0
\(736\) −3.11352e7 −2.11864
\(737\) −4.64377e6 −0.314921
\(738\) −1.99564e6 −0.134878
\(739\) 2.19360e7 1.47756 0.738780 0.673946i \(-0.235402\pi\)
0.738780 + 0.673946i \(0.235402\pi\)
\(740\) 0 0
\(741\) −8.45577e6 −0.565728
\(742\) −3.69228e6 −0.246198
\(743\) 1.08537e7 0.721283 0.360642 0.932704i \(-0.382558\pi\)
0.360642 + 0.932704i \(0.382558\pi\)
\(744\) −3.80867e6 −0.252255
\(745\) 0 0
\(746\) 1.66115e7 1.09285
\(747\) −574446. −0.0376659
\(748\) −6.22547e6 −0.406835
\(749\) 9.50527e6 0.619099
\(750\) 0 0
\(751\) 1.74016e6 0.112587 0.0562935 0.998414i \(-0.482072\pi\)
0.0562935 + 0.998414i \(0.482072\pi\)
\(752\) −1.33104e6 −0.0858315
\(753\) 1.23299e7 0.792452
\(754\) 1.05919e6 0.0678491
\(755\) 0 0
\(756\) −1.15857e7 −0.737252
\(757\) −2.50864e7 −1.59111 −0.795553 0.605884i \(-0.792820\pi\)
−0.795553 + 0.605884i \(0.792820\pi\)
\(758\) −2.00239e7 −1.26583
\(759\) 3.26477e7 2.05707
\(760\) 0 0
\(761\) −1.37556e7 −0.861032 −0.430516 0.902583i \(-0.641668\pi\)
−0.430516 + 0.902583i \(0.641668\pi\)
\(762\) 7.97791e6 0.497739
\(763\) −1.60263e7 −0.996602
\(764\) −1.86762e7 −1.15759
\(765\) 0 0
\(766\) −883212. −0.0543867
\(767\) 5.75931e6 0.353494
\(768\) −9.36654e6 −0.573028
\(769\) 2.91944e7 1.78026 0.890131 0.455705i \(-0.150613\pi\)
0.890131 + 0.455705i \(0.150613\pi\)
\(770\) 0 0
\(771\) 2.44805e7 1.48315
\(772\) −1.93214e7 −1.16680
\(773\) −5.88433e6 −0.354200 −0.177100 0.984193i \(-0.556672\pi\)
−0.177100 + 0.984193i \(0.556672\pi\)
\(774\) 2.56116e6 0.153668
\(775\) 0 0
\(776\) −1.05965e6 −0.0631694
\(777\) −8.54524e6 −0.507775
\(778\) −1.81679e7 −1.07611
\(779\) 2.53658e7 1.49763
\(780\) 0 0
\(781\) −2.61775e7 −1.53568
\(782\) 9.03294e6 0.528217
\(783\) 1.55692e6 0.0907533
\(784\) 8.66712e6 0.503599
\(785\) 0 0
\(786\) −1.03219e7 −0.595939
\(787\) 9.23431e6 0.531456 0.265728 0.964048i \(-0.414388\pi\)
0.265728 + 0.964048i \(0.414388\pi\)
\(788\) −1.92415e7 −1.10388
\(789\) −2.55211e7 −1.45951
\(790\) 0 0
\(791\) −1.12970e7 −0.641981
\(792\) 422394. 0.0239279
\(793\) 1.11449e7 0.629350
\(794\) −1.69811e7 −0.955907
\(795\) 0 0
\(796\) 4.80742e6 0.268924
\(797\) 4.32222e6 0.241024 0.120512 0.992712i \(-0.461546\pi\)
0.120512 + 0.992712i \(0.461546\pi\)
\(798\) 1.75376e7 0.974904
\(799\) 465007. 0.0257687
\(800\) 0 0
\(801\) −664802. −0.0366110
\(802\) −1.52974e7 −0.839810
\(803\) −3.34102e7 −1.82848
\(804\) −4.50723e6 −0.245906
\(805\) 0 0
\(806\) 1.53129e7 0.830271
\(807\) −5.77600e6 −0.312208
\(808\) −2.23107e6 −0.120222
\(809\) −3.92650e6 −0.210928 −0.105464 0.994423i \(-0.533633\pi\)
−0.105464 + 0.994423i \(0.533633\pi\)
\(810\) 0 0
\(811\) 1.86033e7 0.993201 0.496601 0.867979i \(-0.334581\pi\)
0.496601 + 0.867979i \(0.334581\pi\)
\(812\) −1.18208e6 −0.0629154
\(813\) −3.37974e7 −1.79332
\(814\) 3.43356e7 1.81629
\(815\) 0 0
\(816\) 3.59690e6 0.189105
\(817\) −3.25539e7 −1.70627
\(818\) 2.88246e7 1.50619
\(819\) 422651. 0.0220177
\(820\) 0 0
\(821\) −3.35587e7 −1.73759 −0.868795 0.495172i \(-0.835105\pi\)
−0.868795 + 0.495172i \(0.835105\pi\)
\(822\) 4.76292e7 2.45863
\(823\) 5.93901e6 0.305643 0.152822 0.988254i \(-0.451164\pi\)
0.152822 + 0.988254i \(0.451164\pi\)
\(824\) 716544. 0.0367642
\(825\) 0 0
\(826\) −1.19450e7 −0.609167
\(827\) 1.25961e7 0.640430 0.320215 0.947345i \(-0.396245\pi\)
0.320215 + 0.947345i \(0.396245\pi\)
\(828\) −2.32915e6 −0.118065
\(829\) −2.20005e7 −1.11185 −0.555926 0.831232i \(-0.687636\pi\)
−0.555926 + 0.831232i \(0.687636\pi\)
\(830\) 0 0
\(831\) 7.65670e6 0.384626
\(832\) −1.35821e7 −0.680236
\(833\) −3.02791e6 −0.151193
\(834\) −3.68679e7 −1.83541
\(835\) 0 0
\(836\) −3.79183e7 −1.87643
\(837\) 2.25088e7 1.11055
\(838\) 4.82253e7 2.37227
\(839\) 2.54510e7 1.24825 0.624123 0.781326i \(-0.285457\pi\)
0.624123 + 0.781326i \(0.285457\pi\)
\(840\) 0 0
\(841\) −2.03523e7 −0.992255
\(842\) 1.40735e7 0.684104
\(843\) −1.85636e7 −0.899691
\(844\) 4.25646e7 2.05680
\(845\) 0 0
\(846\) −222828. −0.0107039
\(847\) −1.37531e7 −0.658708
\(848\) −4.61243e6 −0.220262
\(849\) −186435. −0.00887682
\(850\) 0 0
\(851\) −2.68078e7 −1.26893
\(852\) −2.54078e7 −1.19913
\(853\) 4.09671e7 1.92780 0.963901 0.266262i \(-0.0857885\pi\)
0.963901 + 0.266262i \(0.0857885\pi\)
\(854\) −2.31148e7 −1.08454
\(855\) 0 0
\(856\) −5.24880e6 −0.244836
\(857\) 2.88426e7 1.34147 0.670737 0.741695i \(-0.265978\pi\)
0.670737 + 0.741695i \(0.265978\pi\)
\(858\) 2.31045e7 1.07146
\(859\) 3.52775e6 0.163123 0.0815615 0.996668i \(-0.474009\pi\)
0.0815615 + 0.996668i \(0.474009\pi\)
\(860\) 0 0
\(861\) 1.72492e7 0.792980
\(862\) −3.27246e7 −1.50005
\(863\) −1.85743e7 −0.848959 −0.424479 0.905438i \(-0.639543\pi\)
−0.424479 + 0.905438i \(0.639543\pi\)
\(864\) −3.23884e7 −1.47606
\(865\) 0 0
\(866\) −6.05725e7 −2.74461
\(867\) −1.25660e6 −0.0567740
\(868\) −1.70896e7 −0.769897
\(869\) 2.39285e7 1.07489
\(870\) 0 0
\(871\) 2.56584e6 0.114600
\(872\) 8.84970e6 0.394128
\(873\) 401310. 0.0178215
\(874\) 5.50181e7 2.43628
\(875\) 0 0
\(876\) −3.24278e7 −1.42777
\(877\) −2.95834e6 −0.129882 −0.0649410 0.997889i \(-0.520686\pi\)
−0.0649410 + 0.997889i \(0.520686\pi\)
\(878\) −4.33984e7 −1.89993
\(879\) −3.63523e6 −0.158694
\(880\) 0 0
\(881\) 8.11813e6 0.352384 0.176192 0.984356i \(-0.443622\pi\)
0.176192 + 0.984356i \(0.443622\pi\)
\(882\) 1.45095e6 0.0628032
\(883\) 1.23929e7 0.534897 0.267448 0.963572i \(-0.413820\pi\)
0.267448 + 0.963572i \(0.413820\pi\)
\(884\) 3.43978e6 0.148047
\(885\) 0 0
\(886\) 4.02427e7 1.72228
\(887\) 2.51951e7 1.07524 0.537622 0.843186i \(-0.319323\pi\)
0.537622 + 0.843186i \(0.319323\pi\)
\(888\) 4.71867e6 0.200811
\(889\) 5.06855e6 0.215095
\(890\) 0 0
\(891\) 3.16254e7 1.33457
\(892\) 2.61122e7 1.09883
\(893\) 2.83228e6 0.118852
\(894\) −2.73030e7 −1.14253
\(895\) 0 0
\(896\) 7.06100e6 0.293830
\(897\) −1.80390e7 −0.748566
\(898\) 1.42833e7 0.591069
\(899\) 2.29656e6 0.0947717
\(900\) 0 0
\(901\) 1.61138e6 0.0661282
\(902\) −6.93092e7 −2.83645
\(903\) −2.21373e7 −0.903452
\(904\) 6.23819e6 0.253885
\(905\) 0 0
\(906\) −5.67754e7 −2.29795
\(907\) −2.18570e7 −0.882212 −0.441106 0.897455i \(-0.645414\pi\)
−0.441106 + 0.897455i \(0.645414\pi\)
\(908\) 2.47687e7 0.996984
\(909\) 844951. 0.0339173
\(910\) 0 0
\(911\) 3.57390e7 1.42674 0.713372 0.700786i \(-0.247167\pi\)
0.713372 + 0.700786i \(0.247167\pi\)
\(912\) 2.19081e7 0.872203
\(913\) −1.99507e7 −0.792103
\(914\) −6.77557e7 −2.68275
\(915\) 0 0
\(916\) −2.03674e7 −0.802042
\(917\) −6.55772e6 −0.257531
\(918\) 9.39651e6 0.368010
\(919\) −3.39382e7 −1.32556 −0.662781 0.748813i \(-0.730624\pi\)
−0.662781 + 0.748813i \(0.730624\pi\)
\(920\) 0 0
\(921\) 9.44136e6 0.366763
\(922\) 3.80253e7 1.47314
\(923\) 1.44639e7 0.558834
\(924\) −2.57852e7 −0.993552
\(925\) 0 0
\(926\) −4.82475e7 −1.84905
\(927\) −271370. −0.0103720
\(928\) −3.30457e6 −0.125964
\(929\) −4.83073e7 −1.83643 −0.918213 0.396087i \(-0.870368\pi\)
−0.918213 + 0.396087i \(0.870368\pi\)
\(930\) 0 0
\(931\) −1.84425e7 −0.697342
\(932\) 4.53568e7 1.71042
\(933\) 3.06034e7 1.15097
\(934\) 1.77506e7 0.665804
\(935\) 0 0
\(936\) −233387. −0.00870738
\(937\) −3.02592e7 −1.12592 −0.562961 0.826483i \(-0.690338\pi\)
−0.562961 + 0.826483i \(0.690338\pi\)
\(938\) −5.32164e6 −0.197487
\(939\) −4.39341e7 −1.62606
\(940\) 0 0
\(941\) −3.94366e6 −0.145186 −0.0725932 0.997362i \(-0.523127\pi\)
−0.0725932 + 0.997362i \(0.523127\pi\)
\(942\) 3.38017e7 1.24111
\(943\) 5.41136e7 1.98165
\(944\) −1.49218e7 −0.544995
\(945\) 0 0
\(946\) 8.89499e7 3.23160
\(947\) 2.57929e7 0.934599 0.467300 0.884099i \(-0.345227\pi\)
0.467300 + 0.884099i \(0.345227\pi\)
\(948\) 2.32249e7 0.839330
\(949\) 1.84603e7 0.665384
\(950\) 0 0
\(951\) 1.05462e7 0.378132
\(952\) −1.01014e6 −0.0361235
\(953\) 8.92590e6 0.318361 0.159181 0.987249i \(-0.449115\pi\)
0.159181 + 0.987249i \(0.449115\pi\)
\(954\) −772163. −0.0274687
\(955\) 0 0
\(956\) 3.70617e7 1.31154
\(957\) 3.46510e6 0.122303
\(958\) −1.19478e7 −0.420606
\(959\) 3.02599e7 1.06248
\(960\) 0 0
\(961\) 4.57272e6 0.159723
\(962\) −1.89716e7 −0.660947
\(963\) 1.98783e6 0.0690738
\(964\) 2.63149e7 0.912029
\(965\) 0 0
\(966\) 3.74134e7 1.28998
\(967\) 5.25311e7 1.80655 0.903275 0.429062i \(-0.141156\pi\)
0.903275 + 0.429062i \(0.141156\pi\)
\(968\) 7.59446e6 0.260500
\(969\) −7.65374e6 −0.261857
\(970\) 0 0
\(971\) −2.59937e7 −0.884747 −0.442374 0.896831i \(-0.645863\pi\)
−0.442374 + 0.896831i \(0.645863\pi\)
\(972\) −4.69053e6 −0.159242
\(973\) −2.34230e7 −0.793160
\(974\) 6.69008e7 2.25961
\(975\) 0 0
\(976\) −2.88753e7 −0.970292
\(977\) −2.87165e7 −0.962487 −0.481244 0.876587i \(-0.659815\pi\)
−0.481244 + 0.876587i \(0.659815\pi\)
\(978\) 3.48791e7 1.16605
\(979\) −2.30888e7 −0.769919
\(980\) 0 0
\(981\) −3.35156e6 −0.111192
\(982\) 1.79501e7 0.594004
\(983\) −5.36618e7 −1.77126 −0.885628 0.464395i \(-0.846272\pi\)
−0.885628 + 0.464395i \(0.846272\pi\)
\(984\) −9.52501e6 −0.313601
\(985\) 0 0
\(986\) 958722. 0.0314051
\(987\) 1.92601e6 0.0629311
\(988\) 2.09511e7 0.682834
\(989\) −6.94482e7 −2.25772
\(990\) 0 0
\(991\) −3.36888e7 −1.08969 −0.544843 0.838538i \(-0.683411\pi\)
−0.544843 + 0.838538i \(0.683411\pi\)
\(992\) −4.77749e7 −1.54142
\(993\) −2.62870e7 −0.845994
\(994\) −2.99987e7 −0.963023
\(995\) 0 0
\(996\) −1.93641e7 −0.618513
\(997\) 7.17769e6 0.228690 0.114345 0.993441i \(-0.463523\pi\)
0.114345 + 0.993441i \(0.463523\pi\)
\(998\) 3.24237e7 1.03047
\(999\) −2.78868e7 −0.884066
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.6.a.k.1.12 yes 15
5.4 even 2 425.6.a.j.1.4 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.6.a.j.1.4 15 5.4 even 2
425.6.a.k.1.12 yes 15 1.1 even 1 trivial