Properties

Label 425.6.a.k.1.10
Level $425$
Weight $6$
Character 425.1
Self dual yes
Analytic conductor $68.163$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,6,Mod(1,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(68.1631234205\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - x^{14} - 378 x^{13} + 106 x^{12} + 55677 x^{11} + 23739 x^{10} - 4018640 x^{9} + \cdots - 45034730496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{9}\cdot 5^{4} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(3.10924\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.10924 q^{2} +28.9596 q^{3} -22.3326 q^{4} +90.0423 q^{6} +107.101 q^{7} -168.933 q^{8} +595.658 q^{9} +264.087 q^{11} -646.744 q^{12} +169.699 q^{13} +333.004 q^{14} +189.390 q^{16} +289.000 q^{17} +1852.04 q^{18} +398.563 q^{19} +3101.61 q^{21} +821.110 q^{22} -1500.82 q^{23} -4892.23 q^{24} +527.636 q^{26} +10212.8 q^{27} -2391.86 q^{28} +2515.15 q^{29} -6203.63 q^{31} +5994.72 q^{32} +7647.85 q^{33} +898.570 q^{34} -13302.6 q^{36} +12783.5 q^{37} +1239.23 q^{38} +4914.42 q^{39} -6233.26 q^{41} +9643.66 q^{42} -11387.6 q^{43} -5897.76 q^{44} -4666.41 q^{46} +13788.6 q^{47} +5484.67 q^{48} -5336.28 q^{49} +8369.32 q^{51} -3789.83 q^{52} -3302.37 q^{53} +31754.1 q^{54} -18093.0 q^{56} +11542.2 q^{57} +7820.21 q^{58} +42681.3 q^{59} +16538.6 q^{61} -19288.6 q^{62} +63795.8 q^{63} +12578.5 q^{64} +23779.0 q^{66} +68740.7 q^{67} -6454.13 q^{68} -43463.1 q^{69} +71268.3 q^{71} -100626. q^{72} +82764.5 q^{73} +39747.1 q^{74} -8900.95 q^{76} +28284.1 q^{77} +15280.1 q^{78} -46521.2 q^{79} +151014. q^{81} -19380.7 q^{82} -88857.9 q^{83} -69267.2 q^{84} -35406.8 q^{86} +72837.7 q^{87} -44613.1 q^{88} -87636.6 q^{89} +18175.0 q^{91} +33517.2 q^{92} -179654. q^{93} +42872.0 q^{94} +173605. q^{96} -10566.6 q^{97} -16591.8 q^{98} +157305. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q + q^{2} + 9 q^{3} + 277 q^{4} + 169 q^{6} + 181 q^{7} + 753 q^{8} + 1826 q^{9} + 172 q^{11} - 2109 q^{12} - 389 q^{13} + 3635 q^{14} + 6837 q^{16} + 4335 q^{17} + 6742 q^{18} + 5150 q^{19} - 6891 q^{21}+ \cdots - 183214 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.10924 0.549641 0.274821 0.961496i \(-0.411382\pi\)
0.274821 + 0.961496i \(0.411382\pi\)
\(3\) 28.9596 1.85776 0.928879 0.370383i \(-0.120774\pi\)
0.928879 + 0.370383i \(0.120774\pi\)
\(4\) −22.3326 −0.697895
\(5\) 0 0
\(6\) 90.0423 1.02110
\(7\) 107.101 0.826134 0.413067 0.910701i \(-0.364458\pi\)
0.413067 + 0.910701i \(0.364458\pi\)
\(8\) −168.933 −0.933233
\(9\) 595.658 2.45127
\(10\) 0 0
\(11\) 264.087 0.658060 0.329030 0.944320i \(-0.393278\pi\)
0.329030 + 0.944320i \(0.393278\pi\)
\(12\) −646.744 −1.29652
\(13\) 169.699 0.278498 0.139249 0.990257i \(-0.455531\pi\)
0.139249 + 0.990257i \(0.455531\pi\)
\(14\) 333.004 0.454077
\(15\) 0 0
\(16\) 189.390 0.184952
\(17\) 289.000 0.242536
\(18\) 1852.04 1.34732
\(19\) 398.563 0.253287 0.126643 0.991948i \(-0.459580\pi\)
0.126643 + 0.991948i \(0.459580\pi\)
\(20\) 0 0
\(21\) 3101.61 1.53476
\(22\) 821.110 0.361697
\(23\) −1500.82 −0.591573 −0.295787 0.955254i \(-0.595582\pi\)
−0.295787 + 0.955254i \(0.595582\pi\)
\(24\) −4892.23 −1.73372
\(25\) 0 0
\(26\) 527.636 0.153074
\(27\) 10212.8 2.69610
\(28\) −2391.86 −0.576554
\(29\) 2515.15 0.555353 0.277676 0.960675i \(-0.410436\pi\)
0.277676 + 0.960675i \(0.410436\pi\)
\(30\) 0 0
\(31\) −6203.63 −1.15942 −0.579711 0.814822i \(-0.696834\pi\)
−0.579711 + 0.814822i \(0.696834\pi\)
\(32\) 5994.72 1.03489
\(33\) 7647.85 1.22252
\(34\) 898.570 0.133308
\(35\) 0 0
\(36\) −13302.6 −1.71073
\(37\) 12783.5 1.53514 0.767568 0.640967i \(-0.221466\pi\)
0.767568 + 0.640967i \(0.221466\pi\)
\(38\) 1239.23 0.139217
\(39\) 4914.42 0.517381
\(40\) 0 0
\(41\) −6233.26 −0.579103 −0.289551 0.957162i \(-0.593506\pi\)
−0.289551 + 0.957162i \(0.593506\pi\)
\(42\) 9643.66 0.843565
\(43\) −11387.6 −0.939207 −0.469603 0.882877i \(-0.655603\pi\)
−0.469603 + 0.882877i \(0.655603\pi\)
\(44\) −5897.76 −0.459256
\(45\) 0 0
\(46\) −4666.41 −0.325153
\(47\) 13788.6 0.910489 0.455245 0.890366i \(-0.349552\pi\)
0.455245 + 0.890366i \(0.349552\pi\)
\(48\) 5484.67 0.343595
\(49\) −5336.28 −0.317503
\(50\) 0 0
\(51\) 8369.32 0.450573
\(52\) −3789.83 −0.194362
\(53\) −3302.37 −0.161486 −0.0807431 0.996735i \(-0.525729\pi\)
−0.0807431 + 0.996735i \(0.525729\pi\)
\(54\) 31754.1 1.48189
\(55\) 0 0
\(56\) −18093.0 −0.770975
\(57\) 11542.2 0.470546
\(58\) 7820.21 0.305245
\(59\) 42681.3 1.59627 0.798137 0.602475i \(-0.205819\pi\)
0.798137 + 0.602475i \(0.205819\pi\)
\(60\) 0 0
\(61\) 16538.6 0.569082 0.284541 0.958664i \(-0.408159\pi\)
0.284541 + 0.958664i \(0.408159\pi\)
\(62\) −19288.6 −0.637266
\(63\) 63795.8 2.02507
\(64\) 12578.5 0.383866
\(65\) 0 0
\(66\) 23779.0 0.671945
\(67\) 68740.7 1.87080 0.935400 0.353593i \(-0.115040\pi\)
0.935400 + 0.353593i \(0.115040\pi\)
\(68\) −6454.13 −0.169264
\(69\) −43463.1 −1.09900
\(70\) 0 0
\(71\) 71268.3 1.67784 0.838920 0.544256i \(-0.183188\pi\)
0.838920 + 0.544256i \(0.183188\pi\)
\(72\) −100626. −2.28760
\(73\) 82764.5 1.81776 0.908881 0.417056i \(-0.136938\pi\)
0.908881 + 0.417056i \(0.136938\pi\)
\(74\) 39747.1 0.843774
\(75\) 0 0
\(76\) −8900.95 −0.176767
\(77\) 28284.1 0.543645
\(78\) 15280.1 0.284374
\(79\) −46521.2 −0.838655 −0.419327 0.907835i \(-0.637734\pi\)
−0.419327 + 0.907835i \(0.637734\pi\)
\(80\) 0 0
\(81\) 151014. 2.55744
\(82\) −19380.7 −0.318299
\(83\) −88857.9 −1.41580 −0.707898 0.706314i \(-0.750357\pi\)
−0.707898 + 0.706314i \(0.750357\pi\)
\(84\) −69267.2 −1.07110
\(85\) 0 0
\(86\) −35406.8 −0.516227
\(87\) 72837.7 1.03171
\(88\) −44613.1 −0.614123
\(89\) −87636.6 −1.17276 −0.586382 0.810035i \(-0.699448\pi\)
−0.586382 + 0.810035i \(0.699448\pi\)
\(90\) 0 0
\(91\) 18175.0 0.230076
\(92\) 33517.2 0.412856
\(93\) −179654. −2.15392
\(94\) 42872.0 0.500442
\(95\) 0 0
\(96\) 173605. 1.92257
\(97\) −10566.6 −0.114026 −0.0570131 0.998373i \(-0.518158\pi\)
−0.0570131 + 0.998373i \(0.518158\pi\)
\(98\) −16591.8 −0.174513
\(99\) 157305. 1.61308
\(100\) 0 0
\(101\) −17364.1 −0.169374 −0.0846872 0.996408i \(-0.526989\pi\)
−0.0846872 + 0.996408i \(0.526989\pi\)
\(102\) 26022.2 0.247653
\(103\) −49057.2 −0.455627 −0.227813 0.973705i \(-0.573158\pi\)
−0.227813 + 0.973705i \(0.573158\pi\)
\(104\) −28667.8 −0.259903
\(105\) 0 0
\(106\) −10267.9 −0.0887595
\(107\) −112460. −0.949597 −0.474798 0.880095i \(-0.657479\pi\)
−0.474798 + 0.880095i \(0.657479\pi\)
\(108\) −228079. −1.88159
\(109\) −90096.5 −0.726343 −0.363171 0.931722i \(-0.618306\pi\)
−0.363171 + 0.931722i \(0.618306\pi\)
\(110\) 0 0
\(111\) 370206. 2.85191
\(112\) 20284.0 0.152795
\(113\) 109851. 0.809298 0.404649 0.914472i \(-0.367394\pi\)
0.404649 + 0.914472i \(0.367394\pi\)
\(114\) 35887.5 0.258631
\(115\) 0 0
\(116\) −56169.9 −0.387578
\(117\) 101083. 0.682672
\(118\) 132706. 0.877378
\(119\) 30952.3 0.200367
\(120\) 0 0
\(121\) −91309.0 −0.566957
\(122\) 51422.5 0.312791
\(123\) −180513. −1.07583
\(124\) 138543. 0.809154
\(125\) 0 0
\(126\) 198356. 1.11306
\(127\) −163715. −0.900697 −0.450348 0.892853i \(-0.648700\pi\)
−0.450348 + 0.892853i \(0.648700\pi\)
\(128\) −152721. −0.823901
\(129\) −329780. −1.74482
\(130\) 0 0
\(131\) −128543. −0.654441 −0.327220 0.944948i \(-0.606112\pi\)
−0.327220 + 0.944948i \(0.606112\pi\)
\(132\) −170797. −0.853187
\(133\) 42686.6 0.209249
\(134\) 213731. 1.02827
\(135\) 0 0
\(136\) −48821.7 −0.226342
\(137\) −250442. −1.14000 −0.570001 0.821644i \(-0.693057\pi\)
−0.570001 + 0.821644i \(0.693057\pi\)
\(138\) −135137. −0.604056
\(139\) −67891.7 −0.298043 −0.149022 0.988834i \(-0.547612\pi\)
−0.149022 + 0.988834i \(0.547612\pi\)
\(140\) 0 0
\(141\) 399311. 1.69147
\(142\) 221590. 0.922209
\(143\) 44815.4 0.183268
\(144\) 112812. 0.453365
\(145\) 0 0
\(146\) 257335. 0.999117
\(147\) −154536. −0.589844
\(148\) −285490. −1.07136
\(149\) 244123. 0.900832 0.450416 0.892819i \(-0.351276\pi\)
0.450416 + 0.892819i \(0.351276\pi\)
\(150\) 0 0
\(151\) −167293. −0.597084 −0.298542 0.954397i \(-0.596500\pi\)
−0.298542 + 0.954397i \(0.596500\pi\)
\(152\) −67330.4 −0.236376
\(153\) 172145. 0.594519
\(154\) 87942.1 0.298810
\(155\) 0 0
\(156\) −109752. −0.361078
\(157\) 338789. 1.09693 0.548467 0.836172i \(-0.315212\pi\)
0.548467 + 0.836172i \(0.315212\pi\)
\(158\) −144646. −0.460959
\(159\) −95635.2 −0.300002
\(160\) 0 0
\(161\) −160740. −0.488719
\(162\) 469539. 1.40567
\(163\) 584768. 1.72391 0.861955 0.506986i \(-0.169240\pi\)
0.861955 + 0.506986i \(0.169240\pi\)
\(164\) 139205. 0.404153
\(165\) 0 0
\(166\) −276281. −0.778180
\(167\) 173760. 0.482125 0.241063 0.970510i \(-0.422504\pi\)
0.241063 + 0.970510i \(0.422504\pi\)
\(168\) −523965. −1.43229
\(169\) −342495. −0.922439
\(170\) 0 0
\(171\) 237407. 0.620873
\(172\) 254315. 0.655467
\(173\) −619045. −1.57256 −0.786280 0.617870i \(-0.787996\pi\)
−0.786280 + 0.617870i \(0.787996\pi\)
\(174\) 226470. 0.567071
\(175\) 0 0
\(176\) 50015.5 0.121709
\(177\) 1.23603e6 2.96549
\(178\) −272483. −0.644599
\(179\) −381186. −0.889211 −0.444605 0.895727i \(-0.646656\pi\)
−0.444605 + 0.895727i \(0.646656\pi\)
\(180\) 0 0
\(181\) −592374. −1.34400 −0.672000 0.740551i \(-0.734565\pi\)
−0.672000 + 0.740551i \(0.734565\pi\)
\(182\) 56510.6 0.126459
\(183\) 478951. 1.05722
\(184\) 253538. 0.552076
\(185\) 0 0
\(186\) −558589. −1.18389
\(187\) 76321.1 0.159603
\(188\) −307935. −0.635426
\(189\) 1.09381e6 2.22734
\(190\) 0 0
\(191\) −9643.58 −0.0191274 −0.00956368 0.999954i \(-0.503044\pi\)
−0.00956368 + 0.999954i \(0.503044\pi\)
\(192\) 364269. 0.713131
\(193\) −795730. −1.53770 −0.768851 0.639428i \(-0.779171\pi\)
−0.768851 + 0.639428i \(0.779171\pi\)
\(194\) −32854.0 −0.0626735
\(195\) 0 0
\(196\) 119173. 0.221584
\(197\) 628294. 1.15345 0.576723 0.816940i \(-0.304331\pi\)
0.576723 + 0.816940i \(0.304331\pi\)
\(198\) 489100. 0.886615
\(199\) 414085. 0.741237 0.370618 0.928785i \(-0.379146\pi\)
0.370618 + 0.928785i \(0.379146\pi\)
\(200\) 0 0
\(201\) 1.99070e6 3.47549
\(202\) −53989.0 −0.0930952
\(203\) 269376. 0.458796
\(204\) −186909. −0.314452
\(205\) 0 0
\(206\) −152530. −0.250431
\(207\) −893974. −1.45010
\(208\) 32139.4 0.0515086
\(209\) 105255. 0.166678
\(210\) 0 0
\(211\) 1.00593e6 1.55547 0.777735 0.628593i \(-0.216369\pi\)
0.777735 + 0.628593i \(0.216369\pi\)
\(212\) 73750.5 0.112700
\(213\) 2.06390e6 3.11702
\(214\) −349665. −0.521937
\(215\) 0 0
\(216\) −1.72528e6 −2.51609
\(217\) −664417. −0.957837
\(218\) −280132. −0.399228
\(219\) 2.39683e6 3.37696
\(220\) 0 0
\(221\) 49043.1 0.0675456
\(222\) 1.15106e6 1.56753
\(223\) 618909. 0.833421 0.416710 0.909039i \(-0.363183\pi\)
0.416710 + 0.909039i \(0.363183\pi\)
\(224\) 642043. 0.854957
\(225\) 0 0
\(226\) 341554. 0.444824
\(227\) −400031. −0.515263 −0.257631 0.966243i \(-0.582942\pi\)
−0.257631 + 0.966243i \(0.582942\pi\)
\(228\) −257768. −0.328391
\(229\) −329434. −0.415126 −0.207563 0.978222i \(-0.566553\pi\)
−0.207563 + 0.978222i \(0.566553\pi\)
\(230\) 0 0
\(231\) 819096. 1.00996
\(232\) −424892. −0.518273
\(233\) −1.62517e6 −1.96114 −0.980572 0.196160i \(-0.937153\pi\)
−0.980572 + 0.196160i \(0.937153\pi\)
\(234\) 314290. 0.375224
\(235\) 0 0
\(236\) −953186. −1.11403
\(237\) −1.34723e6 −1.55802
\(238\) 96238.2 0.110130
\(239\) −433026. −0.490364 −0.245182 0.969477i \(-0.578848\pi\)
−0.245182 + 0.969477i \(0.578848\pi\)
\(240\) 0 0
\(241\) −1.55825e6 −1.72820 −0.864102 0.503318i \(-0.832113\pi\)
−0.864102 + 0.503318i \(0.832113\pi\)
\(242\) −283902. −0.311623
\(243\) 1.89159e6 2.05500
\(244\) −369351. −0.397159
\(245\) 0 0
\(246\) −561257. −0.591322
\(247\) 67635.8 0.0705398
\(248\) 1.04800e6 1.08201
\(249\) −2.57329e6 −2.63021
\(250\) 0 0
\(251\) −100993. −0.101183 −0.0505915 0.998719i \(-0.516111\pi\)
−0.0505915 + 0.998719i \(0.516111\pi\)
\(252\) −1.42473e6 −1.41329
\(253\) −396347. −0.389291
\(254\) −509029. −0.495060
\(255\) 0 0
\(256\) −877361. −0.836716
\(257\) −443479. −0.418832 −0.209416 0.977827i \(-0.567156\pi\)
−0.209416 + 0.977827i \(0.567156\pi\)
\(258\) −1.02537e6 −0.959024
\(259\) 1.36914e6 1.26823
\(260\) 0 0
\(261\) 1.49817e6 1.36132
\(262\) −399671. −0.359708
\(263\) −968462. −0.863363 −0.431681 0.902026i \(-0.642080\pi\)
−0.431681 + 0.902026i \(0.642080\pi\)
\(264\) −1.29198e6 −1.14089
\(265\) 0 0
\(266\) 132723. 0.115012
\(267\) −2.53792e6 −2.17871
\(268\) −1.53516e6 −1.30562
\(269\) −1.60323e6 −1.35087 −0.675436 0.737419i \(-0.736045\pi\)
−0.675436 + 0.737419i \(0.736045\pi\)
\(270\) 0 0
\(271\) −170946. −0.141395 −0.0706976 0.997498i \(-0.522523\pi\)
−0.0706976 + 0.997498i \(0.522523\pi\)
\(272\) 54733.8 0.0448573
\(273\) 526342. 0.427426
\(274\) −778684. −0.626592
\(275\) 0 0
\(276\) 970645. 0.766986
\(277\) 1.57270e6 1.23154 0.615769 0.787927i \(-0.288846\pi\)
0.615769 + 0.787927i \(0.288846\pi\)
\(278\) −211092. −0.163817
\(279\) −3.69524e6 −2.84205
\(280\) 0 0
\(281\) 2.17716e6 1.64484 0.822421 0.568879i \(-0.192623\pi\)
0.822421 + 0.568879i \(0.192623\pi\)
\(282\) 1.24156e6 0.929701
\(283\) 303527. 0.225285 0.112642 0.993636i \(-0.464069\pi\)
0.112642 + 0.993636i \(0.464069\pi\)
\(284\) −1.59161e6 −1.17095
\(285\) 0 0
\(286\) 139342. 0.100732
\(287\) −667591. −0.478416
\(288\) 3.57080e6 2.53679
\(289\) 83521.0 0.0588235
\(290\) 0 0
\(291\) −306004. −0.211833
\(292\) −1.84835e6 −1.26861
\(293\) −300633. −0.204582 −0.102291 0.994755i \(-0.532617\pi\)
−0.102291 + 0.994755i \(0.532617\pi\)
\(294\) −480491. −0.324203
\(295\) 0 0
\(296\) −2.15957e6 −1.43264
\(297\) 2.69707e6 1.77420
\(298\) 759038. 0.495134
\(299\) −254688. −0.164752
\(300\) 0 0
\(301\) −1.21963e6 −0.775910
\(302\) −520154. −0.328182
\(303\) −502856. −0.314657
\(304\) 75483.9 0.0468458
\(305\) 0 0
\(306\) 535240. 0.326772
\(307\) −2.34927e6 −1.42261 −0.711307 0.702881i \(-0.751897\pi\)
−0.711307 + 0.702881i \(0.751897\pi\)
\(308\) −631658. −0.379407
\(309\) −1.42068e6 −0.846445
\(310\) 0 0
\(311\) −2.06822e6 −1.21254 −0.606269 0.795260i \(-0.707335\pi\)
−0.606269 + 0.795260i \(0.707335\pi\)
\(312\) −830209. −0.482837
\(313\) −52661.4 −0.0303830 −0.0151915 0.999885i \(-0.504836\pi\)
−0.0151915 + 0.999885i \(0.504836\pi\)
\(314\) 1.05338e6 0.602920
\(315\) 0 0
\(316\) 1.03894e6 0.585293
\(317\) 1.87117e6 1.04584 0.522920 0.852382i \(-0.324843\pi\)
0.522920 + 0.852382i \(0.324843\pi\)
\(318\) −297353. −0.164894
\(319\) 664219. 0.365455
\(320\) 0 0
\(321\) −3.25680e6 −1.76412
\(322\) −499779. −0.268620
\(323\) 115185. 0.0614311
\(324\) −3.37254e6 −1.78482
\(325\) 0 0
\(326\) 1.81818e6 0.947531
\(327\) −2.60916e6 −1.34937
\(328\) 1.05300e6 0.540438
\(329\) 1.47678e6 0.752186
\(330\) 0 0
\(331\) 179875. 0.0902402 0.0451201 0.998982i \(-0.485633\pi\)
0.0451201 + 0.998982i \(0.485633\pi\)
\(332\) 1.98443e6 0.988077
\(333\) 7.61462e6 3.76303
\(334\) 540263. 0.264996
\(335\) 0 0
\(336\) 587416. 0.283856
\(337\) −3.93749e6 −1.88862 −0.944310 0.329057i \(-0.893269\pi\)
−0.944310 + 0.329057i \(0.893269\pi\)
\(338\) −1.06490e6 −0.507010
\(339\) 3.18125e6 1.50348
\(340\) 0 0
\(341\) −1.63830e6 −0.762969
\(342\) 738155. 0.341257
\(343\) −2.37158e6 −1.08843
\(344\) 1.92374e6 0.876499
\(345\) 0 0
\(346\) −1.92476e6 −0.864344
\(347\) 2.64474e6 1.17912 0.589562 0.807723i \(-0.299301\pi\)
0.589562 + 0.807723i \(0.299301\pi\)
\(348\) −1.62666e6 −0.720026
\(349\) 503558. 0.221302 0.110651 0.993859i \(-0.464706\pi\)
0.110651 + 0.993859i \(0.464706\pi\)
\(350\) 0 0
\(351\) 1.73311e6 0.750858
\(352\) 1.58313e6 0.681019
\(353\) 3.75677e6 1.60464 0.802321 0.596893i \(-0.203598\pi\)
0.802321 + 0.596893i \(0.203598\pi\)
\(354\) 3.84312e6 1.62996
\(355\) 0 0
\(356\) 1.95716e6 0.818465
\(357\) 896366. 0.372233
\(358\) −1.18520e6 −0.488747
\(359\) 4.69428e6 1.92235 0.961176 0.275935i \(-0.0889876\pi\)
0.961176 + 0.275935i \(0.0889876\pi\)
\(360\) 0 0
\(361\) −2.31725e6 −0.935846
\(362\) −1.84183e6 −0.738718
\(363\) −2.64427e6 −1.05327
\(364\) −405896. −0.160569
\(365\) 0 0
\(366\) 1.48917e6 0.581089
\(367\) −4.77737e6 −1.85150 −0.925751 0.378134i \(-0.876566\pi\)
−0.925751 + 0.378134i \(0.876566\pi\)
\(368\) −284241. −0.109412
\(369\) −3.71289e6 −1.41953
\(370\) 0 0
\(371\) −353688. −0.133409
\(372\) 4.01216e6 1.50321
\(373\) −802904. −0.298808 −0.149404 0.988776i \(-0.547735\pi\)
−0.149404 + 0.988776i \(0.547735\pi\)
\(374\) 237301. 0.0877243
\(375\) 0 0
\(376\) −2.32935e6 −0.849698
\(377\) 426819. 0.154664
\(378\) 3.40091e6 1.22424
\(379\) −1.93264e6 −0.691118 −0.345559 0.938397i \(-0.612311\pi\)
−0.345559 + 0.938397i \(0.612311\pi\)
\(380\) 0 0
\(381\) −4.74111e6 −1.67328
\(382\) −29984.2 −0.0105132
\(383\) −3.51775e6 −1.22537 −0.612686 0.790326i \(-0.709911\pi\)
−0.612686 + 0.790326i \(0.709911\pi\)
\(384\) −4.42275e6 −1.53061
\(385\) 0 0
\(386\) −2.47411e6 −0.845185
\(387\) −6.78311e6 −2.30225
\(388\) 235979. 0.0795783
\(389\) 4.85594e6 1.62704 0.813522 0.581534i \(-0.197547\pi\)
0.813522 + 0.581534i \(0.197547\pi\)
\(390\) 0 0
\(391\) −433737. −0.143478
\(392\) 901474. 0.296304
\(393\) −3.72255e6 −1.21579
\(394\) 1.95352e6 0.633982
\(395\) 0 0
\(396\) −3.51304e6 −1.12576
\(397\) 440244. 0.140190 0.0700950 0.997540i \(-0.477670\pi\)
0.0700950 + 0.997540i \(0.477670\pi\)
\(398\) 1.28749e6 0.407414
\(399\) 1.23619e6 0.388734
\(400\) 0 0
\(401\) −1.21487e6 −0.377284 −0.188642 0.982046i \(-0.560409\pi\)
−0.188642 + 0.982046i \(0.560409\pi\)
\(402\) 6.18957e6 1.91027
\(403\) −1.05275e6 −0.322896
\(404\) 387785. 0.118206
\(405\) 0 0
\(406\) 837556. 0.252173
\(407\) 3.37597e6 1.01021
\(408\) −1.41386e6 −0.420489
\(409\) 439240. 0.129836 0.0649178 0.997891i \(-0.479321\pi\)
0.0649178 + 0.997891i \(0.479321\pi\)
\(410\) 0 0
\(411\) −7.25270e6 −2.11785
\(412\) 1.09558e6 0.317980
\(413\) 4.57123e6 1.31874
\(414\) −2.77958e6 −0.797037
\(415\) 0 0
\(416\) 1.01730e6 0.288214
\(417\) −1.96611e6 −0.553693
\(418\) 327264. 0.0916130
\(419\) −2.90977e6 −0.809700 −0.404850 0.914383i \(-0.632676\pi\)
−0.404850 + 0.914383i \(0.632676\pi\)
\(420\) 0 0
\(421\) 2.67032e6 0.734274 0.367137 0.930167i \(-0.380338\pi\)
0.367137 + 0.930167i \(0.380338\pi\)
\(422\) 3.12768e6 0.854950
\(423\) 8.21327e6 2.23185
\(424\) 557879. 0.150704
\(425\) 0 0
\(426\) 6.41716e6 1.71324
\(427\) 1.77131e6 0.470137
\(428\) 2.51153e6 0.662718
\(429\) 1.29783e6 0.340468
\(430\) 0 0
\(431\) −1.57114e6 −0.407402 −0.203701 0.979033i \(-0.565297\pi\)
−0.203701 + 0.979033i \(0.565297\pi\)
\(432\) 1.93421e6 0.498648
\(433\) −1.15199e6 −0.295277 −0.147638 0.989041i \(-0.547167\pi\)
−0.147638 + 0.989041i \(0.547167\pi\)
\(434\) −2.06583e6 −0.526467
\(435\) 0 0
\(436\) 2.01209e6 0.506911
\(437\) −598170. −0.149838
\(438\) 7.45231e6 1.85612
\(439\) 6.80704e6 1.68576 0.842882 0.538098i \(-0.180857\pi\)
0.842882 + 0.538098i \(0.180857\pi\)
\(440\) 0 0
\(441\) −3.17859e6 −0.778285
\(442\) 152487. 0.0371258
\(443\) −4.57955e6 −1.10870 −0.554349 0.832284i \(-0.687033\pi\)
−0.554349 + 0.832284i \(0.687033\pi\)
\(444\) −8.26768e6 −1.99033
\(445\) 0 0
\(446\) 1.92434e6 0.458082
\(447\) 7.06971e6 1.67353
\(448\) 1.34718e6 0.317125
\(449\) 4.84555e6 1.13430 0.567149 0.823615i \(-0.308046\pi\)
0.567149 + 0.823615i \(0.308046\pi\)
\(450\) 0 0
\(451\) −1.64612e6 −0.381084
\(452\) −2.45327e6 −0.564805
\(453\) −4.84473e6 −1.10924
\(454\) −1.24379e6 −0.283209
\(455\) 0 0
\(456\) −1.94986e6 −0.439129
\(457\) −2.63730e6 −0.590702 −0.295351 0.955389i \(-0.595437\pi\)
−0.295351 + 0.955389i \(0.595437\pi\)
\(458\) −1.02429e6 −0.228170
\(459\) 2.95150e6 0.653900
\(460\) 0 0
\(461\) −3.30857e6 −0.725083 −0.362541 0.931968i \(-0.618091\pi\)
−0.362541 + 0.931968i \(0.618091\pi\)
\(462\) 2.54677e6 0.555116
\(463\) −1.92055e6 −0.416365 −0.208182 0.978090i \(-0.566755\pi\)
−0.208182 + 0.978090i \(0.566755\pi\)
\(464\) 476345. 0.102713
\(465\) 0 0
\(466\) −5.05305e6 −1.07793
\(467\) −4.41186e6 −0.936116 −0.468058 0.883698i \(-0.655046\pi\)
−0.468058 + 0.883698i \(0.655046\pi\)
\(468\) −2.25744e6 −0.476433
\(469\) 7.36223e6 1.54553
\(470\) 0 0
\(471\) 9.81120e6 2.03784
\(472\) −7.21029e6 −1.48970
\(473\) −3.00732e6 −0.618054
\(474\) −4.18888e6 −0.856351
\(475\) 0 0
\(476\) −691247. −0.139835
\(477\) −1.96708e6 −0.395846
\(478\) −1.34638e6 −0.269524
\(479\) −4.96082e6 −0.987905 −0.493952 0.869489i \(-0.664448\pi\)
−0.493952 + 0.869489i \(0.664448\pi\)
\(480\) 0 0
\(481\) 2.16936e6 0.427532
\(482\) −4.84498e6 −0.949891
\(483\) −4.65496e6 −0.907921
\(484\) 2.03917e6 0.395676
\(485\) 0 0
\(486\) 5.88141e6 1.12951
\(487\) −2.11174e6 −0.403475 −0.201738 0.979440i \(-0.564659\pi\)
−0.201738 + 0.979440i \(0.564659\pi\)
\(488\) −2.79392e6 −0.531085
\(489\) 1.69346e7 3.20261
\(490\) 0 0
\(491\) 4.83234e6 0.904595 0.452297 0.891867i \(-0.350605\pi\)
0.452297 + 0.891867i \(0.350605\pi\)
\(492\) 4.03132e6 0.750818
\(493\) 726879. 0.134693
\(494\) 210296. 0.0387716
\(495\) 0 0
\(496\) −1.17491e6 −0.214437
\(497\) 7.63294e6 1.38612
\(498\) −8.00097e6 −1.44567
\(499\) −3.12941e6 −0.562614 −0.281307 0.959618i \(-0.590768\pi\)
−0.281307 + 0.959618i \(0.590768\pi\)
\(500\) 0 0
\(501\) 5.03203e6 0.895672
\(502\) −314012. −0.0556143
\(503\) −1.10480e7 −1.94699 −0.973493 0.228716i \(-0.926547\pi\)
−0.973493 + 0.228716i \(0.926547\pi\)
\(504\) −1.07772e7 −1.88986
\(505\) 0 0
\(506\) −1.23234e6 −0.213970
\(507\) −9.91852e6 −1.71367
\(508\) 3.65618e6 0.628591
\(509\) 9.47337e6 1.62073 0.810364 0.585927i \(-0.199269\pi\)
0.810364 + 0.585927i \(0.199269\pi\)
\(510\) 0 0
\(511\) 8.86420e6 1.50171
\(512\) 2.15916e6 0.364007
\(513\) 4.07045e6 0.682887
\(514\) −1.37888e6 −0.230207
\(515\) 0 0
\(516\) 7.36486e6 1.21770
\(517\) 3.64138e6 0.599156
\(518\) 4.25697e6 0.697070
\(519\) −1.79273e7 −2.92144
\(520\) 0 0
\(521\) −2.20028e6 −0.355127 −0.177564 0.984109i \(-0.556822\pi\)
−0.177564 + 0.984109i \(0.556822\pi\)
\(522\) 4.65817e6 0.748236
\(523\) 4.41712e6 0.706131 0.353066 0.935599i \(-0.385139\pi\)
0.353066 + 0.935599i \(0.385139\pi\)
\(524\) 2.87070e6 0.456731
\(525\) 0 0
\(526\) −3.01118e6 −0.474540
\(527\) −1.79285e6 −0.281201
\(528\) 1.44843e6 0.226106
\(529\) −4.18389e6 −0.650041
\(530\) 0 0
\(531\) 2.54234e7 3.91289
\(532\) −953305. −0.146034
\(533\) −1.05778e6 −0.161279
\(534\) −7.89100e6 −1.19751
\(535\) 0 0
\(536\) −1.16126e7 −1.74589
\(537\) −1.10390e7 −1.65194
\(538\) −4.98482e6 −0.742495
\(539\) −1.40924e6 −0.208936
\(540\) 0 0
\(541\) 1.16392e7 1.70974 0.854871 0.518841i \(-0.173636\pi\)
0.854871 + 0.518841i \(0.173636\pi\)
\(542\) −531511. −0.0777166
\(543\) −1.71549e7 −2.49683
\(544\) 1.73247e6 0.250998
\(545\) 0 0
\(546\) 1.63652e6 0.234931
\(547\) −552465. −0.0789472 −0.0394736 0.999221i \(-0.512568\pi\)
−0.0394736 + 0.999221i \(0.512568\pi\)
\(548\) 5.59303e6 0.795601
\(549\) 9.85135e6 1.39497
\(550\) 0 0
\(551\) 1.00245e6 0.140664
\(552\) 7.34236e6 1.02562
\(553\) −4.98249e6 −0.692841
\(554\) 4.88991e6 0.676904
\(555\) 0 0
\(556\) 1.51620e6 0.208003
\(557\) 886782. 0.121110 0.0605548 0.998165i \(-0.480713\pi\)
0.0605548 + 0.998165i \(0.480713\pi\)
\(558\) −1.14894e7 −1.56211
\(559\) −1.93247e6 −0.261567
\(560\) 0 0
\(561\) 2.21023e6 0.296504
\(562\) 6.76931e6 0.904073
\(563\) −2.83094e6 −0.376409 −0.188205 0.982130i \(-0.560267\pi\)
−0.188205 + 0.982130i \(0.560267\pi\)
\(564\) −8.91768e6 −1.18047
\(565\) 0 0
\(566\) 943739. 0.123826
\(567\) 1.61738e7 2.11279
\(568\) −1.20396e7 −1.56581
\(569\) 4.65481e6 0.602727 0.301364 0.953509i \(-0.402558\pi\)
0.301364 + 0.953509i \(0.402558\pi\)
\(570\) 0 0
\(571\) −2.12068e6 −0.272197 −0.136099 0.990695i \(-0.543456\pi\)
−0.136099 + 0.990695i \(0.543456\pi\)
\(572\) −1.00084e6 −0.127902
\(573\) −279274. −0.0355340
\(574\) −2.07570e6 −0.262957
\(575\) 0 0
\(576\) 7.49250e6 0.940959
\(577\) −1.25576e7 −1.57024 −0.785120 0.619343i \(-0.787399\pi\)
−0.785120 + 0.619343i \(0.787399\pi\)
\(578\) 259687. 0.0323318
\(579\) −2.30440e7 −2.85668
\(580\) 0 0
\(581\) −9.51681e6 −1.16964
\(582\) −951439. −0.116432
\(583\) −872112. −0.106268
\(584\) −1.39817e7 −1.69639
\(585\) 0 0
\(586\) −934739. −0.112447
\(587\) −4.14828e6 −0.496905 −0.248452 0.968644i \(-0.579922\pi\)
−0.248452 + 0.968644i \(0.579922\pi\)
\(588\) 3.45120e6 0.411649
\(589\) −2.47253e6 −0.293666
\(590\) 0 0
\(591\) 1.81951e7 2.14282
\(592\) 2.42108e6 0.283926
\(593\) 1.00342e7 1.17178 0.585888 0.810392i \(-0.300746\pi\)
0.585888 + 0.810392i \(0.300746\pi\)
\(594\) 8.38584e6 0.975171
\(595\) 0 0
\(596\) −5.45191e6 −0.628685
\(597\) 1.19917e7 1.37704
\(598\) −791885. −0.0905544
\(599\) 3.04010e6 0.346194 0.173097 0.984905i \(-0.444623\pi\)
0.173097 + 0.984905i \(0.444623\pi\)
\(600\) 0 0
\(601\) 4.79829e6 0.541877 0.270938 0.962597i \(-0.412666\pi\)
0.270938 + 0.962597i \(0.412666\pi\)
\(602\) −3.79212e6 −0.426472
\(603\) 4.09459e7 4.58583
\(604\) 3.73609e6 0.416701
\(605\) 0 0
\(606\) −1.56350e6 −0.172948
\(607\) −1.41879e6 −0.156295 −0.0781475 0.996942i \(-0.524901\pi\)
−0.0781475 + 0.996942i \(0.524901\pi\)
\(608\) 2.38927e6 0.262124
\(609\) 7.80103e6 0.852332
\(610\) 0 0
\(611\) 2.33991e6 0.253569
\(612\) −3.84445e6 −0.414912
\(613\) 1.00420e7 1.07937 0.539684 0.841868i \(-0.318544\pi\)
0.539684 + 0.841868i \(0.318544\pi\)
\(614\) −7.30445e6 −0.781927
\(615\) 0 0
\(616\) −4.77812e6 −0.507348
\(617\) 6.10343e6 0.645447 0.322724 0.946493i \(-0.395402\pi\)
0.322724 + 0.946493i \(0.395402\pi\)
\(618\) −4.41722e6 −0.465241
\(619\) 9.79469e6 1.02746 0.513729 0.857952i \(-0.328264\pi\)
0.513729 + 0.857952i \(0.328264\pi\)
\(620\) 0 0
\(621\) −1.53276e7 −1.59494
\(622\) −6.43059e6 −0.666461
\(623\) −9.38601e6 −0.968859
\(624\) 930744. 0.0956905
\(625\) 0 0
\(626\) −163737. −0.0166998
\(627\) 3.04815e6 0.309647
\(628\) −7.56605e6 −0.765544
\(629\) 3.69445e6 0.372325
\(630\) 0 0
\(631\) −5.10429e6 −0.510343 −0.255171 0.966896i \(-0.582132\pi\)
−0.255171 + 0.966896i \(0.582132\pi\)
\(632\) 7.85898e6 0.782660
\(633\) 2.91313e7 2.88969
\(634\) 5.81792e6 0.574837
\(635\) 0 0
\(636\) 2.13578e6 0.209370
\(637\) −905562. −0.0884239
\(638\) 2.06522e6 0.200869
\(639\) 4.24515e7 4.11283
\(640\) 0 0
\(641\) −2.55088e6 −0.245214 −0.122607 0.992455i \(-0.539125\pi\)
−0.122607 + 0.992455i \(0.539125\pi\)
\(642\) −1.01262e7 −0.969633
\(643\) 1.21014e7 1.15427 0.577136 0.816648i \(-0.304170\pi\)
0.577136 + 0.816648i \(0.304170\pi\)
\(644\) 3.58974e6 0.341074
\(645\) 0 0
\(646\) 358137. 0.0337650
\(647\) 5.82166e6 0.546747 0.273373 0.961908i \(-0.411861\pi\)
0.273373 + 0.961908i \(0.411861\pi\)
\(648\) −2.55113e7 −2.38668
\(649\) 1.12716e7 1.05044
\(650\) 0 0
\(651\) −1.92413e7 −1.77943
\(652\) −1.30594e7 −1.20311
\(653\) −9.97911e6 −0.915818 −0.457909 0.888999i \(-0.651401\pi\)
−0.457909 + 0.888999i \(0.651401\pi\)
\(654\) −8.11249e6 −0.741669
\(655\) 0 0
\(656\) −1.18052e6 −0.107106
\(657\) 4.92993e7 4.45582
\(658\) 4.59165e6 0.413432
\(659\) 1.28125e7 1.14927 0.574633 0.818411i \(-0.305145\pi\)
0.574633 + 0.818411i \(0.305145\pi\)
\(660\) 0 0
\(661\) 2.09491e7 1.86493 0.932463 0.361265i \(-0.117655\pi\)
0.932463 + 0.361265i \(0.117655\pi\)
\(662\) 559274. 0.0495997
\(663\) 1.42027e6 0.125483
\(664\) 1.50110e7 1.32127
\(665\) 0 0
\(666\) 2.36757e7 2.06832
\(667\) −3.77479e6 −0.328532
\(668\) −3.88053e6 −0.336473
\(669\) 1.79233e7 1.54829
\(670\) 0 0
\(671\) 4.36763e6 0.374490
\(672\) 1.85933e7 1.58830
\(673\) 3.87942e6 0.330164 0.165082 0.986280i \(-0.447211\pi\)
0.165082 + 0.986280i \(0.447211\pi\)
\(674\) −1.22426e7 −1.03806
\(675\) 0 0
\(676\) 7.64882e6 0.643765
\(677\) −6.42054e6 −0.538393 −0.269197 0.963085i \(-0.586758\pi\)
−0.269197 + 0.963085i \(0.586758\pi\)
\(678\) 9.89125e6 0.826375
\(679\) −1.13170e6 −0.0942010
\(680\) 0 0
\(681\) −1.15847e7 −0.957233
\(682\) −5.09386e6 −0.419359
\(683\) 5.44303e6 0.446467 0.223233 0.974765i \(-0.428339\pi\)
0.223233 + 0.974765i \(0.428339\pi\)
\(684\) −5.30192e6 −0.433304
\(685\) 0 0
\(686\) −7.37380e6 −0.598248
\(687\) −9.54028e6 −0.771204
\(688\) −2.15670e6 −0.173708
\(689\) −560409. −0.0449736
\(690\) 0 0
\(691\) −5.89266e6 −0.469479 −0.234740 0.972058i \(-0.575424\pi\)
−0.234740 + 0.972058i \(0.575424\pi\)
\(692\) 1.38249e7 1.09748
\(693\) 1.68476e7 1.33262
\(694\) 8.22313e6 0.648095
\(695\) 0 0
\(696\) −1.23047e7 −0.962827
\(697\) −1.80141e6 −0.140453
\(698\) 1.56568e6 0.121637
\(699\) −4.70643e7 −3.64333
\(700\) 0 0
\(701\) 8.12271e6 0.624318 0.312159 0.950030i \(-0.398948\pi\)
0.312159 + 0.950030i \(0.398948\pi\)
\(702\) 5.38865e6 0.412702
\(703\) 5.09504e6 0.388830
\(704\) 3.32183e6 0.252607
\(705\) 0 0
\(706\) 1.16807e7 0.881977
\(707\) −1.85972e6 −0.139926
\(708\) −2.76039e7 −2.06960
\(709\) −2.46598e7 −1.84236 −0.921179 0.389139i \(-0.872773\pi\)
−0.921179 + 0.389139i \(0.872773\pi\)
\(710\) 0 0
\(711\) −2.77107e7 −2.05577
\(712\) 1.48047e7 1.09446
\(713\) 9.31052e6 0.685883
\(714\) 2.78702e6 0.204595
\(715\) 0 0
\(716\) 8.51289e6 0.620576
\(717\) −1.25402e7 −0.910978
\(718\) 1.45956e7 1.05660
\(719\) −1.78878e7 −1.29043 −0.645215 0.764001i \(-0.723232\pi\)
−0.645215 + 0.764001i \(0.723232\pi\)
\(720\) 0 0
\(721\) −5.25409e6 −0.376409
\(722\) −7.20488e6 −0.514379
\(723\) −4.51263e7 −3.21058
\(724\) 1.32293e7 0.937971
\(725\) 0 0
\(726\) −8.22168e6 −0.578920
\(727\) 1.67266e7 1.17374 0.586868 0.809683i \(-0.300361\pi\)
0.586868 + 0.809683i \(0.300361\pi\)
\(728\) −3.07037e6 −0.214715
\(729\) 1.80833e7 1.26026
\(730\) 0 0
\(731\) −3.29102e6 −0.227791
\(732\) −1.06962e7 −0.737825
\(733\) 1.61327e7 1.10904 0.554519 0.832171i \(-0.312902\pi\)
0.554519 + 0.832171i \(0.312902\pi\)
\(734\) −1.48540e7 −1.01766
\(735\) 0 0
\(736\) −8.99699e6 −0.612213
\(737\) 1.81535e7 1.23110
\(738\) −1.15443e7 −0.780235
\(739\) 1.67085e6 0.112545 0.0562725 0.998415i \(-0.482078\pi\)
0.0562725 + 0.998415i \(0.482078\pi\)
\(740\) 0 0
\(741\) 1.95870e6 0.131046
\(742\) −1.09970e6 −0.0733272
\(743\) −1.96655e7 −1.30687 −0.653437 0.756981i \(-0.726674\pi\)
−0.653437 + 0.756981i \(0.726674\pi\)
\(744\) 3.03496e7 2.01011
\(745\) 0 0
\(746\) −2.49642e6 −0.164237
\(747\) −5.29289e7 −3.47049
\(748\) −1.70445e6 −0.111386
\(749\) −1.20446e7 −0.784494
\(750\) 0 0
\(751\) 2.27263e7 1.47037 0.735187 0.677864i \(-0.237094\pi\)
0.735187 + 0.677864i \(0.237094\pi\)
\(752\) 2.61142e6 0.168396
\(753\) −2.92472e6 −0.187973
\(754\) 1.32708e6 0.0850100
\(755\) 0 0
\(756\) −2.44276e7 −1.55445
\(757\) 2.55716e7 1.62188 0.810940 0.585129i \(-0.198956\pi\)
0.810940 + 0.585129i \(0.198956\pi\)
\(758\) −6.00903e6 −0.379867
\(759\) −1.14780e7 −0.723208
\(760\) 0 0
\(761\) −2.09253e7 −1.30982 −0.654909 0.755708i \(-0.727293\pi\)
−0.654909 + 0.755708i \(0.727293\pi\)
\(762\) −1.47413e7 −0.919702
\(763\) −9.64946e6 −0.600056
\(764\) 215367. 0.0133489
\(765\) 0 0
\(766\) −1.09375e7 −0.673515
\(767\) 7.24299e6 0.444559
\(768\) −2.54080e7 −1.55442
\(769\) 1.76503e7 1.07631 0.538154 0.842847i \(-0.319122\pi\)
0.538154 + 0.842847i \(0.319122\pi\)
\(770\) 0 0
\(771\) −1.28430e7 −0.778089
\(772\) 1.77707e7 1.07315
\(773\) −5.09512e6 −0.306694 −0.153347 0.988172i \(-0.549005\pi\)
−0.153347 + 0.988172i \(0.549005\pi\)
\(774\) −2.10903e7 −1.26541
\(775\) 0 0
\(776\) 1.78505e6 0.106413
\(777\) 3.96496e7 2.35606
\(778\) 1.50983e7 0.894291
\(779\) −2.48434e6 −0.146679
\(780\) 0 0
\(781\) 1.88210e7 1.10412
\(782\) −1.34859e6 −0.0788612
\(783\) 2.56868e7 1.49729
\(784\) −1.01064e6 −0.0587227
\(785\) 0 0
\(786\) −1.15743e7 −0.668250
\(787\) −1.94455e7 −1.11914 −0.559568 0.828784i \(-0.689033\pi\)
−0.559568 + 0.828784i \(0.689033\pi\)
\(788\) −1.40315e7 −0.804984
\(789\) −2.80463e7 −1.60392
\(790\) 0 0
\(791\) 1.17652e7 0.668589
\(792\) −2.65741e7 −1.50538
\(793\) 2.80659e6 0.158488
\(794\) 1.36882e6 0.0770542
\(795\) 0 0
\(796\) −9.24761e6 −0.517305
\(797\) −3.01184e7 −1.67952 −0.839762 0.542954i \(-0.817306\pi\)
−0.839762 + 0.542954i \(0.817306\pi\)
\(798\) 3.84360e6 0.213664
\(799\) 3.98490e6 0.220826
\(800\) 0 0
\(801\) −5.22014e7 −2.87475
\(802\) −3.77732e6 −0.207371
\(803\) 2.18570e7 1.19620
\(804\) −4.44576e7 −2.42553
\(805\) 0 0
\(806\) −3.27325e6 −0.177477
\(807\) −4.64288e7 −2.50959
\(808\) 2.93337e6 0.158066
\(809\) −3.30956e6 −0.177787 −0.0888934 0.996041i \(-0.528333\pi\)
−0.0888934 + 0.996041i \(0.528333\pi\)
\(810\) 0 0
\(811\) 4.44276e6 0.237192 0.118596 0.992943i \(-0.462161\pi\)
0.118596 + 0.992943i \(0.462161\pi\)
\(812\) −6.01588e6 −0.320191
\(813\) −4.95051e6 −0.262678
\(814\) 1.04967e7 0.555254
\(815\) 0 0
\(816\) 1.58507e6 0.0833341
\(817\) −4.53867e6 −0.237889
\(818\) 1.36570e6 0.0713629
\(819\) 1.08261e7 0.563978
\(820\) 0 0
\(821\) −3.43695e6 −0.177957 −0.0889786 0.996034i \(-0.528360\pi\)
−0.0889786 + 0.996034i \(0.528360\pi\)
\(822\) −2.25504e7 −1.16406
\(823\) −1.47868e7 −0.760980 −0.380490 0.924785i \(-0.624245\pi\)
−0.380490 + 0.924785i \(0.624245\pi\)
\(824\) 8.28738e6 0.425206
\(825\) 0 0
\(826\) 1.42131e7 0.724832
\(827\) 1.50566e7 0.765534 0.382767 0.923845i \(-0.374971\pi\)
0.382767 + 0.923845i \(0.374971\pi\)
\(828\) 1.99648e7 1.01202
\(829\) 2.64799e7 1.33823 0.669115 0.743159i \(-0.266673\pi\)
0.669115 + 0.743159i \(0.266673\pi\)
\(830\) 0 0
\(831\) 4.55449e7 2.28790
\(832\) 2.13457e6 0.106906
\(833\) −1.54218e6 −0.0770058
\(834\) −6.11312e6 −0.304332
\(835\) 0 0
\(836\) −2.35063e6 −0.116324
\(837\) −6.33565e7 −3.12592
\(838\) −9.04718e6 −0.445044
\(839\) −1.16506e7 −0.571405 −0.285703 0.958318i \(-0.592227\pi\)
−0.285703 + 0.958318i \(0.592227\pi\)
\(840\) 0 0
\(841\) −1.41852e7 −0.691583
\(842\) 8.30267e6 0.403587
\(843\) 6.30496e7 3.05572
\(844\) −2.24650e7 −1.08555
\(845\) 0 0
\(846\) 2.55370e7 1.22672
\(847\) −9.77933e6 −0.468383
\(848\) −625437. −0.0298671
\(849\) 8.79002e6 0.418524
\(850\) 0 0
\(851\) −1.91858e7 −0.908146
\(852\) −4.60923e7 −2.17535
\(853\) 1.30715e7 0.615111 0.307556 0.951530i \(-0.400489\pi\)
0.307556 + 0.951530i \(0.400489\pi\)
\(854\) 5.50743e6 0.258407
\(855\) 0 0
\(856\) 1.89982e7 0.886195
\(857\) 1.58656e7 0.737911 0.368956 0.929447i \(-0.379715\pi\)
0.368956 + 0.929447i \(0.379715\pi\)
\(858\) 4.03528e6 0.187135
\(859\) −3.10164e7 −1.43420 −0.717099 0.696972i \(-0.754530\pi\)
−0.717099 + 0.696972i \(0.754530\pi\)
\(860\) 0 0
\(861\) −1.93332e7 −0.888782
\(862\) −4.88506e6 −0.223925
\(863\) 1.30372e7 0.595879 0.297939 0.954585i \(-0.403701\pi\)
0.297939 + 0.954585i \(0.403701\pi\)
\(864\) 6.12230e7 2.79017
\(865\) 0 0
\(866\) −3.58182e6 −0.162296
\(867\) 2.41873e6 0.109280
\(868\) 1.48382e7 0.668469
\(869\) −1.22856e7 −0.551885
\(870\) 0 0
\(871\) 1.16653e7 0.521013
\(872\) 1.52203e7 0.677847
\(873\) −6.29406e6 −0.279509
\(874\) −1.85985e6 −0.0823570
\(875\) 0 0
\(876\) −5.35274e7 −2.35676
\(877\) −1.66227e7 −0.729797 −0.364899 0.931047i \(-0.618896\pi\)
−0.364899 + 0.931047i \(0.618896\pi\)
\(878\) 2.11647e7 0.926565
\(879\) −8.70619e6 −0.380063
\(880\) 0 0
\(881\) 1.83375e7 0.795976 0.397988 0.917391i \(-0.369709\pi\)
0.397988 + 0.917391i \(0.369709\pi\)
\(882\) −9.88301e6 −0.427777
\(883\) 1.34948e7 0.582457 0.291229 0.956653i \(-0.405936\pi\)
0.291229 + 0.956653i \(0.405936\pi\)
\(884\) −1.09526e6 −0.0471397
\(885\) 0 0
\(886\) −1.42389e7 −0.609386
\(887\) 2.98004e7 1.27178 0.635891 0.771779i \(-0.280633\pi\)
0.635891 + 0.771779i \(0.280633\pi\)
\(888\) −6.25401e7 −2.66150
\(889\) −1.75341e7 −0.744096
\(890\) 0 0
\(891\) 3.98809e7 1.68295
\(892\) −1.38219e7 −0.581640
\(893\) 5.49561e6 0.230615
\(894\) 2.19814e7 0.919839
\(895\) 0 0
\(896\) −1.63567e7 −0.680652
\(897\) −7.37565e6 −0.306069
\(898\) 1.50660e7 0.623457
\(899\) −1.56031e7 −0.643888
\(900\) 0 0
\(901\) −954384. −0.0391662
\(902\) −5.11819e6 −0.209460
\(903\) −3.53200e7 −1.44145
\(904\) −1.85575e7 −0.755264
\(905\) 0 0
\(906\) −1.50634e7 −0.609682
\(907\) 3.17531e6 0.128165 0.0640823 0.997945i \(-0.479588\pi\)
0.0640823 + 0.997945i \(0.479588\pi\)
\(908\) 8.93373e6 0.359599
\(909\) −1.03430e7 −0.415182
\(910\) 0 0
\(911\) 3.06040e7 1.22175 0.610876 0.791726i \(-0.290817\pi\)
0.610876 + 0.791726i \(0.290817\pi\)
\(912\) 2.18598e6 0.0870281
\(913\) −2.34662e7 −0.931679
\(914\) −8.19999e6 −0.324674
\(915\) 0 0
\(916\) 7.35713e6 0.289714
\(917\) −1.37671e7 −0.540656
\(918\) 9.17693e6 0.359411
\(919\) 1.93193e7 0.754575 0.377288 0.926096i \(-0.376857\pi\)
0.377288 + 0.926096i \(0.376857\pi\)
\(920\) 0 0
\(921\) −6.80339e7 −2.64287
\(922\) −1.02871e7 −0.398535
\(923\) 1.20942e7 0.467274
\(924\) −1.82926e7 −0.704847
\(925\) 0 0
\(926\) −5.97146e6 −0.228851
\(927\) −2.92213e7 −1.11686
\(928\) 1.50776e7 0.574729
\(929\) −4.05375e7 −1.54105 −0.770527 0.637407i \(-0.780007\pi\)
−0.770527 + 0.637407i \(0.780007\pi\)
\(930\) 0 0
\(931\) −2.12684e6 −0.0804194
\(932\) 3.62944e7 1.36867
\(933\) −5.98947e7 −2.25260
\(934\) −1.37175e7 −0.514528
\(935\) 0 0
\(936\) −1.70762e7 −0.637092
\(937\) 4.17191e7 1.55234 0.776168 0.630527i \(-0.217161\pi\)
0.776168 + 0.630527i \(0.217161\pi\)
\(938\) 2.28909e7 0.849487
\(939\) −1.52505e6 −0.0564443
\(940\) 0 0
\(941\) 1.08124e6 0.0398058 0.0199029 0.999802i \(-0.493664\pi\)
0.0199029 + 0.999802i \(0.493664\pi\)
\(942\) 3.05054e7 1.12008
\(943\) 9.35500e6 0.342582
\(944\) 8.08343e6 0.295233
\(945\) 0 0
\(946\) −9.35047e6 −0.339708
\(947\) 1.42216e7 0.515315 0.257658 0.966236i \(-0.417049\pi\)
0.257658 + 0.966236i \(0.417049\pi\)
\(948\) 3.00873e7 1.08733
\(949\) 1.40451e7 0.506242
\(950\) 0 0
\(951\) 5.41883e7 1.94292
\(952\) −5.22887e6 −0.186989
\(953\) −3.49208e7 −1.24552 −0.622762 0.782412i \(-0.713989\pi\)
−0.622762 + 0.782412i \(0.713989\pi\)
\(954\) −6.11612e6 −0.217573
\(955\) 0 0
\(956\) 9.67060e6 0.342223
\(957\) 1.92355e7 0.678928
\(958\) −1.54244e7 −0.542993
\(959\) −2.68227e7 −0.941794
\(960\) 0 0
\(961\) 9.85582e6 0.344258
\(962\) 6.74506e6 0.234989
\(963\) −6.69877e7 −2.32771
\(964\) 3.47998e7 1.20610
\(965\) 0 0
\(966\) −1.44734e7 −0.499031
\(967\) −4.78677e7 −1.64618 −0.823089 0.567913i \(-0.807751\pi\)
−0.823089 + 0.567913i \(0.807751\pi\)
\(968\) 1.54251e7 0.529103
\(969\) 3.33570e6 0.114124
\(970\) 0 0
\(971\) −2.74029e7 −0.932712 −0.466356 0.884597i \(-0.654433\pi\)
−0.466356 + 0.884597i \(0.654433\pi\)
\(972\) −4.22442e7 −1.43417
\(973\) −7.27130e6 −0.246224
\(974\) −6.56589e6 −0.221767
\(975\) 0 0
\(976\) 3.13225e6 0.105252
\(977\) −1.11984e7 −0.375334 −0.187667 0.982233i \(-0.560093\pi\)
−0.187667 + 0.982233i \(0.560093\pi\)
\(978\) 5.26538e7 1.76028
\(979\) −2.31437e7 −0.771749
\(980\) 0 0
\(981\) −5.36666e7 −1.78046
\(982\) 1.50249e7 0.497203
\(983\) 4.29207e7 1.41672 0.708358 0.705853i \(-0.249436\pi\)
0.708358 + 0.705853i \(0.249436\pi\)
\(984\) 3.04946e7 1.00400
\(985\) 0 0
\(986\) 2.26004e6 0.0740327
\(987\) 4.27668e7 1.39738
\(988\) −1.51048e6 −0.0492293
\(989\) 1.70907e7 0.555610
\(990\) 0 0
\(991\) 5.42427e7 1.75451 0.877257 0.480021i \(-0.159371\pi\)
0.877257 + 0.480021i \(0.159371\pi\)
\(992\) −3.71890e7 −1.19987
\(993\) 5.20910e6 0.167644
\(994\) 2.37326e7 0.761868
\(995\) 0 0
\(996\) 5.74683e7 1.83561
\(997\) 7.27608e6 0.231825 0.115912 0.993259i \(-0.463021\pi\)
0.115912 + 0.993259i \(0.463021\pi\)
\(998\) −9.73007e6 −0.309236
\(999\) 1.30556e8 4.13888
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.6.a.k.1.10 yes 15
5.4 even 2 425.6.a.j.1.6 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.6.a.j.1.6 15 5.4 even 2
425.6.a.k.1.10 yes 15 1.1 even 1 trivial