Properties

Label 425.3.u.e.401.9
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.9
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.e.301.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.552543 - 1.33396i) q^{2} +(3.95654 + 2.64368i) q^{3} +(1.35429 + 1.35429i) q^{4} +(5.71272 - 3.81711i) q^{6} +(-8.88293 - 1.76692i) q^{7} +(7.89070 - 3.26843i) q^{8} +(5.22106 + 12.6047i) q^{9} +(11.2168 + 16.7872i) q^{11} +(1.77800 + 8.93861i) q^{12} +(-4.55740 + 4.55740i) q^{13} +(-7.26520 + 10.8731i) q^{14} -4.67078i q^{16} +(-10.6179 + 13.2763i) q^{17} +19.6991 q^{18} +(4.69451 - 11.3335i) q^{19} +(-30.4745 - 30.4745i) q^{21} +(28.5912 - 5.68714i) q^{22} +(27.7049 - 18.5118i) q^{23} +(39.8606 + 7.92876i) q^{24} +(3.56121 + 8.59753i) q^{26} +(-4.31053 + 21.6705i) q^{27} +(-9.63713 - 14.4230i) q^{28} +(-1.76764 - 8.88650i) q^{29} +(5.24039 - 7.84280i) q^{31} +(25.3322 + 10.4929i) q^{32} +96.0730i q^{33} +(11.8432 + 21.4995i) q^{34} +(-9.99965 + 24.1413i) q^{36} +(-30.8010 - 20.5805i) q^{37} +(-12.5245 - 12.5245i) q^{38} +(-30.0798 + 5.98325i) q^{39} +(-20.0419 - 3.98659i) q^{41} +(-57.4902 + 23.8132i) q^{42} +(1.42655 + 3.44400i) q^{43} +(-7.54387 + 37.9256i) q^{44} +(-9.38582 - 47.1857i) q^{46} +(59.9421 - 59.9421i) q^{47} +(12.3481 - 18.4802i) q^{48} +(30.5143 + 12.6394i) q^{49} +(-77.1084 + 24.4581i) q^{51} -12.3441 q^{52} +(-31.5824 + 76.2466i) q^{53} +(26.5258 + 17.7239i) q^{54} +(-75.8676 + 15.0910i) q^{56} +(48.5363 - 32.4309i) q^{57} +(-12.8309 - 2.55223i) q^{58} +(-10.2158 + 4.23153i) q^{59} +(13.7504 - 69.1280i) q^{61} +(-7.56642 - 11.3239i) q^{62} +(-24.1066 - 121.192i) q^{63} +(41.2052 - 41.2052i) q^{64} +(128.157 + 53.0845i) q^{66} +53.5283i q^{67} +(-32.3597 + 3.60031i) q^{68} +158.555 q^{69} +(32.2384 + 21.5410i) q^{71} +(82.3956 + 82.3956i) q^{72} +(41.3536 - 8.22574i) q^{73} +(-44.4724 + 29.7155i) q^{74} +(21.7066 - 8.99117i) q^{76} +(-69.9767 - 168.939i) q^{77} +(-8.63900 + 43.4312i) q^{78} +(-29.3762 - 43.9646i) q^{79} +(12.4807 - 12.4807i) q^{81} +(-16.3920 + 24.5323i) q^{82} +(2.25342 + 0.933397i) q^{83} -82.5426i q^{84} +5.38238 q^{86} +(16.4993 - 39.8329i) q^{87} +(143.377 + 95.8012i) q^{88} +(-109.152 - 109.152i) q^{89} +(48.5356 - 32.4304i) q^{91} +(62.5908 + 12.4501i) q^{92} +(41.4677 - 17.1765i) q^{93} +(-46.8396 - 113.081i) q^{94} +(72.4879 + 108.486i) q^{96} +(-14.7702 - 74.2547i) q^{97} +(33.7209 - 33.7209i) q^{98} +(-153.035 + 229.033i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 192 q^{12} + 48 q^{13} - 64 q^{14} - 16 q^{17} - 128 q^{18} + 48 q^{19} - 192 q^{22} - 112 q^{23} + 240 q^{24} - 224 q^{26} + 288 q^{27} + 480 q^{28} - 64 q^{31} + 80 q^{32} + 64 q^{34} + 192 q^{36}+ \cdots - 592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.552543 1.33396i 0.276272 0.666979i −0.723455 0.690372i \(-0.757447\pi\)
0.999726 + 0.0233932i \(0.00744696\pi\)
\(3\) 3.95654 + 2.64368i 1.31885 + 0.881226i 0.997830 0.0658467i \(-0.0209748\pi\)
0.321018 + 0.947073i \(0.395975\pi\)
\(4\) 1.35429 + 1.35429i 0.338572 + 0.338572i
\(5\) 0 0
\(6\) 5.71272 3.81711i 0.952119 0.636186i
\(7\) −8.88293 1.76692i −1.26899 0.252418i −0.485728 0.874110i \(-0.661445\pi\)
−0.783262 + 0.621692i \(0.786445\pi\)
\(8\) 7.89070 3.26843i 0.986337 0.408554i
\(9\) 5.22106 + 12.6047i 0.580118 + 1.40053i
\(10\) 0 0
\(11\) 11.2168 + 16.7872i 1.01971 + 1.52611i 0.840144 + 0.542364i \(0.182471\pi\)
0.179570 + 0.983745i \(0.442529\pi\)
\(12\) 1.77800 + 8.93861i 0.148167 + 0.744884i
\(13\) −4.55740 + 4.55740i −0.350569 + 0.350569i −0.860321 0.509752i \(-0.829737\pi\)
0.509752 + 0.860321i \(0.329737\pi\)
\(14\) −7.26520 + 10.8731i −0.518943 + 0.776653i
\(15\) 0 0
\(16\) 4.67078i 0.291924i
\(17\) −10.6179 + 13.2763i −0.624581 + 0.780960i
\(18\) 19.6991 1.09439
\(19\) 4.69451 11.3335i 0.247079 0.596502i −0.750874 0.660445i \(-0.770368\pi\)
0.997954 + 0.0639429i \(0.0203676\pi\)
\(20\) 0 0
\(21\) −30.4745 30.4745i −1.45117 1.45117i
\(22\) 28.5912 5.68714i 1.29960 0.258506i
\(23\) 27.7049 18.5118i 1.20456 0.804861i 0.219256 0.975667i \(-0.429637\pi\)
0.985305 + 0.170806i \(0.0546371\pi\)
\(24\) 39.8606 + 7.92876i 1.66086 + 0.330365i
\(25\) 0 0
\(26\) 3.56121 + 8.59753i 0.136970 + 0.330674i
\(27\) −4.31053 + 21.6705i −0.159649 + 0.802611i
\(28\) −9.63713 14.4230i −0.344183 0.515106i
\(29\) −1.76764 8.88650i −0.0609530 0.306431i 0.938267 0.345911i \(-0.112430\pi\)
−0.999220 + 0.0394795i \(0.987430\pi\)
\(30\) 0 0
\(31\) 5.24039 7.84280i 0.169045 0.252993i −0.737268 0.675600i \(-0.763885\pi\)
0.906313 + 0.422606i \(0.138885\pi\)
\(32\) 25.3322 + 10.4929i 0.791630 + 0.327904i
\(33\) 96.0730i 2.91130i
\(34\) 11.8432 + 21.4995i 0.348330 + 0.632339i
\(35\) 0 0
\(36\) −9.99965 + 24.1413i −0.277768 + 0.670592i
\(37\) −30.8010 20.5805i −0.832458 0.556231i 0.0647178 0.997904i \(-0.479385\pi\)
−0.897176 + 0.441673i \(0.854385\pi\)
\(38\) −12.5245 12.5245i −0.329593 0.329593i
\(39\) −30.0798 + 5.98325i −0.771278 + 0.153417i
\(40\) 0 0
\(41\) −20.0419 3.98659i −0.488828 0.0972338i −0.0554783 0.998460i \(-0.517668\pi\)
−0.433349 + 0.901226i \(0.642668\pi\)
\(42\) −57.4902 + 23.8132i −1.36881 + 0.566981i
\(43\) 1.42655 + 3.44400i 0.0331756 + 0.0800931i 0.939599 0.342277i \(-0.111198\pi\)
−0.906423 + 0.422370i \(0.861198\pi\)
\(44\) −7.54387 + 37.9256i −0.171452 + 0.861945i
\(45\) 0 0
\(46\) −9.38582 47.1857i −0.204040 1.02578i
\(47\) 59.9421 59.9421i 1.27536 1.27536i 0.332129 0.943234i \(-0.392233\pi\)
0.943234 0.332129i \(-0.107767\pi\)
\(48\) 12.3481 18.4802i 0.257251 0.385004i
\(49\) 30.5143 + 12.6394i 0.622741 + 0.257948i
\(50\) 0 0
\(51\) −77.1084 + 24.4581i −1.51193 + 0.479571i
\(52\) −12.3441 −0.237386
\(53\) −31.5824 + 76.2466i −0.595894 + 1.43862i 0.281837 + 0.959462i \(0.409056\pi\)
−0.877731 + 0.479154i \(0.840944\pi\)
\(54\) 26.5258 + 17.7239i 0.491218 + 0.328221i
\(55\) 0 0
\(56\) −75.8676 + 15.0910i −1.35478 + 0.269482i
\(57\) 48.5363 32.4309i 0.851514 0.568963i
\(58\) −12.8309 2.55223i −0.221223 0.0440039i
\(59\) −10.2158 + 4.23153i −0.173149 + 0.0717208i −0.467574 0.883954i \(-0.654872\pi\)
0.294425 + 0.955675i \(0.404872\pi\)
\(60\) 0 0
\(61\) 13.7504 69.1280i 0.225417 1.13325i −0.687840 0.725862i \(-0.741441\pi\)
0.913257 0.407384i \(-0.133559\pi\)
\(62\) −7.56642 11.3239i −0.122039 0.182644i
\(63\) −24.1066 121.192i −0.382645 1.92369i
\(64\) 41.2052 41.2052i 0.643831 0.643831i
\(65\) 0 0
\(66\) 128.157 + 53.0845i 1.94178 + 0.804311i
\(67\) 53.5283i 0.798931i 0.916748 + 0.399465i \(0.130804\pi\)
−0.916748 + 0.399465i \(0.869196\pi\)
\(68\) −32.3597 + 3.60031i −0.475877 + 0.0529458i
\(69\) 158.555 2.29790
\(70\) 0 0
\(71\) 32.2384 + 21.5410i 0.454063 + 0.303395i 0.761490 0.648177i \(-0.224468\pi\)
−0.307427 + 0.951572i \(0.599468\pi\)
\(72\) 82.3956 + 82.3956i 1.14438 + 1.14438i
\(73\) 41.3536 8.22574i 0.566487 0.112681i 0.0964658 0.995336i \(-0.469246\pi\)
0.470021 + 0.882655i \(0.344246\pi\)
\(74\) −44.4724 + 29.7155i −0.600979 + 0.401561i
\(75\) 0 0
\(76\) 21.7066 8.99117i 0.285613 0.118305i
\(77\) −69.9767 168.939i −0.908789 2.19401i
\(78\) −8.63900 + 43.4312i −0.110756 + 0.556810i
\(79\) −29.3762 43.9646i −0.371851 0.556514i 0.597602 0.801793i \(-0.296120\pi\)
−0.969453 + 0.245279i \(0.921120\pi\)
\(80\) 0 0
\(81\) 12.4807 12.4807i 0.154083 0.154083i
\(82\) −16.3920 + 24.5323i −0.199902 + 0.299175i
\(83\) 2.25342 + 0.933397i 0.0271496 + 0.0112458i 0.396217 0.918157i \(-0.370323\pi\)
−0.369067 + 0.929403i \(0.620323\pi\)
\(84\) 82.5426i 0.982650i
\(85\) 0 0
\(86\) 5.38238 0.0625859
\(87\) 16.4993 39.8329i 0.189648 0.457850i
\(88\) 143.377 + 95.8012i 1.62928 + 1.08865i
\(89\) −109.152 109.152i −1.22643 1.22643i −0.965306 0.261121i \(-0.915908\pi\)
−0.261121 0.965306i \(-0.584092\pi\)
\(90\) 0 0
\(91\) 48.5356 32.4304i 0.533358 0.356379i
\(92\) 62.5908 + 12.4501i 0.680335 + 0.135327i
\(93\) 41.4677 17.1765i 0.445889 0.184693i
\(94\) −46.8396 113.081i −0.498293 1.20299i
\(95\) 0 0
\(96\) 72.4879 + 108.486i 0.755082 + 1.13006i
\(97\) −14.7702 74.2547i −0.152270 0.765512i −0.979151 0.203135i \(-0.934887\pi\)
0.826881 0.562377i \(-0.190113\pi\)
\(98\) 33.7209 33.7209i 0.344091 0.344091i
\(99\) −153.035 + 229.033i −1.54580 + 2.31346i
\(100\) 0 0
\(101\) 104.483i 1.03448i −0.855839 0.517242i \(-0.826959\pi\)
0.855839 0.517242i \(-0.173041\pi\)
\(102\) −9.97964 + 116.374i −0.0978396 + 1.14092i
\(103\) 29.4081 0.285515 0.142758 0.989758i \(-0.454403\pi\)
0.142758 + 0.989758i \(0.454403\pi\)
\(104\) −21.0655 + 50.8566i −0.202553 + 0.489005i
\(105\) 0 0
\(106\) 84.2591 + 84.2591i 0.794897 + 0.794897i
\(107\) −97.6936 + 19.4325i −0.913024 + 0.181612i −0.629181 0.777259i \(-0.716610\pi\)
−0.283843 + 0.958871i \(0.591610\pi\)
\(108\) −35.1858 + 23.5104i −0.325795 + 0.217689i
\(109\) −50.5798 10.0609i −0.464035 0.0923023i −0.0424645 0.999098i \(-0.513521\pi\)
−0.421570 + 0.906796i \(0.638521\pi\)
\(110\) 0 0
\(111\) −67.4570 162.856i −0.607721 1.46717i
\(112\) −8.25292 + 41.4902i −0.0736868 + 0.370449i
\(113\) −53.9070 80.6775i −0.477053 0.713960i 0.512411 0.858740i \(-0.328752\pi\)
−0.989464 + 0.144780i \(0.953752\pi\)
\(114\) −16.4430 82.6648i −0.144237 0.725130i
\(115\) 0 0
\(116\) 9.64101 14.4288i 0.0831121 0.124386i
\(117\) −81.2393 33.6504i −0.694353 0.287610i
\(118\) 15.9655i 0.135301i
\(119\) 117.776 99.1717i 0.989715 0.833375i
\(120\) 0 0
\(121\) −109.688 + 264.810i −0.906510 + 2.18851i
\(122\) −84.6161 56.5387i −0.693575 0.463432i
\(123\) −68.7575 68.7575i −0.559004 0.559004i
\(124\) 17.7184 3.52441i 0.142890 0.0284227i
\(125\) 0 0
\(126\) −174.985 34.8067i −1.38877 0.276244i
\(127\) −49.6315 + 20.5580i −0.390799 + 0.161874i −0.569426 0.822043i \(-0.692835\pi\)
0.178627 + 0.983917i \(0.442835\pi\)
\(128\) 9.77337 + 23.5950i 0.0763545 + 0.184336i
\(129\) −3.46062 + 17.3977i −0.0268265 + 0.134866i
\(130\) 0 0
\(131\) −8.34298 41.9430i −0.0636869 0.320176i 0.935789 0.352562i \(-0.114689\pi\)
−0.999475 + 0.0323862i \(0.989689\pi\)
\(132\) −130.111 + 130.111i −0.985687 + 0.985687i
\(133\) −61.7265 + 92.3802i −0.464109 + 0.694588i
\(134\) 71.4045 + 29.5767i 0.532870 + 0.220722i
\(135\) 0 0
\(136\) −40.3896 + 139.463i −0.296983 + 1.02547i
\(137\) 175.836 1.28347 0.641736 0.766925i \(-0.278214\pi\)
0.641736 + 0.766925i \(0.278214\pi\)
\(138\) 87.6084 211.505i 0.634844 1.53265i
\(139\) 51.2893 + 34.2704i 0.368988 + 0.246550i 0.726215 0.687468i \(-0.241278\pi\)
−0.357227 + 0.934018i \(0.616278\pi\)
\(140\) 0 0
\(141\) 395.631 78.6959i 2.80589 0.558127i
\(142\) 46.5480 31.1024i 0.327803 0.219031i
\(143\) −127.626 25.3863i −0.892486 0.177527i
\(144\) 58.8741 24.3864i 0.408848 0.169350i
\(145\) 0 0
\(146\) 11.8769 59.7090i 0.0813483 0.408966i
\(147\) 87.3166 + 130.679i 0.593990 + 0.888970i
\(148\) −13.8414 69.5854i −0.0935230 0.470172i
\(149\) 5.89178 5.89178i 0.0395421 0.0395421i −0.687059 0.726601i \(-0.741099\pi\)
0.726601 + 0.687059i \(0.241099\pi\)
\(150\) 0 0
\(151\) −69.9385 28.9695i −0.463169 0.191851i 0.138881 0.990309i \(-0.455649\pi\)
−0.602050 + 0.798458i \(0.705649\pi\)
\(152\) 104.773i 0.689298i
\(153\) −222.781 64.5192i −1.45609 0.421694i
\(154\) −264.022 −1.71443
\(155\) 0 0
\(156\) −48.8398 32.6337i −0.313076 0.209191i
\(157\) 167.491 + 167.491i 1.06682 + 1.06682i 0.997602 + 0.0692173i \(0.0220502\pi\)
0.0692173 + 0.997602i \(0.477950\pi\)
\(158\) −74.8786 + 14.8943i −0.473915 + 0.0942676i
\(159\) −326.529 + 218.180i −2.05364 + 1.37220i
\(160\) 0 0
\(161\) −278.810 + 115.487i −1.73174 + 0.717309i
\(162\) −9.75260 23.5449i −0.0602012 0.145339i
\(163\) −19.1933 + 96.4915i −0.117751 + 0.591972i 0.876182 + 0.481981i \(0.160082\pi\)
−0.993933 + 0.109992i \(0.964918\pi\)
\(164\) −21.7436 32.5416i −0.132583 0.198424i
\(165\) 0 0
\(166\) 2.49022 2.49022i 0.0150014 0.0150014i
\(167\) 52.0905 77.9590i 0.311919 0.466820i −0.642076 0.766641i \(-0.721927\pi\)
0.953996 + 0.299821i \(0.0969268\pi\)
\(168\) −340.069 140.861i −2.02422 0.838460i
\(169\) 127.460i 0.754203i
\(170\) 0 0
\(171\) 167.367 0.978753
\(172\) −2.73221 + 6.59614i −0.0158849 + 0.0383496i
\(173\) −167.941 112.214i −0.970755 0.648638i −0.0342948 0.999412i \(-0.510919\pi\)
−0.936460 + 0.350774i \(0.885919\pi\)
\(174\) −44.0188 44.0188i −0.252982 0.252982i
\(175\) 0 0
\(176\) 78.4094 52.3915i 0.445508 0.297679i
\(177\) −51.6061 10.2651i −0.291560 0.0579949i
\(178\) −205.915 + 85.2929i −1.15683 + 0.479174i
\(179\) −17.0542 41.1724i −0.0952747 0.230013i 0.869056 0.494714i \(-0.164727\pi\)
−0.964331 + 0.264700i \(0.914727\pi\)
\(180\) 0 0
\(181\) 115.362 + 172.651i 0.637358 + 0.953873i 0.999761 + 0.0218520i \(0.00695625\pi\)
−0.362403 + 0.932021i \(0.618044\pi\)
\(182\) −16.4428 82.6636i −0.0903451 0.454196i
\(183\) 237.156 237.156i 1.29594 1.29594i
\(184\) 158.106 236.623i 0.859273 1.28599i
\(185\) 0 0
\(186\) 64.8068i 0.348424i
\(187\) −341.971 29.3258i −1.82872 0.156823i
\(188\) 162.358 0.863605
\(189\) 76.5802 184.881i 0.405186 0.978207i
\(190\) 0 0
\(191\) −22.5345 22.5345i −0.117982 0.117982i 0.645651 0.763633i \(-0.276586\pi\)
−0.763633 + 0.645651i \(0.776586\pi\)
\(192\) 271.963 54.0969i 1.41648 0.281755i
\(193\) 95.2863 63.6683i 0.493712 0.329888i −0.283665 0.958924i \(-0.591550\pi\)
0.777376 + 0.629036i \(0.216550\pi\)
\(194\) −107.214 21.3261i −0.552648 0.109928i
\(195\) 0 0
\(196\) 24.2077 + 58.4427i 0.123509 + 0.298177i
\(197\) 25.4103 127.746i 0.128986 0.648458i −0.861150 0.508351i \(-0.830255\pi\)
0.990136 0.140107i \(-0.0447447\pi\)
\(198\) 220.961 + 330.692i 1.11597 + 1.67016i
\(199\) −5.01500 25.2121i −0.0252010 0.126694i 0.966137 0.258030i \(-0.0830733\pi\)
−0.991338 + 0.131336i \(0.958073\pi\)
\(200\) 0 0
\(201\) −141.512 + 211.787i −0.704039 + 1.05367i
\(202\) −139.376 57.7313i −0.689978 0.285798i
\(203\) 82.0615i 0.404244i
\(204\) −137.550 71.3037i −0.674267 0.349528i
\(205\) 0 0
\(206\) 16.2492 39.2291i 0.0788797 0.190432i
\(207\) 377.986 + 252.562i 1.82602 + 1.22011i
\(208\) 21.2866 + 21.2866i 0.102339 + 0.102339i
\(209\) 242.916 48.3190i 1.16228 0.231191i
\(210\) 0 0
\(211\) −366.478 72.8971i −1.73686 0.345484i −0.777765 0.628555i \(-0.783647\pi\)
−0.959099 + 0.283071i \(0.908647\pi\)
\(212\) −146.032 + 60.4883i −0.688829 + 0.285322i
\(213\) 70.6053 + 170.456i 0.331480 + 0.800264i
\(214\) −28.0579 + 141.056i −0.131111 + 0.659142i
\(215\) 0 0
\(216\) 36.8155 + 185.084i 0.170442 + 0.856870i
\(217\) −60.4076 + 60.4076i −0.278376 + 0.278376i
\(218\) −41.3684 + 61.9122i −0.189763 + 0.284001i
\(219\) 185.363 + 76.7801i 0.846409 + 0.350594i
\(220\) 0 0
\(221\) −12.1156 108.895i −0.0548218 0.492739i
\(222\) −254.515 −1.14647
\(223\) 47.5229 114.730i 0.213107 0.514486i −0.780790 0.624793i \(-0.785183\pi\)
0.993898 + 0.110307i \(0.0351833\pi\)
\(224\) −206.484 137.968i −0.921802 0.615928i
\(225\) 0 0
\(226\) −137.406 + 27.3318i −0.607992 + 0.120937i
\(227\) 59.4422 39.7180i 0.261860 0.174969i −0.417709 0.908581i \(-0.637167\pi\)
0.679569 + 0.733612i \(0.262167\pi\)
\(228\) 109.653 + 21.8113i 0.480934 + 0.0956637i
\(229\) 47.7547 19.7807i 0.208536 0.0863784i −0.275971 0.961166i \(-0.588999\pi\)
0.484506 + 0.874788i \(0.338999\pi\)
\(230\) 0 0
\(231\) 169.754 853.410i 0.734865 3.69442i
\(232\) −42.9928 64.3433i −0.185314 0.277342i
\(233\) 63.7358 + 320.422i 0.273544 + 1.37520i 0.836162 + 0.548483i \(0.184794\pi\)
−0.562617 + 0.826717i \(0.690206\pi\)
\(234\) −89.7764 + 89.7764i −0.383660 + 0.383660i
\(235\) 0 0
\(236\) −19.5659 8.10445i −0.0829062 0.0343409i
\(237\) 251.609i 1.06164i
\(238\) −67.2144 211.905i −0.282413 0.890357i
\(239\) 92.6253 0.387554 0.193777 0.981046i \(-0.437926\pi\)
0.193777 + 0.981046i \(0.437926\pi\)
\(240\) 0 0
\(241\) 140.562 + 93.9207i 0.583246 + 0.389713i 0.811901 0.583795i \(-0.198433\pi\)
−0.228655 + 0.973508i \(0.573433\pi\)
\(242\) 292.637 + 292.637i 1.20925 + 1.20925i
\(243\) 277.410 55.1803i 1.14160 0.227079i
\(244\) 112.241 74.9973i 0.460005 0.307366i
\(245\) 0 0
\(246\) −129.711 + 53.7281i −0.527281 + 0.218407i
\(247\) 30.2567 + 73.0462i 0.122497 + 0.295733i
\(248\) 15.7167 79.0130i 0.0633736 0.318601i
\(249\) 6.44816 + 9.65035i 0.0258962 + 0.0387564i
\(250\) 0 0
\(251\) 255.770 255.770i 1.01900 1.01900i 0.0191867 0.999816i \(-0.493892\pi\)
0.999816 0.0191867i \(-0.00610770\pi\)
\(252\) 131.482 196.777i 0.521754 0.780860i
\(253\) 621.523 + 257.443i 2.45661 + 1.01756i
\(254\) 77.5655i 0.305376i
\(255\) 0 0
\(256\) 269.967 1.05456
\(257\) −182.440 + 440.449i −0.709883 + 1.71381i −0.00958789 + 0.999954i \(0.503052\pi\)
−0.700295 + 0.713854i \(0.746948\pi\)
\(258\) 21.2956 + 14.2293i 0.0825412 + 0.0551523i
\(259\) 237.238 + 237.238i 0.915979 + 0.915979i
\(260\) 0 0
\(261\) 102.783 68.6776i 0.393806 0.263132i
\(262\) −60.5600 12.0461i −0.231145 0.0459776i
\(263\) −484.648 + 200.748i −1.84277 + 0.763300i −0.893280 + 0.449500i \(0.851602\pi\)
−0.949489 + 0.313800i \(0.898398\pi\)
\(264\) 314.008 + 758.083i 1.18943 + 2.87153i
\(265\) 0 0
\(266\) 89.1247 + 133.385i 0.335055 + 0.501446i
\(267\) −143.302 720.428i −0.536712 2.69823i
\(268\) −72.4929 + 72.4929i −0.270496 + 0.270496i
\(269\) 99.6815 149.184i 0.370563 0.554587i −0.598587 0.801058i \(-0.704271\pi\)
0.969150 + 0.246471i \(0.0792709\pi\)
\(270\) 0 0
\(271\) 523.206i 1.93065i 0.261055 + 0.965324i \(0.415929\pi\)
−0.261055 + 0.965324i \(0.584071\pi\)
\(272\) 62.0108 + 49.5938i 0.227981 + 0.182330i
\(273\) 277.769 1.01747
\(274\) 97.1568 234.557i 0.354587 0.856049i
\(275\) 0 0
\(276\) 214.729 + 214.729i 0.778004 + 0.778004i
\(277\) −55.2918 + 10.9982i −0.199609 + 0.0397048i −0.293882 0.955842i \(-0.594947\pi\)
0.0942729 + 0.995546i \(0.469947\pi\)
\(278\) 74.0548 49.4819i 0.266384 0.177992i
\(279\) 126.217 + 25.1061i 0.452390 + 0.0899860i
\(280\) 0 0
\(281\) −5.36180 12.9445i −0.0190812 0.0460660i 0.914052 0.405597i \(-0.132937\pi\)
−0.933133 + 0.359531i \(0.882937\pi\)
\(282\) 113.626 571.238i 0.402930 2.02567i
\(283\) −130.918 195.932i −0.462606 0.692339i 0.524679 0.851300i \(-0.324185\pi\)
−0.987285 + 0.158961i \(0.949185\pi\)
\(284\) 14.4874 + 72.8330i 0.0510119 + 0.256454i
\(285\) 0 0
\(286\) −104.383 + 156.220i −0.364975 + 0.546224i
\(287\) 170.987 + 70.8252i 0.595774 + 0.246778i
\(288\) 374.090i 1.29892i
\(289\) −63.5216 281.933i −0.219798 0.975545i
\(290\) 0 0
\(291\) 137.867 332.839i 0.473768 1.14378i
\(292\) 67.1447 + 44.8647i 0.229948 + 0.153646i
\(293\) 58.7301 + 58.7301i 0.200444 + 0.200444i 0.800190 0.599746i \(-0.204732\pi\)
−0.599746 + 0.800190i \(0.704732\pi\)
\(294\) 222.566 44.2711i 0.757026 0.150582i
\(295\) 0 0
\(296\) −310.307 61.7239i −1.04834 0.208527i
\(297\) −412.137 + 170.713i −1.38767 + 0.574791i
\(298\) −4.60392 11.1148i −0.0154494 0.0372981i
\(299\) −41.8965 + 210.628i −0.140122 + 0.704441i
\(300\) 0 0
\(301\) −6.58667 33.1134i −0.0218826 0.110011i
\(302\) −77.2881 + 77.2881i −0.255921 + 0.255921i
\(303\) 276.219 413.391i 0.911614 1.36433i
\(304\) −52.9365 21.9270i −0.174133 0.0721284i
\(305\) 0 0
\(306\) −209.162 + 261.531i −0.683536 + 0.854677i
\(307\) 350.474 1.14161 0.570804 0.821086i \(-0.306631\pi\)
0.570804 + 0.821086i \(0.306631\pi\)
\(308\) 134.023 323.561i 0.435140 1.05052i
\(309\) 116.354 + 77.7454i 0.376551 + 0.251603i
\(310\) 0 0
\(311\) −298.600 + 59.3951i −0.960127 + 0.190981i −0.650186 0.759775i \(-0.725309\pi\)
−0.309941 + 0.950756i \(0.600309\pi\)
\(312\) −217.795 + 145.526i −0.698061 + 0.466429i
\(313\) −383.620 76.3067i −1.22562 0.243791i −0.460490 0.887665i \(-0.652326\pi\)
−0.765132 + 0.643873i \(0.777326\pi\)
\(314\) 315.971 130.879i 1.00628 0.416814i
\(315\) 0 0
\(316\) 19.7569 99.3248i 0.0625219 0.314319i
\(317\) −26.0395 38.9709i −0.0821435 0.122936i 0.788123 0.615518i \(-0.211053\pi\)
−0.870266 + 0.492582i \(0.836053\pi\)
\(318\) 110.621 + 556.129i 0.347865 + 1.74883i
\(319\) 129.352 129.352i 0.405493 0.405493i
\(320\) 0 0
\(321\) −437.902 181.385i −1.36418 0.565063i
\(322\) 435.731i 1.35320i
\(323\) 100.622 + 182.664i 0.311524 + 0.565523i
\(324\) 33.8050 0.104336
\(325\) 0 0
\(326\) 118.110 + 78.9188i 0.362302 + 0.242082i
\(327\) −173.523 173.523i −0.530652 0.530652i
\(328\) −171.175 + 34.0488i −0.521874 + 0.103807i
\(329\) −638.374 + 426.548i −1.94035 + 1.29650i
\(330\) 0 0
\(331\) −135.561 + 56.1513i −0.409550 + 0.169641i −0.577940 0.816079i \(-0.696143\pi\)
0.168390 + 0.985720i \(0.446143\pi\)
\(332\) 1.78769 + 4.31587i 0.00538462 + 0.0129996i
\(333\) 98.5990 495.691i 0.296093 1.48856i
\(334\) −75.2117 112.562i −0.225185 0.337013i
\(335\) 0 0
\(336\) −142.340 + 142.340i −0.423631 + 0.423631i
\(337\) −10.2204 + 15.2959i −0.0303277 + 0.0453886i −0.846324 0.532669i \(-0.821189\pi\)
0.815996 + 0.578058i \(0.196189\pi\)
\(338\) 170.027 + 70.4273i 0.503037 + 0.208365i
\(339\) 461.717i 1.36200i
\(340\) 0 0
\(341\) 190.439 0.558473
\(342\) 92.4774 223.260i 0.270402 0.652807i
\(343\) 120.275 + 80.3653i 0.350656 + 0.234301i
\(344\) 22.5130 + 22.5130i 0.0654447 + 0.0654447i
\(345\) 0 0
\(346\) −242.484 + 162.022i −0.700819 + 0.468273i
\(347\) −551.034 109.607i −1.58799 0.315872i −0.679469 0.733704i \(-0.737790\pi\)
−0.908524 + 0.417832i \(0.862790\pi\)
\(348\) 76.2902 31.6004i 0.219225 0.0908058i
\(349\) 89.2578 + 215.487i 0.255753 + 0.617442i 0.998649 0.0519647i \(-0.0165483\pi\)
−0.742896 + 0.669407i \(0.766548\pi\)
\(350\) 0 0
\(351\) −79.1162 118.406i −0.225402 0.337338i
\(352\) 108.000 + 542.953i 0.306819 + 1.54248i
\(353\) −35.0592 + 35.0592i −0.0993178 + 0.0993178i −0.755020 0.655702i \(-0.772373\pi\)
0.655702 + 0.755020i \(0.272373\pi\)
\(354\) −42.2078 + 63.1684i −0.119231 + 0.178442i
\(355\) 0 0
\(356\) 295.647i 0.830469i
\(357\) 728.164 81.0150i 2.03968 0.226933i
\(358\) −64.3454 −0.179736
\(359\) −107.336 + 259.133i −0.298987 + 0.721819i 0.700976 + 0.713185i \(0.252748\pi\)
−0.999963 + 0.00863338i \(0.997252\pi\)
\(360\) 0 0
\(361\) 148.855 + 148.855i 0.412340 + 0.412340i
\(362\) 294.051 58.4905i 0.812297 0.161576i
\(363\) −1134.06 + 757.752i −3.12412 + 2.08747i
\(364\) 109.651 + 21.8110i 0.301240 + 0.0599204i
\(365\) 0 0
\(366\) −185.317 447.396i −0.506331 1.22239i
\(367\) −119.018 + 598.342i −0.324299 + 1.63036i 0.383214 + 0.923660i \(0.374817\pi\)
−0.707513 + 0.706701i \(0.750183\pi\)
\(368\) −86.4647 129.404i −0.234958 0.351640i
\(369\) −54.3901 273.438i −0.147399 0.741024i
\(370\) 0 0
\(371\) 415.266 621.490i 1.11932 1.67517i
\(372\) 79.4211 + 32.8973i 0.213498 + 0.0884336i
\(373\) 250.623i 0.671912i −0.941878 0.335956i \(-0.890941\pi\)
0.941878 0.335956i \(-0.109059\pi\)
\(374\) −228.073 + 439.971i −0.609822 + 1.17639i
\(375\) 0 0
\(376\) 277.068 668.901i 0.736883 1.77899i
\(377\) 48.5551 + 32.4435i 0.128793 + 0.0860570i
\(378\) −204.310 204.310i −0.540501 0.540501i
\(379\) −532.918 + 106.004i −1.40612 + 0.279694i −0.839084 0.544002i \(-0.816909\pi\)
−0.567032 + 0.823696i \(0.691909\pi\)
\(380\) 0 0
\(381\) −250.718 49.8709i −0.658053 0.130895i
\(382\) −42.5113 + 17.6088i −0.111286 + 0.0460963i
\(383\) 0.487893 + 1.17788i 0.00127387 + 0.00307540i 0.924515 0.381145i \(-0.124470\pi\)
−0.923241 + 0.384221i \(0.874470\pi\)
\(384\) −23.7088 + 119.192i −0.0617418 + 0.310397i
\(385\) 0 0
\(386\) −32.2810 162.287i −0.0836294 0.420434i
\(387\) −35.9627 + 35.9627i −0.0929268 + 0.0929268i
\(388\) 80.5592 120.565i 0.207627 0.310735i
\(389\) 427.876 + 177.232i 1.09994 + 0.455609i 0.857461 0.514548i \(-0.172040\pi\)
0.242476 + 0.970157i \(0.422040\pi\)
\(390\) 0 0
\(391\) −48.3981 + 564.375i −0.123780 + 1.44341i
\(392\) 282.090 0.719618
\(393\) 77.8744 188.006i 0.198154 0.478386i
\(394\) −156.368 104.482i −0.396872 0.265182i
\(395\) 0 0
\(396\) −517.429 + 102.923i −1.30664 + 0.259907i
\(397\) 349.464 233.505i 0.880263 0.588173i −0.0312191 0.999513i \(-0.509939\pi\)
0.911482 + 0.411340i \(0.134939\pi\)
\(398\) −36.4029 7.24098i −0.0914645 0.0181934i
\(399\) −488.447 + 202.321i −1.22418 + 0.507071i
\(400\) 0 0
\(401\) −101.827 + 511.917i −0.253932 + 1.27660i 0.617689 + 0.786422i \(0.288069\pi\)
−0.871621 + 0.490180i \(0.836931\pi\)
\(402\) 204.324 + 305.792i 0.508268 + 0.760677i
\(403\) 11.8602 + 59.6253i 0.0294298 + 0.147953i
\(404\) 141.500 141.500i 0.350247 0.350247i
\(405\) 0 0
\(406\) 109.466 + 45.3425i 0.269622 + 0.111681i
\(407\) 747.911i 1.83762i
\(408\) −528.499 + 445.015i −1.29534 + 1.09072i
\(409\) 12.0816 0.0295393 0.0147696 0.999891i \(-0.495299\pi\)
0.0147696 + 0.999891i \(0.495299\pi\)
\(410\) 0 0
\(411\) 695.702 + 464.853i 1.69271 + 1.13103i
\(412\) 39.8270 + 39.8270i 0.0966675 + 0.0966675i
\(413\) 98.2231 19.5378i 0.237828 0.0473070i
\(414\) 545.760 364.665i 1.31826 0.880834i
\(415\) 0 0
\(416\) −163.269 + 67.6283i −0.392474 + 0.162568i
\(417\) 112.328 + 271.185i 0.269373 + 0.650323i
\(418\) 69.7661 350.738i 0.166905 0.839086i
\(419\) 162.741 + 243.559i 0.388403 + 0.581287i 0.973219 0.229880i \(-0.0738332\pi\)
−0.584816 + 0.811166i \(0.698833\pi\)
\(420\) 0 0
\(421\) −338.834 + 338.834i −0.804832 + 0.804832i −0.983846 0.179015i \(-0.942709\pi\)
0.179015 + 0.983846i \(0.442709\pi\)
\(422\) −299.737 + 448.588i −0.710277 + 1.06300i
\(423\) 1068.52 + 442.594i 2.52604 + 1.04632i
\(424\) 704.864i 1.66242i
\(425\) 0 0
\(426\) 266.394 0.625337
\(427\) −244.288 + 589.763i −0.572103 + 1.38118i
\(428\) −158.623 105.988i −0.370613 0.247636i
\(429\) −437.843 437.843i −1.02061 1.02061i
\(430\) 0 0
\(431\) 126.914 84.8015i 0.294465 0.196755i −0.399558 0.916708i \(-0.630836\pi\)
0.694023 + 0.719953i \(0.255836\pi\)
\(432\) 101.218 + 20.1336i 0.234301 + 0.0466054i
\(433\) 570.937 236.490i 1.31856 0.546165i 0.391190 0.920310i \(-0.372064\pi\)
0.927370 + 0.374145i \(0.122064\pi\)
\(434\) 47.2034 + 113.959i 0.108764 + 0.262578i
\(435\) 0 0
\(436\) −54.8742 82.1251i −0.125858 0.188360i
\(437\) −79.7436 400.898i −0.182480 0.917388i
\(438\) 204.843 204.843i 0.467677 0.467677i
\(439\) 263.064 393.703i 0.599235 0.896818i −0.400576 0.916263i \(-0.631190\pi\)
0.999811 + 0.0194454i \(0.00619006\pi\)
\(440\) 0 0
\(441\) 450.616i 1.02181i
\(442\) −151.956 44.0076i −0.343792 0.0995648i
\(443\) 405.016 0.914257 0.457129 0.889401i \(-0.348878\pi\)
0.457129 + 0.889401i \(0.348878\pi\)
\(444\) 129.197 311.910i 0.290985 0.702500i
\(445\) 0 0
\(446\) −126.787 126.787i −0.284276 0.284276i
\(447\) 38.8871 7.73512i 0.0869957 0.0173045i
\(448\) −438.829 + 293.216i −0.979530 + 0.654501i
\(449\) 557.010 + 110.796i 1.24056 + 0.246762i 0.771399 0.636352i \(-0.219557\pi\)
0.469158 + 0.883114i \(0.344557\pi\)
\(450\) 0 0
\(451\) −157.884 381.165i −0.350075 0.845155i
\(452\) 36.2550 182.266i 0.0802102 0.403244i
\(453\) −200.129 299.514i −0.441786 0.661179i
\(454\) −20.1377 101.239i −0.0443563 0.222994i
\(455\) 0 0
\(456\) 276.987 414.540i 0.607427 0.909079i
\(457\) −455.582 188.708i −0.996898 0.412929i −0.176239 0.984347i \(-0.556393\pi\)
−0.820659 + 0.571419i \(0.806393\pi\)
\(458\) 74.6324i 0.162953i
\(459\) −241.936 287.322i −0.527093 0.625975i
\(460\) 0 0
\(461\) −128.852 + 311.076i −0.279505 + 0.674785i −0.999822 0.0188600i \(-0.993996\pi\)
0.720317 + 0.693645i \(0.243996\pi\)
\(462\) −1044.62 697.990i −2.26107 1.51080i
\(463\) −229.089 229.089i −0.494792 0.494792i 0.415020 0.909812i \(-0.363775\pi\)
−0.909812 + 0.415020i \(0.863775\pi\)
\(464\) −41.5070 + 8.25625i −0.0894546 + 0.0177936i
\(465\) 0 0
\(466\) 462.646 + 92.0259i 0.992802 + 0.197481i
\(467\) 1.34121 0.555546i 0.00287196 0.00118961i −0.381247 0.924473i \(-0.624505\pi\)
0.384119 + 0.923284i \(0.374505\pi\)
\(468\) −64.4491 155.594i −0.137712 0.332465i
\(469\) 94.5805 475.488i 0.201664 1.01383i
\(470\) 0 0
\(471\) 219.893 + 1105.48i 0.466863 + 2.34708i
\(472\) −66.7794 + 66.7794i −0.141482 + 0.141482i
\(473\) −41.8137 + 62.5787i −0.0884011 + 0.132302i
\(474\) −335.636 139.025i −0.708093 0.293302i
\(475\) 0 0
\(476\) 293.810 + 25.1957i 0.617248 + 0.0529322i
\(477\) −1125.96 −2.36051
\(478\) 51.1795 123.558i 0.107070 0.258490i
\(479\) −603.522 403.261i −1.25996 0.841880i −0.267397 0.963587i \(-0.586163\pi\)
−0.992566 + 0.121706i \(0.961163\pi\)
\(480\) 0 0
\(481\) 234.166 46.5785i 0.486831 0.0968368i
\(482\) 202.953 135.609i 0.421064 0.281346i
\(483\) −1408.43 280.155i −2.91601 0.580030i
\(484\) −507.178 + 210.080i −1.04789 + 0.434049i
\(485\) 0 0
\(486\) 79.6728 400.542i 0.163936 0.824161i
\(487\) 167.730 + 251.026i 0.344416 + 0.515454i 0.962726 0.270480i \(-0.0871824\pi\)
−0.618310 + 0.785934i \(0.712182\pi\)
\(488\) −117.440 590.410i −0.240656 1.20986i
\(489\) −331.032 + 331.032i −0.676957 + 0.676957i
\(490\) 0 0
\(491\) 299.474 + 124.046i 0.609927 + 0.252640i 0.666197 0.745776i \(-0.267921\pi\)
−0.0562705 + 0.998416i \(0.517921\pi\)
\(492\) 186.235i 0.378527i
\(493\) 136.749 + 70.8881i 0.277381 + 0.143789i
\(494\) 114.159 0.231090
\(495\) 0 0
\(496\) −36.6320 24.4767i −0.0738549 0.0493483i
\(497\) −248.310 248.310i −0.499619 0.499619i
\(498\) 16.4360 3.26933i 0.0330041 0.00656492i
\(499\) −1.17493 + 0.785065i −0.00235457 + 0.00157328i −0.556747 0.830682i \(-0.687951\pi\)
0.554392 + 0.832255i \(0.312951\pi\)
\(500\) 0 0
\(501\) 412.197 170.738i 0.822748 0.340793i
\(502\) −199.862 482.510i −0.398131 0.961174i
\(503\) 16.5439 83.1720i 0.0328905 0.165352i −0.960849 0.277072i \(-0.910636\pi\)
0.993740 + 0.111720i \(0.0356360\pi\)
\(504\) −586.327 877.501i −1.16335 1.74107i
\(505\) 0 0
\(506\) 686.837 686.837i 1.35738 1.35738i
\(507\) −336.964 + 504.302i −0.664623 + 0.994679i
\(508\) −95.0570 39.3739i −0.187120 0.0775076i
\(509\) 118.487i 0.232784i −0.993203 0.116392i \(-0.962867\pi\)
0.993203 0.116392i \(-0.0371329\pi\)
\(510\) 0 0
\(511\) −381.875 −0.747309
\(512\) 110.075 265.744i 0.214990 0.519031i
\(513\) 225.368 + 150.586i 0.439313 + 0.293540i
\(514\) 486.734 + 486.734i 0.946953 + 0.946953i
\(515\) 0 0
\(516\) −28.2482 + 18.8748i −0.0547445 + 0.0365791i
\(517\) 1678.62 + 333.898i 3.24685 + 0.645838i
\(518\) 447.550 185.381i 0.863997 0.357879i
\(519\) −367.806 887.962i −0.708682 1.71091i
\(520\) 0 0
\(521\) −200.786 300.498i −0.385386 0.576772i 0.587163 0.809469i \(-0.300245\pi\)
−0.972549 + 0.232697i \(0.925245\pi\)
\(522\) −34.8208 175.056i −0.0667064 0.335356i
\(523\) −280.565 + 280.565i −0.536453 + 0.536453i −0.922485 0.386032i \(-0.873845\pi\)
0.386032 + 0.922485i \(0.373845\pi\)
\(524\) 45.5041 68.1018i 0.0868400 0.129965i
\(525\) 0 0
\(526\) 757.422i 1.43997i
\(527\) 48.4817 + 152.847i 0.0919957 + 0.290032i
\(528\) 448.737 0.849880
\(529\) 222.434 537.003i 0.420480 1.01513i
\(530\) 0 0
\(531\) −106.675 106.675i −0.200894 0.200894i
\(532\) −208.705 + 41.5140i −0.392303 + 0.0780339i
\(533\) 109.507 73.1705i 0.205455 0.137281i
\(534\) −1040.20 206.909i −1.94794 0.387469i
\(535\) 0 0
\(536\) 174.954 + 422.376i 0.326406 + 0.788015i
\(537\) 41.3710 207.986i 0.0770410 0.387311i
\(538\) −143.927 215.401i −0.267522 0.400374i
\(539\) 130.094 + 654.024i 0.241361 + 1.21340i
\(540\) 0 0
\(541\) 9.85351 14.7468i 0.0182135 0.0272584i −0.822251 0.569125i \(-0.807282\pi\)
0.840465 + 0.541866i \(0.182282\pi\)
\(542\) 697.934 + 289.094i 1.28770 + 0.533383i
\(543\) 988.081i 1.81967i
\(544\) −408.281 + 224.905i −0.750517 + 0.413429i
\(545\) 0 0
\(546\) 153.479 370.532i 0.281098 0.678630i
\(547\) −367.596 245.620i −0.672021 0.449030i 0.172174 0.985067i \(-0.444921\pi\)
−0.844195 + 0.536036i \(0.819921\pi\)
\(548\) 238.132 + 238.132i 0.434548 + 0.434548i
\(549\) 943.133 187.601i 1.71791 0.341714i
\(550\) 0 0
\(551\) −109.014 21.6842i −0.197847 0.0393542i
\(552\) 1251.11 518.226i 2.26650 0.938815i
\(553\) 183.265 + 442.440i 0.331401 + 0.800073i
\(554\) −15.8799 + 79.8339i −0.0286642 + 0.144104i
\(555\) 0 0
\(556\) 23.0485 + 115.873i 0.0414541 + 0.208404i
\(557\) 286.858 286.858i 0.515005 0.515005i −0.401051 0.916056i \(-0.631355\pi\)
0.916056 + 0.401051i \(0.131355\pi\)
\(558\) 103.231 154.496i 0.185001 0.276874i
\(559\) −22.1970 9.19432i −0.0397085 0.0164478i
\(560\) 0 0
\(561\) −1275.50 1020.09i −2.27361 1.81834i
\(562\) −20.2301 −0.0359966
\(563\) 331.993 801.501i 0.589685 1.42362i −0.294120 0.955769i \(-0.595026\pi\)
0.883805 0.467856i \(-0.154974\pi\)
\(564\) 642.376 + 429.222i 1.13896 + 0.761032i
\(565\) 0 0
\(566\) −333.702 + 66.3775i −0.589580 + 0.117275i
\(567\) −132.918 + 88.8128i −0.234423 + 0.156636i
\(568\) 324.789 + 64.6046i 0.571812 + 0.113740i
\(569\) −731.591 + 303.035i −1.28575 + 0.532575i −0.917716 0.397238i \(-0.869969\pi\)
−0.368033 + 0.929813i \(0.619969\pi\)
\(570\) 0 0
\(571\) −128.468 + 645.854i −0.224988 + 1.13109i 0.688816 + 0.724936i \(0.258131\pi\)
−0.913804 + 0.406156i \(0.866869\pi\)
\(572\) −138.461 207.222i −0.242066 0.362277i
\(573\) −29.5848 148.733i −0.0516314 0.259568i
\(574\) 188.955 188.955i 0.329191 0.329191i
\(575\) 0 0
\(576\) 734.516 + 304.246i 1.27520 + 0.528206i
\(577\) 156.835i 0.271810i 0.990722 + 0.135905i \(0.0433943\pi\)
−0.990722 + 0.135905i \(0.956606\pi\)
\(578\) −411.184 71.0449i −0.711392 0.122915i
\(579\) 545.323 0.941836
\(580\) 0 0
\(581\) −18.3677 12.2729i −0.0316140 0.0211238i
\(582\) −367.816 367.816i −0.631987 0.631987i
\(583\) −1634.22 + 325.067i −2.80313 + 0.557576i
\(584\) 299.423 200.068i 0.512711 0.342583i
\(585\) 0 0
\(586\) 110.794 45.8925i 0.189069 0.0783149i
\(587\) 341.417 + 824.253i 0.581630 + 1.40418i 0.891335 + 0.453346i \(0.149770\pi\)
−0.309705 + 0.950833i \(0.600230\pi\)
\(588\) −58.7246 + 295.228i −0.0998717 + 0.502089i
\(589\) −64.2856 96.2103i −0.109144 0.163345i
\(590\) 0 0
\(591\) 438.257 438.257i 0.741552 0.741552i
\(592\) −96.1273 + 143.865i −0.162377 + 0.243015i
\(593\) −523.732 216.937i −0.883191 0.365830i −0.105457 0.994424i \(-0.533631\pi\)
−0.777733 + 0.628594i \(0.783631\pi\)
\(594\) 644.100i 1.08434i
\(595\) 0 0
\(596\) 15.9583 0.0267758
\(597\) 46.8106 113.011i 0.0784098 0.189298i
\(598\) 257.819 + 172.269i 0.431135 + 0.288075i
\(599\) −825.842 825.842i −1.37870 1.37870i −0.846818 0.531883i \(-0.821484\pi\)
−0.531883 0.846818i \(-0.678516\pi\)
\(600\) 0 0
\(601\) 159.974 106.891i 0.266180 0.177856i −0.415317 0.909677i \(-0.636329\pi\)
0.681497 + 0.731821i \(0.261329\pi\)
\(602\) −47.8113 9.51026i −0.0794208 0.0157978i
\(603\) −674.711 + 279.475i −1.11892 + 0.463474i
\(604\) −55.4839 133.950i −0.0918608 0.221772i
\(605\) 0 0
\(606\) −398.823 596.881i −0.658124 0.984952i
\(607\) 70.8263 + 356.068i 0.116682 + 0.586602i 0.994244 + 0.107139i \(0.0341689\pi\)
−0.877562 + 0.479464i \(0.840831\pi\)
\(608\) 237.844 237.844i 0.391191 0.391191i
\(609\) −216.944 + 324.680i −0.356230 + 0.533136i
\(610\) 0 0
\(611\) 546.359i 0.894205i
\(612\) −214.333 389.088i −0.350217 0.635765i
\(613\) 372.159 0.607111 0.303556 0.952814i \(-0.401826\pi\)
0.303556 + 0.952814i \(0.401826\pi\)
\(614\) 193.652 467.517i 0.315394 0.761429i
\(615\) 0 0
\(616\) −1104.33 1104.33i −1.79274 1.79274i
\(617\) −157.929 + 31.4141i −0.255963 + 0.0509143i −0.321404 0.946942i \(-0.604155\pi\)
0.0654406 + 0.997856i \(0.479155\pi\)
\(618\) 168.000 112.254i 0.271844 0.181641i
\(619\) 764.806 + 152.129i 1.23555 + 0.245766i 0.769301 0.638887i \(-0.220605\pi\)
0.466250 + 0.884653i \(0.345605\pi\)
\(620\) 0 0
\(621\) 281.737 + 680.174i 0.453683 + 1.09529i
\(622\) −85.7586 + 431.137i −0.137876 + 0.693147i
\(623\) 776.726 + 1162.45i 1.24675 + 1.86590i
\(624\) 27.9465 + 140.496i 0.0447860 + 0.225154i
\(625\) 0 0
\(626\) −313.756 + 469.570i −0.501208 + 0.750111i
\(627\) 1088.85 + 451.016i 1.73660 + 0.719323i
\(628\) 453.661i 0.722391i
\(629\) 600.275 190.402i 0.954332 0.302706i
\(630\) 0 0
\(631\) −158.851 + 383.501i −0.251745 + 0.607766i −0.998345 0.0575068i \(-0.981685\pi\)
0.746600 + 0.665273i \(0.231685\pi\)
\(632\) −375.494 250.897i −0.594137 0.396989i
\(633\) −1257.27 1257.27i −1.98621 1.98621i
\(634\) −66.3734 + 13.2025i −0.104690 + 0.0208241i
\(635\) 0 0
\(636\) −737.693 146.736i −1.15989 0.230717i
\(637\) −196.669 + 81.4628i −0.308742 + 0.127885i
\(638\) −101.078 244.023i −0.158429 0.382481i
\(639\) −103.201 + 518.825i −0.161503 + 0.811932i
\(640\) 0 0
\(641\) 176.168 + 885.657i 0.274833 + 1.38168i 0.833606 + 0.552359i \(0.186272\pi\)
−0.558773 + 0.829321i \(0.688728\pi\)
\(642\) −483.920 + 483.920i −0.753769 + 0.753769i
\(643\) −318.185 + 476.198i −0.494845 + 0.740587i −0.991885 0.127140i \(-0.959420\pi\)
0.497040 + 0.867728i \(0.334420\pi\)
\(644\) −533.991 221.186i −0.829179 0.343457i
\(645\) 0 0
\(646\) 299.264 33.2959i 0.463257 0.0515416i
\(647\) 178.146 0.275342 0.137671 0.990478i \(-0.456038\pi\)
0.137671 + 0.990478i \(0.456038\pi\)
\(648\) 57.6891 139.274i 0.0890264 0.214929i
\(649\) −185.625 124.030i −0.286016 0.191110i
\(650\) 0 0
\(651\) −398.704 + 79.3071i −0.612448 + 0.121824i
\(652\) −156.671 + 104.684i −0.240293 + 0.160558i
\(653\) −1242.54 247.157i −1.90282 0.378495i −0.904025 0.427479i \(-0.859402\pi\)
−0.998800 + 0.0489839i \(0.984402\pi\)
\(654\) −327.352 + 135.594i −0.500538 + 0.207330i
\(655\) 0 0
\(656\) −18.6205 + 93.6115i −0.0283849 + 0.142701i
\(657\) 319.593 + 478.304i 0.486443 + 0.728013i
\(658\) 216.267 + 1087.25i 0.328674 + 1.65236i
\(659\) −399.585 + 399.585i −0.606351 + 0.606351i −0.941990 0.335640i \(-0.891047\pi\)
0.335640 + 0.941990i \(0.391047\pi\)
\(660\) 0 0
\(661\) −438.279 181.541i −0.663054 0.274646i 0.0256692 0.999670i \(-0.491828\pi\)
−0.688723 + 0.725025i \(0.741828\pi\)
\(662\) 211.859i 0.320028i
\(663\) 239.948 462.879i 0.361913 0.698158i
\(664\) 20.8318 0.0313732
\(665\) 0 0
\(666\) −606.750 405.417i −0.911036 0.608735i
\(667\) −213.477 213.477i −0.320056 0.320056i
\(668\) 176.125 35.0334i 0.263660 0.0524451i
\(669\) 491.337 328.301i 0.734435 0.490734i
\(670\) 0 0
\(671\) 1314.70 544.567i 1.95932 0.811576i
\(672\) −452.219 1091.75i −0.672944 1.62463i
\(673\) 167.516 842.162i 0.248910 1.25135i −0.630838 0.775914i \(-0.717289\pi\)
0.879748 0.475440i \(-0.157711\pi\)
\(674\) 14.7569 + 22.0853i 0.0218945 + 0.0327675i
\(675\) 0 0
\(676\) −172.618 + 172.618i −0.255352 + 0.255352i
\(677\) 177.774 266.057i 0.262591 0.392995i −0.676622 0.736331i \(-0.736557\pi\)
0.939213 + 0.343336i \(0.111557\pi\)
\(678\) −615.910 255.118i −0.908422 0.376281i
\(679\) 685.697i 1.00986i
\(680\) 0 0
\(681\) 340.187 0.499541
\(682\) 105.226 254.038i 0.154290 0.372490i
\(683\) 412.510 + 275.630i 0.603968 + 0.403558i 0.819616 0.572913i \(-0.194187\pi\)
−0.215649 + 0.976471i \(0.569187\pi\)
\(684\) 226.663 + 226.663i 0.331379 + 0.331379i
\(685\) 0 0
\(686\) 173.661 116.037i 0.253150 0.169150i
\(687\) 241.237 + 47.9851i 0.351146 + 0.0698473i
\(688\) 16.0862 6.66312i 0.0233811 0.00968477i
\(689\) −203.553 491.420i −0.295432 0.713236i
\(690\) 0 0
\(691\) 274.571 + 410.925i 0.397354 + 0.594682i 0.975163 0.221490i \(-0.0710921\pi\)
−0.577809 + 0.816172i \(0.696092\pi\)
\(692\) −75.4695 379.411i −0.109060 0.548281i
\(693\) 1764.08 1764.08i 2.54557 2.54557i
\(694\) −450.682 + 674.493i −0.649397 + 0.971891i
\(695\) 0 0
\(696\) 368.236i 0.529075i
\(697\) 265.730 223.754i 0.381248 0.321024i
\(698\) 336.770 0.482478
\(699\) −594.918 + 1436.26i −0.851099 + 2.05474i
\(700\) 0 0
\(701\) −681.196 681.196i −0.971749 0.971749i 0.0278623 0.999612i \(-0.491130\pi\)
−0.999612 + 0.0278623i \(0.991130\pi\)
\(702\) −201.663 + 40.1133i −0.287270 + 0.0571415i
\(703\) −377.846 + 252.469i −0.537476 + 0.359130i
\(704\) 1153.91 + 229.527i 1.63908 + 0.326033i
\(705\) 0 0
\(706\) 27.3957 + 66.1392i 0.0388042 + 0.0936816i
\(707\) −184.613 + 928.114i −0.261122 + 1.31275i
\(708\) −55.9877 83.7915i −0.0790786 0.118350i
\(709\) −252.171 1267.75i −0.355672 1.78808i −0.581110 0.813825i \(-0.697381\pi\)
0.225438 0.974258i \(-0.427619\pi\)
\(710\) 0 0
\(711\) 400.788 599.822i 0.563697 0.843631i
\(712\) −1218.04 504.529i −1.71073 0.708609i
\(713\) 314.293i 0.440804i
\(714\) 294.272 1016.10i 0.412145 1.42312i
\(715\) 0 0
\(716\) 32.6631 78.8556i 0.0456188 0.110134i
\(717\) 366.476 + 244.872i 0.511125 + 0.341522i
\(718\) 286.364 + 286.364i 0.398836 + 0.398836i
\(719\) −1045.14 + 207.892i −1.45361 + 0.289141i −0.857799 0.513985i \(-0.828169\pi\)
−0.595810 + 0.803126i \(0.703169\pi\)
\(720\) 0 0
\(721\) −261.230 51.9618i −0.362316 0.0720691i
\(722\) 280.815 116.317i 0.388940 0.161104i
\(723\) 307.845 + 743.203i 0.425788 + 1.02794i
\(724\) −77.5863 + 390.053i −0.107163 + 0.538747i
\(725\) 0 0
\(726\) 384.194 + 1931.47i 0.529192 + 2.66043i
\(727\) 2.23924 2.23924i 0.00308011 0.00308011i −0.705565 0.708645i \(-0.749307\pi\)
0.708645 + 0.705565i \(0.249307\pi\)
\(728\) 276.983 414.534i 0.380471 0.569415i
\(729\) 1096.70 + 454.269i 1.50439 + 0.623140i
\(730\) 0 0
\(731\) −60.8706 17.6286i −0.0832704 0.0241157i
\(732\) 642.357 0.877536
\(733\) −206.148 + 497.685i −0.281238 + 0.678969i −0.999865 0.0164266i \(-0.994771\pi\)
0.718627 + 0.695396i \(0.244771\pi\)
\(734\) 732.401 + 489.374i 0.997821 + 0.666723i
\(735\) 0 0
\(736\) 896.068 178.239i 1.21748 0.242172i
\(737\) −898.591 + 600.419i −1.21926 + 0.814680i
\(738\) −394.807 78.5320i −0.534969 0.106412i
\(739\) 893.274 370.006i 1.20876 0.500685i 0.314941 0.949111i \(-0.398015\pi\)
0.893820 + 0.448426i \(0.148015\pi\)
\(740\) 0 0
\(741\) −73.3986 + 368.999i −0.0990534 + 0.497975i
\(742\) −599.588 897.347i −0.808070 1.20936i
\(743\) 229.986 + 1156.22i 0.309537 + 1.55615i 0.751879 + 0.659302i \(0.229148\pi\)
−0.442341 + 0.896847i \(0.645852\pi\)
\(744\) 271.069 271.069i 0.364340 0.364340i
\(745\) 0 0
\(746\) −334.321 138.480i −0.448151 0.185630i
\(747\) 33.2771i 0.0445477i
\(748\) −423.412 502.844i −0.566059 0.672251i
\(749\) 902.141 1.20446
\(750\) 0 0
\(751\) −450.127 300.765i −0.599370 0.400486i 0.218544 0.975827i \(-0.429869\pi\)
−0.817914 + 0.575341i \(0.804869\pi\)
\(752\) −279.976 279.976i −0.372309 0.372309i
\(753\) 1688.14 335.791i 2.24188 0.445938i
\(754\) 70.1070 46.8440i 0.0929802 0.0621274i
\(755\) 0 0
\(756\) 354.094 146.671i 0.468379 0.194009i
\(757\) 158.525 + 382.713i 0.209412 + 0.505565i 0.993331 0.115298i \(-0.0367823\pi\)
−0.783919 + 0.620863i \(0.786782\pi\)
\(758\) −153.055 + 769.462i −0.201920 + 1.01512i
\(759\) 1778.49 + 2661.69i 2.34320 + 3.50684i
\(760\) 0 0
\(761\) 1002.23 1002.23i 1.31699 1.31699i 0.400840 0.916148i \(-0.368718\pi\)
0.916148 0.400840i \(-0.131282\pi\)
\(762\) −205.058 + 306.891i −0.269105 + 0.402745i
\(763\) 431.520 + 178.741i 0.565557 + 0.234261i
\(764\) 61.0364i 0.0798906i
\(765\) 0 0
\(766\) 1.84082 0.00240316
\(767\) 27.2727 65.8422i 0.0355577 0.0858438i
\(768\) 1068.14 + 713.705i 1.39080 + 0.929304i
\(769\) 865.325 + 865.325i 1.12526 + 1.12526i 0.990938 + 0.134322i \(0.0428857\pi\)
0.134322 + 0.990938i \(0.457114\pi\)
\(770\) 0 0
\(771\) −1886.24 + 1260.34i −2.44648 + 1.63469i
\(772\) 215.271 + 42.8200i 0.278848 + 0.0554663i
\(773\) 1118.10 463.133i 1.44645 0.599138i 0.485094 0.874462i \(-0.338785\pi\)
0.961351 + 0.275324i \(0.0887852\pi\)
\(774\) 28.1017 + 67.8436i 0.0363072 + 0.0876532i
\(775\) 0 0
\(776\) −359.243 537.646i −0.462942 0.692842i
\(777\) 311.462 + 1565.83i 0.400852 + 2.01522i
\(778\) 472.840 472.840i 0.607763 0.607763i
\(779\) −139.269 + 208.431i −0.178779 + 0.267562i
\(780\) 0 0
\(781\) 782.816i 1.00233i
\(782\) 726.110 + 376.403i 0.928530 + 0.481333i
\(783\) 200.194 0.255676
\(784\) 59.0361 142.526i 0.0753011 0.181793i
\(785\) 0 0
\(786\) −207.762 207.762i −0.264329 0.264329i
\(787\) −788.186 + 156.780i −1.00151 + 0.199212i −0.668500 0.743712i \(-0.733063\pi\)
−0.333007 + 0.942924i \(0.608063\pi\)
\(788\) 207.418 138.592i 0.263221 0.175879i
\(789\) −2448.25 486.986i −3.10297 0.617220i
\(790\) 0 0
\(791\) 336.301 + 811.902i 0.425159 + 1.02642i
\(792\) −458.972 + 2307.41i −0.579510 + 2.91340i
\(793\) 252.378 + 377.710i 0.318257 + 0.476305i
\(794\) −118.391 595.192i −0.149107 0.749612i
\(795\) 0 0
\(796\) 27.3527 40.9362i 0.0343627 0.0514274i
\(797\) −475.120 196.801i −0.596135 0.246927i 0.0641526 0.997940i \(-0.479566\pi\)
−0.660288 + 0.751013i \(0.729566\pi\)
\(798\) 763.359i 0.956590i
\(799\) 159.353 + 1432.27i 0.199441 + 1.79257i
\(800\) 0 0
\(801\) 805.945 1945.72i 1.00617 2.42912i
\(802\) 626.612 + 418.689i 0.781312 + 0.522056i
\(803\) 601.944 + 601.944i 0.749619 + 0.749619i
\(804\) −478.469 + 95.1734i −0.595111 + 0.118375i
\(805\) 0 0
\(806\) 86.0908 + 17.1245i 0.106812 + 0.0212463i
\(807\) 788.789 326.727i 0.977433 0.404866i
\(808\) −341.495 824.442i −0.422643 1.02035i
\(809\) 220.058 1106.31i 0.272013 1.36750i −0.567148 0.823616i \(-0.691953\pi\)
0.839160 0.543884i \(-0.183047\pi\)
\(810\) 0 0
\(811\) −37.4732 188.390i −0.0462061 0.232294i 0.950781 0.309864i \(-0.100284\pi\)
−0.996987 + 0.0775706i \(0.975284\pi\)
\(812\) −111.135 + 111.135i −0.136866 + 0.136866i
\(813\) −1383.19 + 2070.09i −1.70134 + 2.54623i
\(814\) −997.681 413.253i −1.22565 0.507682i
\(815\) 0 0
\(816\) 114.239 + 360.157i 0.139998 + 0.441369i
\(817\) 45.7297 0.0559727
\(818\) 6.67558 16.1163i 0.00816086 0.0197021i
\(819\) 662.185 + 442.458i 0.808528 + 0.540241i
\(820\) 0 0
\(821\) 165.070 32.8346i 0.201060 0.0399934i −0.0935327 0.995616i \(-0.529816\pi\)
0.294593 + 0.955623i \(0.404816\pi\)
\(822\) 1004.50 671.185i 1.22202 0.816527i
\(823\) 382.561 + 76.0962i 0.464838 + 0.0924620i 0.421952 0.906618i \(-0.361345\pi\)
0.0428854 + 0.999080i \(0.486345\pi\)
\(824\) 232.050 96.1183i 0.281614 0.116648i
\(825\) 0 0
\(826\) 28.2099 141.821i 0.0341524 0.171696i
\(827\) −802.763 1201.42i −0.970693 1.45274i −0.889976 0.456007i \(-0.849279\pi\)
−0.0807169 0.996737i \(-0.525721\pi\)
\(828\) 169.860 + 853.944i 0.205145 + 1.03133i
\(829\) 660.591 660.591i 0.796853 0.796853i −0.185745 0.982598i \(-0.559470\pi\)
0.982598 + 0.185745i \(0.0594699\pi\)
\(830\) 0 0
\(831\) −247.840 102.659i −0.298243 0.123536i
\(832\) 375.577i 0.451414i
\(833\) −491.802 + 270.914i −0.590399 + 0.325227i
\(834\) 423.815 0.508172
\(835\) 0 0
\(836\) 394.416 + 263.541i 0.471790 + 0.315240i
\(837\) 147.368 + 147.368i 0.176067 + 0.176067i
\(838\) 414.819 82.5126i 0.495010 0.0984637i
\(839\) −1004.02 + 670.862i −1.19668 + 0.799597i −0.984112 0.177549i \(-0.943183\pi\)
−0.212569 + 0.977146i \(0.568183\pi\)
\(840\) 0 0
\(841\) 701.137 290.421i 0.833695 0.345328i
\(842\) 264.770 + 639.211i 0.314453 + 0.759157i
\(843\) 13.0070 65.3905i 0.0154294 0.0775688i
\(844\) −397.594 595.041i −0.471083 0.705025i
\(845\) 0 0
\(846\) 1180.80 1180.80i 1.39575 1.39575i
\(847\) 1442.25 2158.47i 1.70277 2.54838i
\(848\) 356.132 + 147.515i 0.419967 + 0.173956i
\(849\) 1121.32i 1.32075i
\(850\) 0 0
\(851\) −1234.32 −1.45044
\(852\) −135.227 + 326.467i −0.158717 + 0.383177i
\(853\) 635.070 + 424.340i 0.744514 + 0.497468i 0.869036 0.494749i \(-0.164740\pi\)
−0.124523 + 0.992217i \(0.539740\pi\)
\(854\) 651.739 + 651.739i 0.763161 + 0.763161i
\(855\) 0 0
\(856\) −707.357 + 472.641i −0.826351 + 0.552150i
\(857\) −851.226 169.319i −0.993262 0.197572i −0.328401 0.944539i \(-0.606510\pi\)
−0.664862 + 0.746966i \(0.731510\pi\)
\(858\) −825.991 + 342.137i −0.962693 + 0.398761i
\(859\) 156.442 + 377.684i 0.182121 + 0.439679i 0.988403 0.151852i \(-0.0485237\pi\)
−0.806282 + 0.591531i \(0.798524\pi\)
\(860\) 0 0
\(861\) 489.279 + 732.258i 0.568268 + 0.850473i
\(862\) −42.9959 216.155i −0.0498792 0.250760i
\(863\) −74.8375 + 74.8375i −0.0867179 + 0.0867179i −0.749135 0.662417i \(-0.769531\pi\)
0.662417 + 0.749135i \(0.269531\pi\)
\(864\) −336.582 + 503.730i −0.389562 + 0.583021i
\(865\) 0 0
\(866\) 892.276i 1.03034i
\(867\) 494.013 1283.41i 0.569796 1.48029i
\(868\) −163.619 −0.188501
\(869\) 408.534 986.289i 0.470120 1.13497i
\(870\) 0 0
\(871\) −243.950 243.950i −0.280080 0.280080i
\(872\) −431.993 + 85.9288i −0.495405 + 0.0985422i
\(873\) 858.845 573.862i 0.983786 0.657345i
\(874\) −578.843 115.139i −0.662292 0.131738i
\(875\) 0 0
\(876\) 147.053 + 355.018i 0.167869 + 0.405272i
\(877\) 277.754 1396.37i 0.316710 1.59221i −0.414497 0.910051i \(-0.636042\pi\)
0.731206 0.682156i \(-0.238958\pi\)
\(878\) −379.829 568.454i −0.432607 0.647442i
\(879\) 77.1047 + 387.632i 0.0877187 + 0.440992i
\(880\) 0 0
\(881\) −695.799 + 1041.34i −0.789783 + 1.18199i 0.189971 + 0.981790i \(0.439161\pi\)
−0.979754 + 0.200204i \(0.935839\pi\)
\(882\) 601.103 + 248.985i 0.681523 + 0.282296i
\(883\) 1212.52i 1.37319i −0.727042 0.686593i \(-0.759105\pi\)
0.727042 0.686593i \(-0.240895\pi\)
\(884\) 131.068 163.884i 0.148267 0.185389i
\(885\) 0 0
\(886\) 223.789 540.274i 0.252583 0.609790i
\(887\) −630.801 421.488i −0.711163 0.475184i 0.146622 0.989193i \(-0.453160\pi\)
−0.857785 + 0.514009i \(0.828160\pi\)
\(888\) −1064.57 1064.57i −1.19884 1.19884i
\(889\) 477.198 94.9205i 0.536780 0.106772i
\(890\) 0 0
\(891\) 349.510 + 69.5219i 0.392267 + 0.0780268i
\(892\) 219.738 91.0184i 0.246343 0.102039i
\(893\) −397.957 960.754i −0.445641 1.07587i
\(894\) 11.1685 56.1477i 0.0124927 0.0628050i
\(895\) 0 0
\(896\) −45.1256 226.862i −0.0503634 0.253194i
\(897\) −722.597 + 722.597i −0.805571 + 0.805571i
\(898\) 455.570 681.808i 0.507316 0.759252i
\(899\) −78.9582 32.7055i −0.0878289 0.0363799i
\(900\) 0 0
\(901\) −676.937 1228.88i −0.751318 1.36390i
\(902\) −595.695 −0.660416
\(903\) 61.4808 148.428i 0.0680851 0.164372i
\(904\) −689.053 460.410i −0.762226 0.509303i
\(905\) 0 0
\(906\) −510.119 + 101.469i −0.563045 + 0.111997i
\(907\) −104.077 + 69.5418i −0.114748 + 0.0766724i −0.611620 0.791152i \(-0.709482\pi\)
0.496872 + 0.867824i \(0.334482\pi\)
\(908\) 134.292 + 26.7123i 0.147898 + 0.0294188i
\(909\) 1316.98 545.511i 1.44882 0.600122i
\(910\) 0 0
\(911\) 0.463584 2.33060i 0.000508874 0.00255828i −0.980530 0.196369i \(-0.937085\pi\)
0.981039 + 0.193811i \(0.0620849\pi\)
\(912\) −151.478 226.702i −0.166094 0.248577i
\(913\) 9.60715 + 48.2984i 0.0105226 + 0.0529008i
\(914\) −503.458 + 503.458i −0.550829 + 0.550829i
\(915\) 0 0
\(916\) 91.4624 + 37.8850i 0.0998498 + 0.0413592i
\(917\) 387.318i 0.422375i
\(918\) −516.956 + 163.974i −0.563133 + 0.178621i
\(919\) −910.398 −0.990640 −0.495320 0.868711i \(-0.664949\pi\)
−0.495320 + 0.868711i \(0.664949\pi\)
\(920\) 0 0
\(921\) 1386.67 + 926.540i 1.50561 + 1.00602i
\(922\) 343.766 + 343.766i 0.372848 + 0.372848i
\(923\) −245.094 + 48.7523i −0.265541 + 0.0528194i
\(924\) 1385.66 925.868i 1.49963 1.00202i
\(925\) 0 0
\(926\) −432.176 + 179.013i −0.466713 + 0.193319i
\(927\) 153.541 + 370.681i 0.165632 + 0.399872i
\(928\) 48.4674 243.662i 0.0522278 0.262567i
\(929\) −103.190 154.434i −0.111076 0.166237i 0.771767 0.635906i \(-0.219373\pi\)
−0.882843 + 0.469669i \(0.844373\pi\)
\(930\) 0 0
\(931\) 286.499 286.499i 0.307733 0.307733i
\(932\) −347.627 + 520.260i −0.372990 + 0.558219i
\(933\) −1338.44 554.402i −1.43456 0.594214i
\(934\) 2.09608i 0.00224419i
\(935\) 0 0
\(936\) −751.018 −0.802370
\(937\) 39.9492 96.4460i 0.0426353 0.102931i −0.901127 0.433555i \(-0.857259\pi\)
0.943763 + 0.330624i \(0.107259\pi\)
\(938\) −582.021 388.894i −0.620492 0.414599i
\(939\) −1316.08 1316.08i −1.40157 1.40157i
\(940\) 0 0
\(941\) −839.481 + 560.923i −0.892116 + 0.596093i −0.914915 0.403647i \(-0.867742\pi\)
0.0227989 + 0.999740i \(0.492742\pi\)
\(942\) 1596.16 + 317.495i 1.69443 + 0.337044i
\(943\) −629.058 + 260.564i −0.667082 + 0.276314i
\(944\) 19.7645 + 47.7158i 0.0209370 + 0.0505464i
\(945\) 0 0
\(946\) 60.3734 + 90.3551i 0.0638196 + 0.0955128i
\(947\) −166.428 836.688i −0.175742 0.883515i −0.963537 0.267577i \(-0.913777\pi\)
0.787795 0.615938i \(-0.211223\pi\)
\(948\) 340.752 340.752i 0.359443 0.359443i
\(949\) −150.977 + 225.953i −0.159090 + 0.238095i
\(950\) 0 0
\(951\) 223.030i 0.234522i
\(952\) 605.199 1167.48i 0.635713 1.22634i
\(953\) −518.720 −0.544302 −0.272151 0.962255i \(-0.587735\pi\)
−0.272151 + 0.962255i \(0.587735\pi\)
\(954\) −622.143 + 1501.99i −0.652142 + 1.57441i
\(955\) 0 0
\(956\) 125.441 + 125.441i 0.131215 + 0.131215i
\(957\) 853.754 169.822i 0.892115 0.177453i
\(958\) −871.405 + 582.254i −0.909608 + 0.607781i
\(959\) −1561.94 310.688i −1.62871 0.323971i
\(960\) 0 0
\(961\) 333.711 + 805.650i 0.347254 + 0.838345i
\(962\) 67.2530 338.104i 0.0699096 0.351459i
\(963\) −755.005 1129.95i −0.784014 1.17336i
\(964\) 63.1662 + 317.558i 0.0655251 + 0.329417i
\(965\) 0 0
\(966\) −1151.93 + 1723.99i −1.19248 + 1.78467i
\(967\) −645.244 267.269i −0.667264 0.276390i 0.0232278 0.999730i \(-0.492606\pi\)
−0.690491 + 0.723341i \(0.742606\pi\)
\(968\) 2448.04i 2.52897i
\(969\) −84.7888 + 988.731i −0.0875014 + 1.02036i
\(970\) 0 0
\(971\) 14.0507 33.9214i 0.0144703 0.0349345i −0.916479 0.400082i \(-0.868982\pi\)
0.930950 + 0.365148i \(0.118982\pi\)
\(972\) 450.423 + 300.963i 0.463398 + 0.309633i
\(973\) −395.046 395.046i −0.406008 0.406008i
\(974\) 427.537 85.0423i 0.438949 0.0873125i
\(975\) 0 0
\(976\) −322.882 64.2252i −0.330822 0.0658045i
\(977\) −328.508 + 136.073i −0.336242 + 0.139276i −0.544415 0.838816i \(-0.683248\pi\)
0.208173 + 0.978092i \(0.433248\pi\)
\(978\) 258.673 + 624.492i 0.264492 + 0.638540i
\(979\) 608.015 3056.70i 0.621057 3.12227i
\(980\) 0 0
\(981\) −137.264 690.074i −0.139923 0.703440i
\(982\) 330.945 330.945i 0.337011 0.337011i
\(983\) 104.396 156.240i 0.106202 0.158942i −0.774562 0.632498i \(-0.782030\pi\)
0.880764 + 0.473556i \(0.157030\pi\)
\(984\) −767.274 317.815i −0.779750 0.322983i
\(985\) 0 0
\(986\) 170.121 143.248i 0.172537 0.145282i
\(987\) −3653.41 −3.70153
\(988\) −57.9493 + 139.902i −0.0586531 + 0.141601i
\(989\) 103.277 + 69.0076i 0.104426 + 0.0697751i
\(990\) 0 0
\(991\) −97.8933 + 19.4722i −0.0987824 + 0.0196490i −0.244234 0.969716i \(-0.578536\pi\)
0.145452 + 0.989365i \(0.453536\pi\)
\(992\) 215.044 143.688i 0.216778 0.144847i
\(993\) −684.800 136.215i −0.689627 0.137175i
\(994\) −468.438 + 194.033i −0.471265 + 0.195204i
\(995\) 0 0
\(996\) −4.33669 + 21.8020i −0.00435411 + 0.0218896i
\(997\) −467.853 700.191i −0.469261 0.702298i 0.519051 0.854743i \(-0.326285\pi\)
−0.988312 + 0.152445i \(0.951285\pi\)
\(998\) 0.398042 + 2.00109i 0.000398840 + 0.00200510i
\(999\) 578.759 578.759i 0.579338 0.579338i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.e.401.9 96
5.2 odd 4 425.3.t.e.299.9 96
5.3 odd 4 425.3.t.h.299.4 96
5.4 even 2 85.3.q.a.61.4 yes 96
17.12 odd 16 inner 425.3.u.e.301.9 96
85.12 even 16 425.3.t.h.199.4 96
85.29 odd 16 85.3.q.a.46.4 96
85.63 even 16 425.3.t.e.199.9 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.q.a.46.4 96 85.29 odd 16
85.3.q.a.61.4 yes 96 5.4 even 2
425.3.t.e.199.9 96 85.63 even 16
425.3.t.e.299.9 96 5.2 odd 4
425.3.t.h.199.4 96 85.12 even 16
425.3.t.h.299.4 96 5.3 odd 4
425.3.u.e.301.9 96 17.12 odd 16 inner
425.3.u.e.401.9 96 1.1 even 1 trivial