L(s) = 1 | + (0.552 − 1.33i)2-s + (3.95 + 2.64i)3-s + (1.35 + 1.35i)4-s + (5.71 − 3.81i)6-s + (−8.88 − 1.76i)7-s + (7.89 − 3.26i)8-s + (5.22 + 12.6i)9-s + (11.2 + 16.7i)11-s + (1.77 + 8.93i)12-s + (−4.55 + 4.55i)13-s + (−7.26 + 10.8i)14-s − 4.67i·16-s + (−10.6 + 13.2i)17-s + 19.6·18-s + (4.69 − 11.3i)19-s + ⋯ |
L(s) = 1 | + (0.276 − 0.666i)2-s + (1.31 + 0.881i)3-s + (0.338 + 0.338i)4-s + (0.952 − 0.636i)6-s + (−1.26 − 0.252i)7-s + (0.986 − 0.408i)8-s + (0.580 + 1.40i)9-s + (1.01 + 1.52i)11-s + (0.148 + 0.744i)12-s + (−0.350 + 0.350i)13-s + (−0.518 + 0.776i)14-s − 0.291i·16-s + (−0.624 + 0.780i)17-s + 1.09·18-s + (0.247 − 0.596i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.792 - 0.609i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.792 - 0.609i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.07387 + 1.04550i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.07387 + 1.04550i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (10.6 - 13.2i)T \) |
good | 2 | \( 1 + (-0.552 + 1.33i)T + (-2.82 - 2.82i)T^{2} \) |
| 3 | \( 1 + (-3.95 - 2.64i)T + (3.44 + 8.31i)T^{2} \) |
| 7 | \( 1 + (8.88 + 1.76i)T + (45.2 + 18.7i)T^{2} \) |
| 11 | \( 1 + (-11.2 - 16.7i)T + (-46.3 + 111. i)T^{2} \) |
| 13 | \( 1 + (4.55 - 4.55i)T - 169iT^{2} \) |
| 19 | \( 1 + (-4.69 + 11.3i)T + (-255. - 255. i)T^{2} \) |
| 23 | \( 1 + (-27.7 + 18.5i)T + (202. - 488. i)T^{2} \) |
| 29 | \( 1 + (1.76 + 8.88i)T + (-776. + 321. i)T^{2} \) |
| 31 | \( 1 + (-5.24 + 7.84i)T + (-367. - 887. i)T^{2} \) |
| 37 | \( 1 + (30.8 + 20.5i)T + (523. + 1.26e3i)T^{2} \) |
| 41 | \( 1 + (20.0 + 3.98i)T + (1.55e3 + 643. i)T^{2} \) |
| 43 | \( 1 + (-1.42 - 3.44i)T + (-1.30e3 + 1.30e3i)T^{2} \) |
| 47 | \( 1 + (-59.9 + 59.9i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (31.5 - 76.2i)T + (-1.98e3 - 1.98e3i)T^{2} \) |
| 59 | \( 1 + (10.2 - 4.23i)T + (2.46e3 - 2.46e3i)T^{2} \) |
| 61 | \( 1 + (-13.7 + 69.1i)T + (-3.43e3 - 1.42e3i)T^{2} \) |
| 67 | \( 1 - 53.5iT - 4.48e3T^{2} \) |
| 71 | \( 1 + (-32.2 - 21.5i)T + (1.92e3 + 4.65e3i)T^{2} \) |
| 73 | \( 1 + (-41.3 + 8.22i)T + (4.92e3 - 2.03e3i)T^{2} \) |
| 79 | \( 1 + (29.3 + 43.9i)T + (-2.38e3 + 5.76e3i)T^{2} \) |
| 83 | \( 1 + (-2.25 - 0.933i)T + (4.87e3 + 4.87e3i)T^{2} \) |
| 89 | \( 1 + (109. + 109. i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (14.7 + 74.2i)T + (-8.69e3 + 3.60e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85527567213730549771678230527, −10.03983405422455816675634841358, −9.428503733039617992155603813979, −8.668517640741336879808259539571, −7.24500083231276778845571747002, −6.72898801560895887364570267258, −4.52040715095146512687498069682, −3.95209379301754583860716266652, −2.98947232547132124490550368764, −2.03630585800497762105665362280,
1.19027730307004702345372518739, 2.74804979882653666252120676056, 3.52412994920164465715922800145, 5.41995392035974614403368240552, 6.51094371667447195731835586508, 6.94896236966689245860754824726, 7.988944780644367763031301120529, 8.942100008729108593739634318450, 9.574806155114557023223170311714, 10.90277655659647243666735340631