Properties

Label 425.3.u.e.401.12
Level $425$
Weight $3$
Character 425.401
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 401.12
Character \(\chi\) \(=\) 425.401
Dual form 425.3.u.e.301.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.40031 - 3.38065i) q^{2} +(-4.71704 - 3.15183i) q^{3} +(-6.63952 - 6.63952i) q^{4} +(-17.2606 + 11.5332i) q^{6} +(5.23596 + 1.04150i) q^{7} +(-18.2207 + 7.54727i) q^{8} +(8.87234 + 21.4197i) q^{9} +(2.84290 + 4.25470i) q^{11} +(10.3923 + 52.2455i) q^{12} +(-3.48556 + 3.48556i) q^{13} +(10.8529 - 16.2426i) q^{14} +34.6077i q^{16} +(-16.9983 + 0.237334i) q^{17} +84.8367 q^{18} +(-3.46526 + 8.36588i) q^{19} +(-21.4157 - 21.4157i) q^{21} +(18.3646 - 3.65295i) q^{22} +(-30.0458 + 20.0759i) q^{23} +(109.736 + 21.8278i) q^{24} +(6.90260 + 16.6644i) q^{26} +(15.6991 - 78.9247i) q^{27} +(-27.8492 - 41.6793i) q^{28} +(0.381842 + 1.91965i) q^{29} +(3.40793 - 5.10033i) q^{31} +(44.1137 + 18.2725i) q^{32} -29.0299i q^{33} +(-23.0007 + 57.7979i) q^{34} +(83.3086 - 201.125i) q^{36} +(11.8758 + 7.93518i) q^{37} +(23.4297 + 23.4297i) q^{38} +(27.4274 - 5.45566i) q^{39} +(-64.9302 - 12.9154i) q^{41} +(-102.388 + 42.4103i) q^{42} +(-4.37477 - 10.5616i) q^{43} +(9.37368 - 47.1247i) q^{44} +(25.7963 + 129.687i) q^{46} +(1.67827 - 1.67827i) q^{47} +(109.077 - 163.246i) q^{48} +(-18.9395 - 7.84500i) q^{49} +(80.9300 + 52.4564i) q^{51} +46.2849 q^{52} +(-21.0855 + 50.9049i) q^{53} +(-244.833 - 163.592i) q^{54} +(-103.263 + 20.5404i) q^{56} +(42.7136 - 28.5403i) q^{57} +(7.02437 + 1.39723i) q^{58} +(38.2228 - 15.8324i) q^{59} +(5.85814 - 29.4509i) q^{61} +(-12.4703 - 18.6631i) q^{62} +(24.1466 + 121.393i) q^{63} +(25.6607 - 25.6607i) q^{64} +(-98.1402 - 40.6510i) q^{66} +83.0052i q^{67} +(114.437 + 111.285i) q^{68} +205.003 q^{69} +(77.2000 + 51.5834i) q^{71} +(-323.321 - 323.321i) q^{72} +(-50.8326 + 10.1112i) q^{73} +(43.4560 - 29.0364i) q^{74} +(78.5531 - 32.5378i) q^{76} +(10.4541 + 25.2383i) q^{77} +(19.9633 - 100.362i) q^{78} +(-53.4837 - 80.0441i) q^{79} +(-175.265 + 175.265i) q^{81} +(-134.585 + 201.421i) q^{82} +(89.8717 + 37.2261i) q^{83} +284.379i q^{84} -41.8312 q^{86} +(4.24924 - 10.2586i) q^{87} +(-83.9110 - 56.0675i) q^{88} +(6.35442 + 6.35442i) q^{89} +(-21.8805 + 14.6201i) q^{91} +(332.784 + 66.1949i) q^{92} +(-32.1507 + 13.3173i) q^{93} +(-3.32355 - 8.02376i) q^{94} +(-150.494 - 225.231i) q^{96} +(-14.0870 - 70.8202i) q^{97} +(-53.0424 + 53.0424i) q^{98} +(-65.9113 + 98.6432i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 192 q^{12} + 48 q^{13} - 64 q^{14} - 16 q^{17} - 128 q^{18} + 48 q^{19} - 192 q^{22} - 112 q^{23} + 240 q^{24} - 224 q^{26} + 288 q^{27} + 480 q^{28} - 64 q^{31} + 80 q^{32} + 64 q^{34} + 192 q^{36}+ \cdots - 592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40031 3.38065i 0.700156 1.69033i −0.0230865 0.999733i \(-0.507349\pi\)
0.723243 0.690594i \(-0.242651\pi\)
\(3\) −4.71704 3.15183i −1.57235 1.05061i −0.967042 0.254617i \(-0.918051\pi\)
−0.605306 0.795993i \(-0.706949\pi\)
\(4\) −6.63952 6.63952i −1.65988 1.65988i
\(5\) 0 0
\(6\) −17.2606 + 11.5332i −2.87676 + 1.92219i
\(7\) 5.23596 + 1.04150i 0.747995 + 0.148785i 0.554347 0.832286i \(-0.312968\pi\)
0.193648 + 0.981071i \(0.437968\pi\)
\(8\) −18.2207 + 7.54727i −2.27759 + 0.943408i
\(9\) 8.87234 + 21.4197i 0.985815 + 2.37997i
\(10\) 0 0
\(11\) 2.84290 + 4.25470i 0.258445 + 0.386791i 0.937888 0.346938i \(-0.112778\pi\)
−0.679443 + 0.733728i \(0.737778\pi\)
\(12\) 10.3923 + 52.2455i 0.866024 + 4.35380i
\(13\) −3.48556 + 3.48556i −0.268120 + 0.268120i −0.828342 0.560222i \(-0.810716\pi\)
0.560222 + 0.828342i \(0.310716\pi\)
\(14\) 10.8529 16.2426i 0.775209 1.16018i
\(15\) 0 0
\(16\) 34.6077i 2.16298i
\(17\) −16.9983 + 0.237334i −0.999903 + 0.0139608i
\(18\) 84.8367 4.71315
\(19\) −3.46526 + 8.36588i −0.182382 + 0.440309i −0.988457 0.151505i \(-0.951588\pi\)
0.806074 + 0.591814i \(0.201588\pi\)
\(20\) 0 0
\(21\) −21.4157 21.4157i −1.01979 1.01979i
\(22\) 18.3646 3.65295i 0.834755 0.166043i
\(23\) −30.0458 + 20.0759i −1.30634 + 0.872867i −0.996948 0.0780686i \(-0.975125\pi\)
−0.309390 + 0.950935i \(0.600125\pi\)
\(24\) 109.736 + 21.8278i 4.57232 + 0.909490i
\(25\) 0 0
\(26\) 6.90260 + 16.6644i 0.265485 + 0.640937i
\(27\) 15.6991 78.9247i 0.581448 2.92314i
\(28\) −27.8492 41.6793i −0.994616 1.48855i
\(29\) 0.381842 + 1.91965i 0.0131670 + 0.0661948i 0.986810 0.161882i \(-0.0517563\pi\)
−0.973643 + 0.228077i \(0.926756\pi\)
\(30\) 0 0
\(31\) 3.40793 5.10033i 0.109933 0.164527i −0.772423 0.635108i \(-0.780956\pi\)
0.882357 + 0.470581i \(0.155956\pi\)
\(32\) 44.1137 + 18.2725i 1.37855 + 0.571015i
\(33\) 29.0299i 0.879695i
\(34\) −23.0007 + 57.7979i −0.676490 + 1.69994i
\(35\) 0 0
\(36\) 83.3086 201.125i 2.31413 5.58680i
\(37\) 11.8758 + 7.93518i 0.320969 + 0.214464i 0.705608 0.708603i \(-0.250674\pi\)
−0.384639 + 0.923067i \(0.625674\pi\)
\(38\) 23.4297 + 23.4297i 0.616571 + 0.616571i
\(39\) 27.4274 5.45566i 0.703268 0.139889i
\(40\) 0 0
\(41\) −64.9302 12.9154i −1.58366 0.315010i −0.676712 0.736247i \(-0.736596\pi\)
−0.906950 + 0.421237i \(0.861596\pi\)
\(42\) −102.388 + 42.4103i −2.43780 + 1.00977i
\(43\) −4.37477 10.5616i −0.101739 0.245619i 0.864811 0.502097i \(-0.167438\pi\)
−0.966550 + 0.256478i \(0.917438\pi\)
\(44\) 9.37368 47.1247i 0.213038 1.07101i
\(45\) 0 0
\(46\) 25.7963 + 129.687i 0.560790 + 2.81928i
\(47\) 1.67827 1.67827i 0.0357079 0.0357079i −0.689027 0.724735i \(-0.741962\pi\)
0.724735 + 0.689027i \(0.241962\pi\)
\(48\) 109.077 163.246i 2.27245 3.40096i
\(49\) −18.9395 7.84500i −0.386520 0.160102i
\(50\) 0 0
\(51\) 80.9300 + 52.4564i 1.58686 + 1.02856i
\(52\) 46.2849 0.890094
\(53\) −21.0855 + 50.9049i −0.397839 + 0.960469i 0.590338 + 0.807156i \(0.298994\pi\)
−0.988178 + 0.153313i \(0.951006\pi\)
\(54\) −244.833 163.592i −4.53395 3.02949i
\(55\) 0 0
\(56\) −103.263 + 20.5404i −1.84399 + 0.366792i
\(57\) 42.7136 28.5403i 0.749362 0.500707i
\(58\) 7.02437 + 1.39723i 0.121110 + 0.0240902i
\(59\) 38.2228 15.8324i 0.647844 0.268346i −0.0344693 0.999406i \(-0.510974\pi\)
0.682313 + 0.731060i \(0.260974\pi\)
\(60\) 0 0
\(61\) 5.85814 29.4509i 0.0960351 0.482801i −0.902596 0.430489i \(-0.858341\pi\)
0.998631 0.0523118i \(-0.0166590\pi\)
\(62\) −12.4703 18.6631i −0.201134 0.301018i
\(63\) 24.1466 + 121.393i 0.383280 + 1.92688i
\(64\) 25.6607 25.6607i 0.400948 0.400948i
\(65\) 0 0
\(66\) −98.1402 40.6510i −1.48697 0.615924i
\(67\) 83.0052i 1.23888i 0.785042 + 0.619442i \(0.212641\pi\)
−0.785042 + 0.619442i \(0.787359\pi\)
\(68\) 114.437 + 111.285i 1.68289 + 1.63654i
\(69\) 205.003 2.97106
\(70\) 0 0
\(71\) 77.2000 + 51.5834i 1.08732 + 0.726526i 0.964017 0.265842i \(-0.0856500\pi\)
0.123307 + 0.992369i \(0.460650\pi\)
\(72\) −323.321 323.321i −4.49056 4.49056i
\(73\) −50.8326 + 10.1112i −0.696337 + 0.138510i −0.530553 0.847652i \(-0.678016\pi\)
−0.165784 + 0.986162i \(0.553016\pi\)
\(74\) 43.4560 29.0364i 0.587243 0.392383i
\(75\) 0 0
\(76\) 78.5531 32.5378i 1.03359 0.428128i
\(77\) 10.4541 + 25.2383i 0.135767 + 0.327770i
\(78\) 19.9633 100.362i 0.255940 1.28670i
\(79\) −53.4837 80.0441i −0.677009 1.01322i −0.997815 0.0660709i \(-0.978954\pi\)
0.320806 0.947145i \(-0.396046\pi\)
\(80\) 0 0
\(81\) −175.265 + 175.265i −2.16376 + 2.16376i
\(82\) −134.585 + 201.421i −1.64128 + 2.45635i
\(83\) 89.8717 + 37.2261i 1.08279 + 0.448507i 0.851488 0.524374i \(-0.175701\pi\)
0.231304 + 0.972881i \(0.425701\pi\)
\(84\) 284.379i 3.38547i
\(85\) 0 0
\(86\) −41.8312 −0.486410
\(87\) 4.24924 10.2586i 0.0488418 0.117915i
\(88\) −83.9110 56.0675i −0.953534 0.637131i
\(89\) 6.35442 + 6.35442i 0.0713979 + 0.0713979i 0.741904 0.670506i \(-0.233923\pi\)
−0.670506 + 0.741904i \(0.733923\pi\)
\(90\) 0 0
\(91\) −21.8805 + 14.6201i −0.240445 + 0.160660i
\(92\) 332.784 + 66.1949i 3.61722 + 0.719509i
\(93\) −32.1507 + 13.3173i −0.345707 + 0.143197i
\(94\) −3.32355 8.02376i −0.0353569 0.0853592i
\(95\) 0 0
\(96\) −150.494 225.231i −1.56765 2.34616i
\(97\) −14.0870 70.8202i −0.145227 0.730105i −0.982930 0.183979i \(-0.941102\pi\)
0.837703 0.546126i \(-0.183898\pi\)
\(98\) −53.0424 + 53.0424i −0.541249 + 0.541249i
\(99\) −65.9113 + 98.6432i −0.665771 + 0.996396i
\(100\) 0 0
\(101\) 83.3457i 0.825205i 0.910911 + 0.412602i \(0.135380\pi\)
−0.910911 + 0.412602i \(0.864620\pi\)
\(102\) 290.664 200.141i 2.84965 1.96217i
\(103\) 5.01201 0.0486603 0.0243302 0.999704i \(-0.492255\pi\)
0.0243302 + 0.999704i \(0.492255\pi\)
\(104\) 37.2029 89.8158i 0.357721 0.863614i
\(105\) 0 0
\(106\) 142.565 + 142.565i 1.34496 + 1.34496i
\(107\) −88.8403 + 17.6714i −0.830284 + 0.165154i −0.591894 0.806016i \(-0.701620\pi\)
−0.238390 + 0.971170i \(0.576620\pi\)
\(108\) −628.256 + 419.787i −5.81719 + 3.88692i
\(109\) −149.579 29.7531i −1.37228 0.272964i −0.546740 0.837302i \(-0.684132\pi\)
−0.825544 + 0.564338i \(0.809132\pi\)
\(110\) 0 0
\(111\) −31.0085 74.8612i −0.279356 0.674425i
\(112\) −36.0438 + 181.204i −0.321820 + 1.61790i
\(113\) −117.757 176.235i −1.04210 1.55961i −0.809577 0.587013i \(-0.800304\pi\)
−0.232518 0.972592i \(-0.574696\pi\)
\(114\) −36.6725 184.365i −0.321689 1.61724i
\(115\) 0 0
\(116\) 10.2103 15.2808i 0.0880198 0.131731i
\(117\) −105.585 43.7347i −0.902434 0.373801i
\(118\) 151.388i 1.28295i
\(119\) −89.2499 16.4611i −0.749999 0.138328i
\(120\) 0 0
\(121\) 36.2843 87.5981i 0.299870 0.723951i
\(122\) −91.3600 61.0448i −0.748852 0.500367i
\(123\) 265.571 + 265.571i 2.15912 + 2.15912i
\(124\) −56.4908 + 11.2367i −0.455571 + 0.0906187i
\(125\) 0 0
\(126\) 444.202 + 88.3573i 3.52541 + 0.701248i
\(127\) 124.469 51.5570i 0.980075 0.405960i 0.165621 0.986189i \(-0.447037\pi\)
0.814453 + 0.580229i \(0.197037\pi\)
\(128\) 22.2730 + 53.7719i 0.174008 + 0.420093i
\(129\) −12.6524 + 63.6081i −0.0980810 + 0.493086i
\(130\) 0 0
\(131\) −22.1681 111.446i −0.169222 0.850736i −0.968354 0.249581i \(-0.919707\pi\)
0.799132 0.601155i \(-0.205293\pi\)
\(132\) −192.745 + 192.745i −1.46019 + 1.46019i
\(133\) −26.8570 + 40.1944i −0.201933 + 0.302213i
\(134\) 280.612 + 116.233i 2.09412 + 0.867413i
\(135\) 0 0
\(136\) 307.931 132.615i 2.26420 0.975113i
\(137\) 16.2847 0.118867 0.0594333 0.998232i \(-0.481071\pi\)
0.0594333 + 0.998232i \(0.481071\pi\)
\(138\) 287.069 693.045i 2.08021 5.02206i
\(139\) −42.9869 28.7229i −0.309258 0.206640i 0.391249 0.920285i \(-0.372043\pi\)
−0.700507 + 0.713645i \(0.747043\pi\)
\(140\) 0 0
\(141\) −13.2061 + 2.62686i −0.0936604 + 0.0186302i
\(142\) 282.490 188.754i 1.98936 1.32925i
\(143\) −24.7391 4.92092i −0.173001 0.0344120i
\(144\) −741.286 + 307.051i −5.14782 + 2.13230i
\(145\) 0 0
\(146\) −36.9990 + 186.006i −0.253418 + 1.27402i
\(147\) 64.6124 + 96.6993i 0.439540 + 0.657818i
\(148\) −26.1641 131.536i −0.176784 0.888754i
\(149\) −178.810 + 178.810i −1.20007 + 1.20007i −0.225924 + 0.974145i \(0.572540\pi\)
−0.974145 + 0.225924i \(0.927460\pi\)
\(150\) 0 0
\(151\) 38.4098 + 15.9098i 0.254369 + 0.105363i 0.506225 0.862402i \(-0.331041\pi\)
−0.251855 + 0.967765i \(0.581041\pi\)
\(152\) 178.586i 1.17490i
\(153\) −155.899 361.994i −1.01895 2.36597i
\(154\) 99.9610 0.649097
\(155\) 0 0
\(156\) −218.328 145.882i −1.39954 0.935142i
\(157\) −38.7039 38.7039i −0.246522 0.246522i 0.573020 0.819541i \(-0.305772\pi\)
−0.819541 + 0.573020i \(0.805772\pi\)
\(158\) −345.495 + 68.7233i −2.18668 + 0.434957i
\(159\) 259.905 173.663i 1.63462 1.09222i
\(160\) 0 0
\(161\) −178.228 + 73.8243i −1.10700 + 0.458536i
\(162\) 347.084 + 837.935i 2.14250 + 5.17244i
\(163\) −46.8445 + 235.503i −0.287390 + 1.44481i 0.519686 + 0.854357i \(0.326049\pi\)
−0.807076 + 0.590448i \(0.798951\pi\)
\(164\) 345.353 + 516.857i 2.10581 + 3.15157i
\(165\) 0 0
\(166\) 251.697 251.697i 1.51625 1.51625i
\(167\) −57.0363 + 85.3608i −0.341535 + 0.511143i −0.961985 0.273103i \(-0.911950\pi\)
0.620450 + 0.784246i \(0.286950\pi\)
\(168\) 551.838 + 228.579i 3.28475 + 1.36059i
\(169\) 144.702i 0.856223i
\(170\) 0 0
\(171\) −209.940 −1.22772
\(172\) −41.0777 + 99.1704i −0.238824 + 0.576572i
\(173\) 26.1852 + 17.4964i 0.151360 + 0.101135i 0.628944 0.777451i \(-0.283487\pi\)
−0.477584 + 0.878586i \(0.658487\pi\)
\(174\) −28.7304 28.7304i −0.165117 0.165117i
\(175\) 0 0
\(176\) −147.245 + 98.3861i −0.836620 + 0.559012i
\(177\) −230.200 45.7895i −1.30056 0.258698i
\(178\) 30.3803 12.5839i 0.170676 0.0706961i
\(179\) 121.040 + 292.217i 0.676202 + 1.63250i 0.770875 + 0.636987i \(0.219819\pi\)
−0.0946731 + 0.995508i \(0.530181\pi\)
\(180\) 0 0
\(181\) −168.125 251.617i −0.928869 1.39015i −0.920737 0.390184i \(-0.872411\pi\)
−0.00813199 0.999967i \(-0.502589\pi\)
\(182\) 18.7859 + 94.4430i 0.103219 + 0.518917i
\(183\) −120.457 + 120.457i −0.658236 + 0.658236i
\(184\) 395.937 592.561i 2.15183 3.22044i
\(185\) 0 0
\(186\) 127.339i 0.684618i
\(187\) −49.3344 71.6481i −0.263820 0.383145i
\(188\) −22.2858 −0.118542
\(189\) 164.400 396.896i 0.869840 2.09998i
\(190\) 0 0
\(191\) −5.18071 5.18071i −0.0271241 0.0271241i 0.693415 0.720539i \(-0.256105\pi\)
−0.720539 + 0.693415i \(0.756105\pi\)
\(192\) −201.921 + 40.1645i −1.05167 + 0.209190i
\(193\) 255.813 170.929i 1.32546 0.885642i 0.327218 0.944949i \(-0.393889\pi\)
0.998240 + 0.0593066i \(0.0188890\pi\)
\(194\) −259.145 51.5471i −1.33580 0.265707i
\(195\) 0 0
\(196\) 73.6622 + 177.836i 0.375827 + 0.907328i
\(197\) 9.13709 45.9352i 0.0463811 0.233174i −0.950641 0.310294i \(-0.899573\pi\)
0.997022 + 0.0771202i \(0.0245725\pi\)
\(198\) 241.182 + 360.955i 1.21809 + 1.82300i
\(199\) 10.2205 + 51.3818i 0.0513591 + 0.258200i 0.997931 0.0642930i \(-0.0204792\pi\)
−0.946572 + 0.322493i \(0.895479\pi\)
\(200\) 0 0
\(201\) 261.618 391.539i 1.30158 1.94796i
\(202\) 281.763 + 116.710i 1.39487 + 0.577772i
\(203\) 10.4489i 0.0514724i
\(204\) −189.051 885.621i −0.926722 4.34128i
\(205\) 0 0
\(206\) 7.01839 16.9439i 0.0340698 0.0822519i
\(207\) −696.597 465.451i −3.36520 2.24856i
\(208\) −120.627 120.627i −0.579938 0.579938i
\(209\) −45.4457 + 9.03971i −0.217444 + 0.0432522i
\(210\) 0 0
\(211\) −195.890 38.9649i −0.928388 0.184668i −0.292337 0.956315i \(-0.594433\pi\)
−0.636051 + 0.771647i \(0.719433\pi\)
\(212\) 477.981 197.986i 2.25463 0.933898i
\(213\) −201.574 486.642i −0.946356 2.28471i
\(214\) −64.6632 + 325.084i −0.302165 + 1.51908i
\(215\) 0 0
\(216\) 309.617 + 1556.55i 1.43341 + 7.20624i
\(217\) 23.1558 23.1558i 0.106709 0.106709i
\(218\) −310.042 + 464.011i −1.42221 + 2.12849i
\(219\) 271.649 + 112.521i 1.24040 + 0.513792i
\(220\) 0 0
\(221\) 58.4215 60.0760i 0.264351 0.271837i
\(222\) −296.501 −1.33559
\(223\) 42.1607 101.785i 0.189062 0.456435i −0.800718 0.599042i \(-0.795548\pi\)
0.989779 + 0.142607i \(0.0455484\pi\)
\(224\) 211.947 + 141.618i 0.946191 + 0.632225i
\(225\) 0 0
\(226\) −760.687 + 151.310i −3.36587 + 0.669514i
\(227\) −213.450 + 142.623i −0.940309 + 0.628294i −0.928379 0.371635i \(-0.878797\pi\)
−0.0119297 + 0.999929i \(0.503797\pi\)
\(228\) −473.092 94.1038i −2.07496 0.412736i
\(229\) 28.1869 11.6754i 0.123087 0.0509842i −0.320290 0.947320i \(-0.603780\pi\)
0.443377 + 0.896335i \(0.353780\pi\)
\(230\) 0 0
\(231\) 30.2346 152.000i 0.130886 0.658007i
\(232\) −21.4455 32.0955i −0.0924376 0.138343i
\(233\) 27.2801 + 137.146i 0.117082 + 0.588611i 0.994129 + 0.108205i \(0.0345104\pi\)
−0.877047 + 0.480405i \(0.840490\pi\)
\(234\) −295.704 + 295.704i −1.26369 + 1.26369i
\(235\) 0 0
\(236\) −358.900 148.661i −1.52076 0.629921i
\(237\) 546.143i 2.30440i
\(238\) −180.627 + 278.672i −0.758937 + 1.17089i
\(239\) −439.887 −1.84053 −0.920265 0.391295i \(-0.872027\pi\)
−0.920265 + 0.391295i \(0.872027\pi\)
\(240\) 0 0
\(241\) −21.9897 14.6931i −0.0912437 0.0609671i 0.509111 0.860701i \(-0.329974\pi\)
−0.600355 + 0.799734i \(0.704974\pi\)
\(242\) −245.329 245.329i −1.01376 1.01376i
\(243\) 668.815 133.036i 2.75232 0.547471i
\(244\) −234.435 + 156.644i −0.960799 + 0.641985i
\(245\) 0 0
\(246\) 1269.69 525.922i 5.16133 2.13789i
\(247\) −17.0814 41.2382i −0.0691555 0.166956i
\(248\) −23.6014 + 118.652i −0.0951669 + 0.478436i
\(249\) −306.599 458.857i −1.23132 1.84280i
\(250\) 0 0
\(251\) 166.889 166.889i 0.664897 0.664897i −0.291634 0.956530i \(-0.594199\pi\)
0.956530 + 0.291634i \(0.0941988\pi\)
\(252\) 645.672 966.316i 2.56219 3.83459i
\(253\) −170.834 70.7618i −0.675234 0.279691i
\(254\) 492.984i 1.94088i
\(255\) 0 0
\(256\) 358.132 1.39895
\(257\) 157.615 380.517i 0.613289 1.48061i −0.246077 0.969250i \(-0.579141\pi\)
0.859366 0.511361i \(-0.170859\pi\)
\(258\) 197.320 + 131.845i 0.764805 + 0.511027i
\(259\) 53.9170 + 53.9170i 0.208174 + 0.208174i
\(260\) 0 0
\(261\) −37.7305 + 25.2107i −0.144561 + 0.0965928i
\(262\) −407.804 81.1173i −1.55650 0.309608i
\(263\) −263.972 + 109.341i −1.00370 + 0.415745i −0.823151 0.567822i \(-0.807786\pi\)
−0.180545 + 0.983567i \(0.557786\pi\)
\(264\) 219.097 + 528.946i 0.829912 + 2.00358i
\(265\) 0 0
\(266\) 98.2751 + 147.079i 0.369455 + 0.552929i
\(267\) −9.94604 50.0021i −0.0372511 0.187274i
\(268\) 551.115 551.115i 2.05640 2.05640i
\(269\) −152.969 + 228.934i −0.568657 + 0.851055i −0.998659 0.0517731i \(-0.983513\pi\)
0.430002 + 0.902828i \(0.358513\pi\)
\(270\) 0 0
\(271\) 89.0741i 0.328687i 0.986403 + 0.164343i \(0.0525505\pi\)
−0.986403 + 0.164343i \(0.947449\pi\)
\(272\) −8.21356 588.273i −0.0301969 2.16277i
\(273\) 149.291 0.546854
\(274\) 22.8037 55.0530i 0.0832252 0.200923i
\(275\) 0 0
\(276\) −1361.12 1361.12i −4.93160 4.93160i
\(277\) 199.625 39.7079i 0.720667 0.143350i 0.178887 0.983870i \(-0.442750\pi\)
0.541781 + 0.840520i \(0.317750\pi\)
\(278\) −157.297 + 105.103i −0.565817 + 0.378067i
\(279\) 139.484 + 27.7451i 0.499943 + 0.0994448i
\(280\) 0 0
\(281\) −10.2241 24.6831i −0.0363847 0.0878404i 0.904643 0.426171i \(-0.140138\pi\)
−0.941027 + 0.338331i \(0.890138\pi\)
\(282\) −9.61219 + 48.3237i −0.0340858 + 0.171361i
\(283\) 70.2769 + 105.177i 0.248328 + 0.371649i 0.934603 0.355693i \(-0.115755\pi\)
−0.686275 + 0.727343i \(0.740755\pi\)
\(284\) −170.082 855.060i −0.598880 3.01077i
\(285\) 0 0
\(286\) −51.2784 + 76.7436i −0.179295 + 0.268334i
\(287\) −326.521 135.249i −1.13770 0.471252i
\(288\) 1107.02i 3.84383i
\(289\) 288.887 8.06856i 0.999610 0.0279189i
\(290\) 0 0
\(291\) −156.764 + 378.462i −0.538708 + 1.30056i
\(292\) 404.638 + 270.370i 1.38575 + 0.925926i
\(293\) −274.643 274.643i −0.937349 0.937349i 0.0608010 0.998150i \(-0.480635\pi\)
−0.998150 + 0.0608010i \(0.980635\pi\)
\(294\) 417.384 83.0229i 1.41967 0.282391i
\(295\) 0 0
\(296\) −276.275 54.9545i −0.933362 0.185657i
\(297\) 380.432 157.580i 1.28091 0.530572i
\(298\) 354.105 + 854.886i 1.18827 + 2.86874i
\(299\) 34.7504 174.702i 0.116222 0.584288i
\(300\) 0 0
\(301\) −11.9062 59.8566i −0.0395555 0.198859i
\(302\) 107.571 107.571i 0.356197 0.356197i
\(303\) 262.691 393.145i 0.866968 1.29751i
\(304\) −289.523 119.925i −0.952380 0.394489i
\(305\) 0 0
\(306\) −1442.08 + 20.1346i −4.71269 + 0.0657994i
\(307\) 237.767 0.774485 0.387242 0.921978i \(-0.373428\pi\)
0.387242 + 0.921978i \(0.373428\pi\)
\(308\) 98.1605 236.980i 0.318703 0.769417i
\(309\) −23.6419 15.7970i −0.0765110 0.0511230i
\(310\) 0 0
\(311\) 61.0589 12.1454i 0.196331 0.0390526i −0.0959453 0.995387i \(-0.530587\pi\)
0.292276 + 0.956334i \(0.405587\pi\)
\(312\) −458.572 + 306.408i −1.46978 + 0.982077i
\(313\) −184.794 36.7577i −0.590395 0.117437i −0.109153 0.994025i \(-0.534814\pi\)
−0.481242 + 0.876588i \(0.659814\pi\)
\(314\) −185.042 + 76.6469i −0.589306 + 0.244098i
\(315\) 0 0
\(316\) −176.348 + 886.560i −0.558063 + 2.80557i
\(317\) 261.348 + 391.135i 0.824442 + 1.23386i 0.969658 + 0.244464i \(0.0786121\pi\)
−0.145217 + 0.989400i \(0.546388\pi\)
\(318\) −223.146 1121.83i −0.701716 3.52777i
\(319\) −7.08199 + 7.08199i −0.0222006 + 0.0222006i
\(320\) 0 0
\(321\) 474.761 + 196.653i 1.47901 + 0.612625i
\(322\) 705.903i 2.19224i
\(323\) 56.9182 143.029i 0.176217 0.442813i
\(324\) 2327.35 7.18318
\(325\) 0 0
\(326\) 730.558 + 488.143i 2.24098 + 1.49737i
\(327\) 611.794 + 611.794i 1.87093 + 1.87093i
\(328\) 1280.55 254.717i 3.90412 0.776577i
\(329\) 10.5353 7.03946i 0.0320222 0.0213965i
\(330\) 0 0
\(331\) 193.036 79.9583i 0.583191 0.241566i −0.0715270 0.997439i \(-0.522787\pi\)
0.654718 + 0.755873i \(0.272787\pi\)
\(332\) −349.542 843.869i −1.05284 2.54177i
\(333\) −64.6029 + 324.781i −0.194003 + 0.975317i
\(334\) 208.707 + 312.352i 0.624871 + 0.935185i
\(335\) 0 0
\(336\) 741.146 741.146i 2.20579 2.20579i
\(337\) −133.577 + 199.913i −0.396372 + 0.593212i −0.974953 0.222413i \(-0.928607\pi\)
0.578581 + 0.815625i \(0.303607\pi\)
\(338\) 489.187 + 202.628i 1.44730 + 0.599490i
\(339\) 1202.46i 3.54708i
\(340\) 0 0
\(341\) 31.3888 0.0920492
\(342\) −293.981 + 709.734i −0.859595 + 2.07524i
\(343\) −308.499 206.132i −0.899414 0.600969i
\(344\) 159.423 + 159.423i 0.463438 + 0.463438i
\(345\) 0 0
\(346\) 95.8168 64.0228i 0.276927 0.185037i
\(347\) −320.344 63.7204i −0.923182 0.183632i −0.289457 0.957191i \(-0.593475\pi\)
−0.633725 + 0.773559i \(0.718475\pi\)
\(348\) −96.3249 + 39.8991i −0.276796 + 0.114653i
\(349\) −22.5880 54.5323i −0.0647221 0.156253i 0.888209 0.459439i \(-0.151950\pi\)
−0.952931 + 0.303186i \(0.901950\pi\)
\(350\) 0 0
\(351\) 220.377 + 329.817i 0.627853 + 0.939649i
\(352\) 47.6668 + 239.637i 0.135417 + 0.680788i
\(353\) 279.425 279.425i 0.791571 0.791571i −0.190178 0.981750i \(-0.560907\pi\)
0.981750 + 0.190178i \(0.0609066\pi\)
\(354\) −477.150 + 714.106i −1.34788 + 2.01725i
\(355\) 0 0
\(356\) 84.3806i 0.237024i
\(357\) 369.113 + 358.948i 1.03393 + 1.00546i
\(358\) 1157.38 3.23290
\(359\) −53.3154 + 128.715i −0.148511 + 0.358537i −0.980576 0.196142i \(-0.937159\pi\)
0.832065 + 0.554679i \(0.187159\pi\)
\(360\) 0 0
\(361\) 197.286 + 197.286i 0.546498 + 0.546498i
\(362\) −1086.06 + 216.031i −3.00016 + 0.596770i
\(363\) −447.249 + 298.842i −1.23209 + 0.823256i
\(364\) 242.346 + 48.2056i 0.665786 + 0.132433i
\(365\) 0 0
\(366\) 238.546 + 575.902i 0.651766 + 1.57350i
\(367\) −94.9319 + 477.255i −0.258670 + 1.30042i 0.604944 + 0.796268i \(0.293195\pi\)
−0.863614 + 0.504154i \(0.831805\pi\)
\(368\) −694.781 1039.81i −1.88799 2.82558i
\(369\) −299.438 1505.38i −0.811485 4.07961i
\(370\) 0 0
\(371\) −163.420 + 244.576i −0.440486 + 0.659233i
\(372\) 301.886 + 125.045i 0.811521 + 0.336143i
\(373\) 176.006i 0.471867i −0.971769 0.235933i \(-0.924185\pi\)
0.971769 0.235933i \(-0.0758147\pi\)
\(374\) −311.301 + 66.4526i −0.832356 + 0.177681i
\(375\) 0 0
\(376\) −17.9129 + 43.2457i −0.0476408 + 0.115015i
\(377\) −8.02199 5.36012i −0.0212785 0.0142178i
\(378\) −1111.56 1111.56i −2.94063 2.94063i
\(379\) 434.443 86.4160i 1.14629 0.228011i 0.414830 0.909899i \(-0.363841\pi\)
0.731456 + 0.681888i \(0.238841\pi\)
\(380\) 0 0
\(381\) −749.627 149.110i −1.96752 0.391365i
\(382\) −24.7688 + 10.2596i −0.0648397 + 0.0268575i
\(383\) 222.966 + 538.287i 0.582157 + 1.40545i 0.890854 + 0.454290i \(0.150107\pi\)
−0.308697 + 0.951160i \(0.599893\pi\)
\(384\) 64.4168 323.845i 0.167752 0.843347i
\(385\) 0 0
\(386\) −219.633 1104.17i −0.568998 2.86055i
\(387\) 187.413 187.413i 0.484270 0.484270i
\(388\) −376.681 + 563.743i −0.970827 + 1.45295i
\(389\) −358.440 148.471i −0.921441 0.381673i −0.129016 0.991643i \(-0.541182\pi\)
−0.792425 + 0.609969i \(0.791182\pi\)
\(390\) 0 0
\(391\) 505.963 348.389i 1.29402 0.891019i
\(392\) 404.299 1.03138
\(393\) −246.692 + 595.568i −0.627716 + 1.51544i
\(394\) −142.496 95.2130i −0.361666 0.241657i
\(395\) 0 0
\(396\) 1092.56 217.324i 2.75900 0.548799i
\(397\) 79.6060 53.1910i 0.200519 0.133982i −0.451257 0.892394i \(-0.649024\pi\)
0.651776 + 0.758412i \(0.274024\pi\)
\(398\) 188.016 + 37.3987i 0.472401 + 0.0939665i
\(399\) 253.372 104.950i 0.635017 0.263032i
\(400\) 0 0
\(401\) −15.3440 + 77.1397i −0.0382644 + 0.192368i −0.995190 0.0979657i \(-0.968766\pi\)
0.956925 + 0.290334i \(0.0937664\pi\)
\(402\) −957.312 1432.72i −2.38137 3.56398i
\(403\) 5.89896 + 29.6561i 0.0146376 + 0.0735883i
\(404\) 553.375 553.375i 1.36974 1.36974i
\(405\) 0 0
\(406\) 35.3241 + 14.6317i 0.0870052 + 0.0360387i
\(407\) 73.0870i 0.179575i
\(408\) −1870.50 344.992i −4.58457 0.845568i
\(409\) −41.8341 −0.102284 −0.0511420 0.998691i \(-0.516286\pi\)
−0.0511420 + 0.998691i \(0.516286\pi\)
\(410\) 0 0
\(411\) −76.8157 51.3266i −0.186900 0.124882i
\(412\) −33.2774 33.2774i −0.0807703 0.0807703i
\(413\) 216.623 43.0889i 0.524510 0.104331i
\(414\) −2548.98 + 1703.18i −6.15697 + 4.11395i
\(415\) 0 0
\(416\) −217.451 + 90.0711i −0.522718 + 0.216517i
\(417\) 112.241 + 270.974i 0.269164 + 0.649819i
\(418\) −33.0781 + 166.295i −0.0791341 + 0.397834i
\(419\) 141.224 + 211.357i 0.337051 + 0.504432i 0.960819 0.277177i \(-0.0893990\pi\)
−0.623768 + 0.781610i \(0.714399\pi\)
\(420\) 0 0
\(421\) 23.1007 23.1007i 0.0548710 0.0548710i −0.679139 0.734010i \(-0.737647\pi\)
0.734010 + 0.679139i \(0.237647\pi\)
\(422\) −406.034 + 607.673i −0.962166 + 1.43998i
\(423\) 50.8383 + 21.0579i 0.120185 + 0.0497823i
\(424\) 1086.66i 2.56288i
\(425\) 0 0
\(426\) −1927.44 −4.52450
\(427\) 61.3460 148.102i 0.143668 0.346844i
\(428\) 707.187 + 472.527i 1.65231 + 1.10404i
\(429\) 101.186 + 101.186i 0.235864 + 0.235864i
\(430\) 0 0
\(431\) 505.056 337.468i 1.17182 0.782987i 0.191715 0.981451i \(-0.438595\pi\)
0.980108 + 0.198463i \(0.0635950\pi\)
\(432\) 2731.40 + 543.309i 6.32268 + 1.25766i
\(433\) −217.841 + 90.2325i −0.503096 + 0.208389i −0.619774 0.784781i \(-0.712776\pi\)
0.116678 + 0.993170i \(0.462776\pi\)
\(434\) −45.8564 110.707i −0.105660 0.255086i
\(435\) 0 0
\(436\) 795.586 + 1190.68i 1.82474 + 2.73092i
\(437\) −63.8365 320.928i −0.146079 0.734388i
\(438\) 760.786 760.786i 1.73695 1.73695i
\(439\) 372.897 558.080i 0.849424 1.27125i −0.111311 0.993786i \(-0.535505\pi\)
0.960735 0.277467i \(-0.0894950\pi\)
\(440\) 0 0
\(441\) 475.282i 1.07774i
\(442\) −121.288 281.628i −0.274407 0.637168i
\(443\) −310.122 −0.700049 −0.350024 0.936741i \(-0.613827\pi\)
−0.350024 + 0.936741i \(0.613827\pi\)
\(444\) −291.161 + 702.924i −0.655767 + 1.58316i
\(445\) 0 0
\(446\) −285.062 285.062i −0.639152 0.639152i
\(447\) 1407.04 279.877i 3.14773 0.626122i
\(448\) 161.084 107.633i 0.359562 0.240252i
\(449\) 172.129 + 34.2385i 0.383360 + 0.0762551i 0.383008 0.923745i \(-0.374888\pi\)
0.000351796 1.00000i \(0.499888\pi\)
\(450\) 0 0
\(451\) −129.639 312.976i −0.287447 0.693959i
\(452\) −388.270 + 1951.97i −0.859005 + 4.31851i
\(453\) −131.035 196.108i −0.289262 0.432910i
\(454\) 183.261 + 921.318i 0.403660 + 2.02933i
\(455\) 0 0
\(456\) −562.871 + 842.396i −1.23437 + 1.84736i
\(457\) −575.705 238.465i −1.25975 0.521805i −0.349917 0.936781i \(-0.613790\pi\)
−0.909832 + 0.414976i \(0.863790\pi\)
\(458\) 111.639i 0.243754i
\(459\) −248.127 + 1345.31i −0.540582 + 2.93097i
\(460\) 0 0
\(461\) −269.146 + 649.777i −0.583831 + 1.40949i 0.305483 + 0.952198i \(0.401182\pi\)
−0.889314 + 0.457296i \(0.848818\pi\)
\(462\) −471.521 315.060i −1.02061 0.681948i
\(463\) −268.136 268.136i −0.579127 0.579127i 0.355536 0.934663i \(-0.384298\pi\)
−0.934663 + 0.355536i \(0.884298\pi\)
\(464\) −66.4346 + 13.2147i −0.143178 + 0.0284799i
\(465\) 0 0
\(466\) 501.845 + 99.8231i 1.07692 + 0.214213i
\(467\) 492.616 204.048i 1.05485 0.436934i 0.213230 0.977002i \(-0.431602\pi\)
0.841621 + 0.540068i \(0.181602\pi\)
\(468\) 410.655 + 991.410i 0.877469 + 2.11840i
\(469\) −86.4498 + 434.612i −0.184328 + 0.926679i
\(470\) 0 0
\(471\) 60.5800 + 304.556i 0.128620 + 0.646616i
\(472\) −576.955 + 576.955i −1.22236 + 1.22236i
\(473\) 32.4995 48.6389i 0.0687093 0.102831i
\(474\) 1846.32 + 764.771i 3.89519 + 1.61344i
\(475\) 0 0
\(476\) 483.283 + 701.870i 1.01530 + 1.47452i
\(477\) −1277.45 −2.67808
\(478\) −615.979 + 1487.11i −1.28866 + 3.11110i
\(479\) −632.407 422.561i −1.32027 0.882173i −0.322345 0.946622i \(-0.604471\pi\)
−0.997921 + 0.0644488i \(0.979471\pi\)
\(480\) 0 0
\(481\) −69.0525 + 13.7354i −0.143560 + 0.0285559i
\(482\) −80.4646 + 53.7648i −0.166939 + 0.111545i
\(483\) 1073.39 + 213.510i 2.22234 + 0.442050i
\(484\) −822.519 + 340.699i −1.69942 + 0.703923i
\(485\) 0 0
\(486\) 486.803 2447.32i 1.00165 5.03565i
\(487\) 203.220 + 304.140i 0.417289 + 0.624518i 0.979252 0.202645i \(-0.0649537\pi\)
−0.561963 + 0.827162i \(0.689954\pi\)
\(488\) 115.534 + 580.829i 0.236750 + 1.19022i
\(489\) 963.234 963.234i 1.96980 1.96980i
\(490\) 0 0
\(491\) −543.876 225.281i −1.10769 0.458820i −0.247548 0.968876i \(-0.579625\pi\)
−0.860142 + 0.510055i \(0.829625\pi\)
\(492\) 3526.53i 7.16775i
\(493\) −6.94628 32.5402i −0.0140898 0.0660045i
\(494\) −163.331 −0.330630
\(495\) 0 0
\(496\) 176.511 + 117.941i 0.355868 + 0.237783i
\(497\) 350.492 + 350.492i 0.705216 + 0.705216i
\(498\) −1980.57 + 393.960i −3.97705 + 0.791085i
\(499\) 242.463 162.009i 0.485898 0.324666i −0.288376 0.957517i \(-0.593115\pi\)
0.774274 + 0.632851i \(0.218115\pi\)
\(500\) 0 0
\(501\) 538.085 222.882i 1.07402 0.444875i
\(502\) −330.497 797.891i −0.658361 1.58942i
\(503\) 122.443 615.564i 0.243426 1.22379i −0.644790 0.764360i \(-0.723055\pi\)
0.888216 0.459426i \(-0.151945\pi\)
\(504\) −1356.16 2029.63i −2.69079 4.02705i
\(505\) 0 0
\(506\) −478.443 + 478.443i −0.945539 + 0.945539i
\(507\) 456.075 682.565i 0.899556 1.34628i
\(508\) −1168.73 484.104i −2.30065 0.952961i
\(509\) 905.441i 1.77886i 0.457069 + 0.889431i \(0.348899\pi\)
−0.457069 + 0.889431i \(0.651101\pi\)
\(510\) 0 0
\(511\) −276.688 −0.541465
\(512\) 412.405 995.633i 0.805478 1.94460i
\(513\) 605.873 + 404.831i 1.18104 + 0.789145i
\(514\) −1065.69 1065.69i −2.07332 2.07332i
\(515\) 0 0
\(516\) 506.334 338.321i 0.981267 0.655662i
\(517\) 11.9117 + 2.36939i 0.0230400 + 0.00458295i
\(518\) 257.775 106.774i 0.497636 0.206127i
\(519\) −68.3712 165.063i −0.131736 0.318040i
\(520\) 0 0
\(521\) −500.960 749.739i −0.961535 1.43904i −0.897461 0.441093i \(-0.854591\pi\)
−0.0640736 0.997945i \(-0.520409\pi\)
\(522\) 32.3942 + 162.857i 0.0620579 + 0.311986i
\(523\) −33.6388 + 33.6388i −0.0643190 + 0.0643190i −0.738535 0.674216i \(-0.764482\pi\)
0.674216 + 0.738535i \(0.264482\pi\)
\(524\) −592.765 + 887.136i −1.13123 + 1.69301i
\(525\) 0 0
\(526\) 1045.51i 1.98766i
\(527\) −56.7187 + 87.5060i −0.107626 + 0.166046i
\(528\) 1004.66 1.90276
\(529\) 297.265 717.661i 0.561938 1.35664i
\(530\) 0 0
\(531\) 678.251 + 678.251i 1.27731 + 1.27731i
\(532\) 445.189 88.5536i 0.836822 0.166454i
\(533\) 271.336 181.301i 0.509072 0.340151i
\(534\) −182.967 36.3945i −0.342636 0.0681544i
\(535\) 0 0
\(536\) −626.463 1512.41i −1.16877 2.82167i
\(537\) 350.065 1759.90i 0.651891 3.27727i
\(538\) 559.742 + 837.713i 1.04041 + 1.55709i
\(539\) −20.4650 102.884i −0.0379684 0.190880i
\(540\) 0 0
\(541\) −193.644 + 289.809i −0.357937 + 0.535691i −0.966116 0.258109i \(-0.916901\pi\)
0.608178 + 0.793800i \(0.291901\pi\)
\(542\) 301.129 + 124.732i 0.555588 + 0.230132i
\(543\) 1716.79i 3.16168i
\(544\) −754.196 300.132i −1.38639 0.551714i
\(545\) 0 0
\(546\) 209.054 504.702i 0.382883 0.924362i
\(547\) 181.730 + 121.428i 0.332230 + 0.221989i 0.710485 0.703712i \(-0.248476\pi\)
−0.378255 + 0.925702i \(0.623476\pi\)
\(548\) −108.123 108.123i −0.197304 0.197304i
\(549\) 682.805 135.818i 1.24372 0.247392i
\(550\) 0 0
\(551\) −17.3827 3.45764i −0.0315476 0.00627521i
\(552\) −3735.30 + 1547.21i −6.76685 + 2.80292i
\(553\) −196.673 474.811i −0.355648 0.858609i
\(554\) 145.299 730.466i 0.262272 1.31853i
\(555\) 0 0
\(556\) 94.7058 + 476.118i 0.170334 + 0.856328i
\(557\) −441.292 + 441.292i −0.792267 + 0.792267i −0.981862 0.189596i \(-0.939282\pi\)
0.189596 + 0.981862i \(0.439282\pi\)
\(558\) 289.118 432.695i 0.518132 0.775440i
\(559\) 52.0617 + 21.5647i 0.0931336 + 0.0385772i
\(560\) 0 0
\(561\) 6.88978 + 493.461i 0.0122813 + 0.879609i
\(562\) −97.7621 −0.173954
\(563\) 141.717 342.135i 0.251718 0.607700i −0.746625 0.665245i \(-0.768327\pi\)
0.998343 + 0.0575448i \(0.0183272\pi\)
\(564\) 105.123 + 70.2412i 0.186389 + 0.124541i
\(565\) 0 0
\(566\) 453.976 90.3014i 0.802078 0.159543i
\(567\) −1100.22 + 735.142i −1.94042 + 1.29655i
\(568\) −1795.95 357.237i −3.16189 0.628938i
\(569\) −891.706 + 369.357i −1.56715 + 0.649133i −0.986312 0.164889i \(-0.947274\pi\)
−0.580834 + 0.814022i \(0.697274\pi\)
\(570\) 0 0
\(571\) −62.0643 + 312.018i −0.108694 + 0.546442i 0.887614 + 0.460589i \(0.152362\pi\)
−0.996308 + 0.0858532i \(0.972638\pi\)
\(572\) 131.583 + 196.928i 0.230041 + 0.344280i
\(573\) 8.10893 + 40.7663i 0.0141517 + 0.0711454i
\(574\) −914.462 + 914.462i −1.59314 + 1.59314i
\(575\) 0 0
\(576\) 777.315 + 321.974i 1.34950 + 0.558983i
\(577\) 163.289i 0.282996i 0.989939 + 0.141498i \(0.0451919\pi\)
−0.989939 + 0.141498i \(0.954808\pi\)
\(578\) 377.256 987.927i 0.652691 1.70922i
\(579\) −1745.42 −3.01455
\(580\) 0 0
\(581\) 431.794 + 288.516i 0.743192 + 0.496585i
\(582\) 1059.93 + 1059.93i 1.82119 + 1.82119i
\(583\) −276.529 + 55.0050i −0.474321 + 0.0943482i
\(584\) 849.894 567.881i 1.45530 0.972399i
\(585\) 0 0
\(586\) −1313.06 + 543.887i −2.24072 + 0.928135i
\(587\) 21.6776 + 52.3344i 0.0369295 + 0.0891557i 0.941268 0.337660i \(-0.109635\pi\)
−0.904339 + 0.426816i \(0.859635\pi\)
\(588\) 213.041 1071.03i 0.362315 1.82148i
\(589\) 30.8594 + 46.1843i 0.0523929 + 0.0784114i
\(590\) 0 0
\(591\) −187.880 + 187.880i −0.317902 + 0.317902i
\(592\) −274.618 + 410.995i −0.463882 + 0.694248i
\(593\) −749.195 310.327i −1.26340 0.523316i −0.352447 0.935832i \(-0.614650\pi\)
−0.910951 + 0.412515i \(0.864650\pi\)
\(594\) 1506.77i 2.53665i
\(595\) 0 0
\(596\) 2374.43 3.98394
\(597\) 113.736 274.583i 0.190513 0.459938i
\(598\) −541.946 362.117i −0.906265 0.605547i
\(599\) 453.053 + 453.053i 0.756349 + 0.756349i 0.975656 0.219307i \(-0.0703795\pi\)
−0.219307 + 0.975656i \(0.570380\pi\)
\(600\) 0 0
\(601\) −332.402 + 222.104i −0.553081 + 0.369557i −0.800483 0.599356i \(-0.795423\pi\)
0.247401 + 0.968913i \(0.420423\pi\)
\(602\) −219.027 43.5671i −0.363832 0.0723707i
\(603\) −1777.95 + 736.451i −2.94851 + 1.22131i
\(604\) −149.389 360.656i −0.247332 0.597113i
\(605\) 0 0
\(606\) −961.238 1438.59i −1.58620 2.37392i
\(607\) −179.161 900.705i −0.295159 1.48386i −0.789045 0.614336i \(-0.789424\pi\)
0.493886 0.869527i \(-0.335576\pi\)
\(608\) −305.731 + 305.731i −0.502847 + 0.502847i
\(609\) 32.9331 49.2879i 0.0540774 0.0809326i
\(610\) 0 0
\(611\) 11.6994i 0.0191480i
\(612\) −1368.37 + 3438.56i −2.23591 + 5.61856i
\(613\) 1.10159 0.00179704 0.000898520 1.00000i \(-0.499714\pi\)
0.000898520 1.00000i \(0.499714\pi\)
\(614\) 332.948 803.807i 0.542260 1.30913i
\(615\) 0 0
\(616\) −380.961 380.961i −0.618443 0.618443i
\(617\) −761.218 + 151.416i −1.23374 + 0.245406i −0.768541 0.639800i \(-0.779017\pi\)
−0.465199 + 0.885206i \(0.654017\pi\)
\(618\) −86.5103 + 57.8043i −0.139984 + 0.0935345i
\(619\) −835.815 166.254i −1.35027 0.268585i −0.533620 0.845724i \(-0.679169\pi\)
−0.816646 + 0.577139i \(0.804169\pi\)
\(620\) 0 0
\(621\) 1112.80 + 2686.53i 1.79194 + 4.32613i
\(622\) 44.4423 223.426i 0.0714506 0.359206i
\(623\) 26.6534 + 39.8896i 0.0427823 + 0.0640283i
\(624\) 188.807 + 949.199i 0.302576 + 1.52115i
\(625\) 0 0
\(626\) −383.034 + 573.251i −0.611876 + 0.915736i
\(627\) 242.861 + 100.596i 0.387338 + 0.160441i
\(628\) 513.951i 0.818393i
\(629\) −203.753 132.066i −0.323931 0.209962i
\(630\) 0 0
\(631\) −1.11445 + 2.69052i −0.00176616 + 0.00426390i −0.924760 0.380550i \(-0.875735\pi\)
0.922994 + 0.384814i \(0.125735\pi\)
\(632\) 1578.63 + 1054.80i 2.49782 + 1.66899i
\(633\) 801.211 + 801.211i 1.26574 + 1.26574i
\(634\) 1688.26 335.816i 2.66287 0.529678i
\(635\) 0 0
\(636\) −2878.68 572.605i −4.52622 0.900322i
\(637\) 93.3590 38.6706i 0.146560 0.0607073i
\(638\) 14.0248 + 33.8588i 0.0219824 + 0.0530702i
\(639\) −419.957 + 2111.27i −0.657210 + 3.30402i
\(640\) 0 0
\(641\) −49.4146 248.424i −0.0770898 0.387557i −0.999997 0.00253359i \(-0.999194\pi\)
0.922907 0.385023i \(-0.125806\pi\)
\(642\) 1329.63 1329.63i 2.07107 2.07107i
\(643\) 470.415 704.026i 0.731595 1.09491i −0.260010 0.965606i \(-0.583726\pi\)
0.991605 0.129303i \(-0.0412740\pi\)
\(644\) 1673.50 + 693.188i 2.59861 + 1.07638i
\(645\) 0 0
\(646\) −403.827 392.705i −0.625119 0.607903i
\(647\) −631.331 −0.975783 −0.487891 0.872904i \(-0.662234\pi\)
−0.487891 + 0.872904i \(0.662234\pi\)
\(648\) 1870.68 4516.22i 2.88685 6.96948i
\(649\) 176.026 + 117.617i 0.271226 + 0.181227i
\(650\) 0 0
\(651\) −182.210 + 36.2438i −0.279893 + 0.0556741i
\(652\) 1874.65 1252.60i 2.87524 1.92117i
\(653\) 1029.82 + 204.845i 1.57707 + 0.313698i 0.904545 0.426379i \(-0.140211\pi\)
0.672522 + 0.740077i \(0.265211\pi\)
\(654\) 2924.97 1211.56i 4.47243 1.85254i
\(655\) 0 0
\(656\) 446.972 2247.08i 0.681360 3.42543i
\(657\) −667.584 999.110i −1.01611 1.52072i
\(658\) −9.04526 45.4736i −0.0137466 0.0691088i
\(659\) 494.059 494.059i 0.749711 0.749711i −0.224714 0.974425i \(-0.572145\pi\)
0.974425 + 0.224714i \(0.0721448\pi\)
\(660\) 0 0
\(661\) 399.021 + 165.280i 0.603663 + 0.250046i 0.663516 0.748162i \(-0.269063\pi\)
−0.0598532 + 0.998207i \(0.519063\pi\)
\(662\) 764.556i 1.15492i
\(663\) −464.926 + 99.2466i −0.701246 + 0.149693i
\(664\) −1918.48 −2.88928
\(665\) 0 0
\(666\) 1007.51 + 673.195i 1.51277 + 1.01080i
\(667\) −50.0115 50.0115i −0.0749797 0.0749797i
\(668\) 945.448 188.061i 1.41534 0.281529i
\(669\) −519.683 + 347.241i −0.776806 + 0.519045i
\(670\) 0 0
\(671\) 141.959 58.8012i 0.211563 0.0876322i
\(672\) −553.406 1336.04i −0.823521 1.98816i
\(673\) −137.903 + 693.283i −0.204907 + 1.03014i 0.732198 + 0.681092i \(0.238495\pi\)
−0.937105 + 0.349047i \(0.886505\pi\)
\(674\) 488.785 + 731.519i 0.725201 + 1.08534i
\(675\) 0 0
\(676\) 960.750 960.750i 1.42123 1.42123i
\(677\) −474.949 + 710.811i −0.701549 + 1.04994i 0.294010 + 0.955802i \(0.405010\pi\)
−0.995559 + 0.0941403i \(0.969990\pi\)
\(678\) 4065.10 + 1683.82i 5.99572 + 2.48351i
\(679\) 385.483i 0.567722i
\(680\) 0 0
\(681\) 1456.38 2.13858
\(682\) 43.9541 106.115i 0.0644489 0.155593i
\(683\) 891.467 + 595.659i 1.30522 + 0.872122i 0.996863 0.0791477i \(-0.0252199\pi\)
0.308360 + 0.951270i \(0.400220\pi\)
\(684\) 1393.90 + 1393.90i 2.03786 + 2.03786i
\(685\) 0 0
\(686\) −1128.86 + 754.278i −1.64556 + 1.09953i
\(687\) −169.758 33.7669i −0.247100 0.0491512i
\(688\) 365.513 151.400i 0.531269 0.220059i
\(689\) −103.937 250.927i −0.150852 0.364190i
\(690\) 0 0
\(691\) −30.8540 46.1763i −0.0446512 0.0668253i 0.808472 0.588534i \(-0.200295\pi\)
−0.853124 + 0.521709i \(0.825295\pi\)
\(692\) −57.6896 290.025i −0.0833664 0.419111i
\(693\) −447.846 + 447.846i −0.646242 + 0.646242i
\(694\) −663.999 + 993.744i −0.956770 + 1.43191i
\(695\) 0 0
\(696\) 218.989i 0.314639i
\(697\) 1106.77 + 204.131i 1.58791 + 0.292870i
\(698\) −215.985 −0.309434
\(699\) 303.580 732.907i 0.434306 1.04851i
\(700\) 0 0
\(701\) −234.497 234.497i −0.334518 0.334518i 0.519781 0.854299i \(-0.326013\pi\)
−0.854299 + 0.519781i \(0.826013\pi\)
\(702\) 1423.59 283.170i 2.02791 0.403376i
\(703\) −107.538 + 71.8544i −0.152970 + 0.102211i
\(704\) 182.129 + 36.2277i 0.258706 + 0.0514599i
\(705\) 0 0
\(706\) −553.356 1335.92i −0.783791 1.89224i
\(707\) −86.8043 + 436.395i −0.122778 + 0.617249i
\(708\) 1224.39 + 1832.44i 1.72937 + 2.58819i
\(709\) 6.19721 + 31.1555i 0.00874077 + 0.0439428i 0.984910 0.173070i \(-0.0553687\pi\)
−0.976169 + 0.217013i \(0.930369\pi\)
\(710\) 0 0
\(711\) 1240.00 1855.78i 1.74402 2.61010i
\(712\) −163.740 67.8235i −0.229973 0.0952577i
\(713\) 221.661i 0.310885i
\(714\) 1730.35 745.205i 2.42346 1.04370i
\(715\) 0 0
\(716\) 1136.53 2743.83i 1.58733 3.83216i
\(717\) 2074.97 + 1386.45i 2.89396 + 1.93368i
\(718\) 360.482 + 360.482i 0.502064 + 0.502064i
\(719\) −495.464 + 98.5540i −0.689102 + 0.137071i −0.527207 0.849737i \(-0.676761\pi\)
−0.161895 + 0.986808i \(0.551761\pi\)
\(720\) 0 0
\(721\) 26.2427 + 5.22000i 0.0363977 + 0.00723995i
\(722\) 943.216 390.693i 1.30639 0.541126i
\(723\) 57.4165 + 138.616i 0.0794142 + 0.191723i
\(724\) −554.347 + 2786.89i −0.765672 + 3.84929i
\(725\) 0 0
\(726\) 383.994 + 1930.47i 0.528917 + 2.65904i
\(727\) 57.2885 57.2885i 0.0788013 0.0788013i −0.666608 0.745409i \(-0.732254\pi\)
0.745409 + 0.666608i \(0.232254\pi\)
\(728\) 288.336 431.526i 0.396066 0.592755i
\(729\) −1513.18 626.782i −2.07570 0.859783i
\(730\) 0 0
\(731\) 76.8704 + 178.492i 0.105158 + 0.244175i
\(732\) 1599.56 2.18519
\(733\) 344.487 831.666i 0.469969 1.13461i −0.494207 0.869344i \(-0.664542\pi\)
0.964176 0.265262i \(-0.0854584\pi\)
\(734\) 1480.50 + 989.238i 2.01703 + 1.34774i
\(735\) 0 0
\(736\) −1692.27 + 336.613i −2.29928 + 0.457354i
\(737\) −353.162 + 235.976i −0.479189 + 0.320184i
\(738\) −5508.46 1095.70i −7.46404 1.48469i
\(739\) 726.586 300.962i 0.983201 0.407255i 0.167591 0.985857i \(-0.446401\pi\)
0.815611 + 0.578601i \(0.196401\pi\)
\(740\) 0 0
\(741\) −49.4019 + 248.360i −0.0666692 + 0.335169i
\(742\) 597.986 + 894.949i 0.805911 + 1.20613i
\(743\) −117.087 588.634i −0.157586 0.792239i −0.976027 0.217649i \(-0.930161\pi\)
0.818441 0.574591i \(-0.194839\pi\)
\(744\) 485.300 485.300i 0.652286 0.652286i
\(745\) 0 0
\(746\) −595.016 246.464i −0.797609 0.330380i
\(747\) 2255.31i 3.01916i
\(748\) −148.153 + 803.266i −0.198065 + 1.07388i
\(749\) −483.570 −0.645620
\(750\) 0 0
\(751\) −134.595 89.9336i −0.179221 0.119752i 0.462724 0.886503i \(-0.346872\pi\)
−0.641945 + 0.766751i \(0.721872\pi\)
\(752\) 58.0811 + 58.0811i 0.0772355 + 0.0772355i
\(753\) −1313.23 + 261.217i −1.74400 + 0.346902i
\(754\) −29.3540 + 19.6137i −0.0389310 + 0.0260129i
\(755\) 0 0
\(756\) −3726.74 + 1543.66i −4.92954 + 2.04188i
\(757\) 173.822 + 419.645i 0.229620 + 0.554352i 0.996131 0.0878790i \(-0.0280089\pi\)
−0.766511 + 0.642231i \(0.778009\pi\)
\(758\) 316.213 1589.71i 0.417168 2.09724i
\(759\) 582.803 + 872.227i 0.767857 + 1.14918i
\(760\) 0 0
\(761\) −395.123 + 395.123i −0.519215 + 0.519215i −0.917334 0.398119i \(-0.869663\pi\)
0.398119 + 0.917334i \(0.369663\pi\)
\(762\) −1553.80 + 2325.43i −2.03911 + 3.05174i
\(763\) −752.202 311.572i −0.985848 0.408352i
\(764\) 68.7948i 0.0900456i
\(765\) 0 0
\(766\) 2131.99 2.78327
\(767\) −78.0431 + 188.413i −0.101751 + 0.245649i
\(768\) −1689.33 1128.77i −2.19964 1.46975i
\(769\) −568.899 568.899i −0.739790 0.739790i 0.232747 0.972537i \(-0.425229\pi\)
−0.972537 + 0.232747i \(0.925229\pi\)
\(770\) 0 0
\(771\) −1942.80 + 1298.14i −2.51985 + 1.68371i
\(772\) −2833.36 563.591i −3.67016 0.730040i
\(773\) 1200.84 497.404i 1.55348 0.643472i 0.569538 0.821965i \(-0.307122\pi\)
0.983941 + 0.178493i \(0.0571221\pi\)
\(774\) −371.141 896.013i −0.479510 1.15764i
\(775\) 0 0
\(776\) 791.174 + 1184.08i 1.01955 + 1.52587i
\(777\) −84.3917 424.266i −0.108612 0.546031i
\(778\) −1003.86 + 1003.86i −1.29031 + 1.29031i
\(779\) 333.049 498.443i 0.427534 0.639850i
\(780\) 0 0
\(781\) 475.109i 0.608334i
\(782\) −469.274 2198.34i −0.600095 2.81118i
\(783\) 157.502 0.201152
\(784\) 271.497 655.452i 0.346297 0.836035i
\(785\) 0 0
\(786\) 1667.96 + 1667.96i 2.12209 + 2.12209i
\(787\) 33.2395 6.61174i 0.0422357 0.00840120i −0.173927 0.984759i \(-0.555646\pi\)
0.216163 + 0.976357i \(0.430646\pi\)
\(788\) −365.654 + 244.322i −0.464028 + 0.310053i
\(789\) 1589.79 + 316.229i 2.01495 + 0.400797i
\(790\) 0 0
\(791\) −433.021 1045.41i −0.547435 1.32163i
\(792\) 456.464 2294.80i 0.576344 2.89747i
\(793\) 82.2339 + 123.072i 0.103700 + 0.155198i
\(794\) −68.3472 343.604i −0.0860796 0.432751i
\(795\) 0 0
\(796\) 273.291 409.009i 0.343331 0.513831i
\(797\) 68.6780 + 28.4474i 0.0861707 + 0.0356931i 0.425352 0.905028i \(-0.360150\pi\)
−0.339182 + 0.940721i \(0.610150\pi\)
\(798\) 1003.52i 1.25755i
\(799\) −28.1295 + 28.9262i −0.0352059 + 0.0362030i
\(800\) 0 0
\(801\) −79.7313 + 192.488i −0.0995397 + 0.240310i
\(802\) 239.296 + 159.893i 0.298374 + 0.199367i
\(803\) −187.532 187.532i −0.233540 0.233540i
\(804\) −4336.65 + 862.614i −5.39385 + 1.07290i
\(805\) 0 0
\(806\) 108.517 + 21.5854i 0.134637 + 0.0267809i
\(807\) 1443.12 597.760i 1.78825 0.740718i
\(808\) −629.032 1518.62i −0.778505 1.87948i
\(809\) 64.3000 323.258i 0.0794809 0.399577i −0.920480 0.390789i \(-0.872202\pi\)
0.999961 0.00878888i \(-0.00279762\pi\)
\(810\) 0 0
\(811\) 47.8095 + 240.355i 0.0589513 + 0.296368i 0.999002 0.0446666i \(-0.0142225\pi\)
−0.940051 + 0.341035i \(0.889223\pi\)
\(812\) 69.3757 69.3757i 0.0854380 0.0854380i
\(813\) 280.746 420.167i 0.345322 0.516810i
\(814\) 247.082 + 102.345i 0.303541 + 0.125731i
\(815\) 0 0
\(816\) −1815.39 + 2800.80i −2.22474 + 3.43235i
\(817\) 103.517 0.126704
\(818\) −58.5809 + 141.427i −0.0716148 + 0.172893i
\(819\) −507.289 338.959i −0.619400 0.413870i
\(820\) 0 0
\(821\) 613.444 122.022i 0.747191 0.148625i 0.193213 0.981157i \(-0.438109\pi\)
0.553978 + 0.832531i \(0.313109\pi\)
\(822\) −281.084 + 187.814i −0.341951 + 0.228484i
\(823\) 580.505 + 115.470i 0.705352 + 0.140303i 0.534717 0.845031i \(-0.320418\pi\)
0.170635 + 0.985334i \(0.445418\pi\)
\(824\) −91.3225 + 37.8270i −0.110828 + 0.0459066i
\(825\) 0 0
\(826\) 157.671 792.664i 0.190885 0.959641i
\(827\) −8.33614 12.4759i −0.0100800 0.0150858i 0.826395 0.563090i \(-0.190388\pi\)
−0.836475 + 0.548004i \(0.815388\pi\)
\(828\) 1534.70 + 7715.44i 1.85350 + 9.31817i
\(829\) −360.941 + 360.941i −0.435393 + 0.435393i −0.890458 0.455065i \(-0.849616\pi\)
0.455065 + 0.890458i \(0.349616\pi\)
\(830\) 0 0
\(831\) −1066.79 441.880i −1.28374 0.531744i
\(832\) 178.884i 0.215004i
\(833\) 323.802 + 128.857i 0.388718 + 0.154690i
\(834\) 1073.24 1.28686
\(835\) 0 0
\(836\) 361.757 + 241.718i 0.432724 + 0.289137i
\(837\) −349.041 349.041i −0.417014 0.417014i
\(838\) 912.283 181.464i 1.08864 0.216545i
\(839\) 1028.00 686.885i 1.22526 0.818695i 0.237008 0.971508i \(-0.423833\pi\)
0.988255 + 0.152813i \(0.0488333\pi\)
\(840\) 0 0
\(841\) 773.443 320.371i 0.919671 0.380940i
\(842\) −45.7472 110.444i −0.0543316 0.131168i
\(843\) −29.5695 + 148.656i −0.0350765 + 0.176342i
\(844\) 1041.91 + 1559.32i 1.23449 + 1.84754i
\(845\) 0 0
\(846\) 142.379 142.379i 0.168297 0.168297i
\(847\) 281.216 420.870i 0.332015 0.496895i
\(848\) −1761.70 729.719i −2.07747 0.860518i
\(849\) 717.624i 0.845258i
\(850\) 0 0
\(851\) −516.125 −0.606492
\(852\) −1892.72 + 4569.42i −2.22150 + 5.36317i
\(853\) −540.259 360.989i −0.633363 0.423200i 0.197014 0.980401i \(-0.436875\pi\)
−0.830378 + 0.557201i \(0.811875\pi\)
\(854\) −414.779 414.779i −0.485690 0.485690i
\(855\) 0 0
\(856\) 1485.36 992.488i 1.73524 1.15945i
\(857\) −787.962 156.735i −0.919442 0.182888i −0.287389 0.957814i \(-0.592787\pi\)
−0.632053 + 0.774925i \(0.717787\pi\)
\(858\) 483.765 200.382i 0.563829 0.233546i
\(859\) −348.417 841.152i −0.405607 0.979222i −0.986279 0.165085i \(-0.947210\pi\)
0.580672 0.814137i \(-0.302790\pi\)
\(860\) 0 0
\(861\) 1113.93 + 1667.11i 1.29376 + 1.93625i
\(862\) −433.625 2179.98i −0.503045 2.52898i
\(863\) −634.157 + 634.157i −0.734828 + 0.734828i −0.971572 0.236744i \(-0.923920\pi\)
0.236744 + 0.971572i \(0.423920\pi\)
\(864\) 2134.69 3194.80i 2.47071 3.69768i
\(865\) 0 0
\(866\) 862.797i 0.996302i
\(867\) −1388.13 872.464i −1.60107 1.00630i
\(868\) −307.487 −0.354247
\(869\) 188.515 455.114i 0.216933 0.523722i
\(870\) 0 0
\(871\) −289.320 289.320i −0.332170 0.332170i
\(872\) 2949.99 586.789i 3.38302 0.672924i
\(873\) 1391.96 930.080i 1.59446 1.06538i
\(874\) −1174.34 233.590i −1.34363 0.267265i
\(875\) 0 0
\(876\) −1056.53 2550.70i −1.20609 2.91176i
\(877\) −42.9023 + 215.684i −0.0489193 + 0.245934i −0.997506 0.0705838i \(-0.977514\pi\)
0.948587 + 0.316518i \(0.102514\pi\)
\(878\) −1364.50 2042.12i −1.55410 2.32588i
\(879\) 429.876 + 2161.13i 0.489051 + 2.45863i
\(880\) 0 0
\(881\) −21.8952 + 32.7685i −0.0248527 + 0.0371947i −0.843688 0.536834i \(-0.819620\pi\)
0.818835 + 0.574029i \(0.194620\pi\)
\(882\) −1606.76 665.544i −1.82173 0.754585i
\(883\) 1402.81i 1.58869i −0.607469 0.794343i \(-0.707815\pi\)
0.607469 0.794343i \(-0.292185\pi\)
\(884\) −786.767 + 10.9850i −0.890008 + 0.0124264i
\(885\) 0 0
\(886\) −434.267 + 1048.41i −0.490144 + 1.18331i
\(887\) −819.368 547.484i −0.923751 0.617231i 9.26296e−5 1.00000i \(-0.499971\pi\)
−0.923844 + 0.382769i \(0.874971\pi\)
\(888\) 1129.99 + 1129.99i 1.27252 + 1.27252i
\(889\) 705.414 140.316i 0.793492 0.157835i
\(890\) 0 0
\(891\) −1243.96 247.439i −1.39614 0.277709i
\(892\) −955.731 + 395.877i −1.07145 + 0.443808i
\(893\) 8.22457 + 19.8559i 0.00921005 + 0.0222350i
\(894\) 1024.12 5148.61i 1.14555 5.75908i
\(895\) 0 0
\(896\) 60.6175 + 304.745i 0.0676535 + 0.340117i
\(897\) −714.551 + 714.551i −0.796601 + 0.796601i
\(898\) 356.783 533.963i 0.397308 0.594614i
\(899\) 11.0921 + 4.59451i 0.0123383 + 0.00511069i
\(900\) 0 0
\(901\) 346.337 870.303i 0.384392 0.965930i
\(902\) −1239.60 −1.37428
\(903\) −132.496 + 319.872i −0.146728 + 0.354233i
\(904\) 3475.71 + 2322.39i 3.84481 + 2.56902i
\(905\) 0 0
\(906\) −846.465 + 168.372i −0.934289 + 0.185842i
\(907\) 67.3094 44.9747i 0.0742111 0.0495863i −0.517911 0.855434i \(-0.673290\pi\)
0.592122 + 0.805848i \(0.298290\pi\)
\(908\) 2364.15 + 470.259i 2.60369 + 0.517907i
\(909\) −1785.24 + 739.471i −1.96396 + 0.813499i
\(910\) 0 0
\(911\) 286.067 1438.15i 0.314014 1.57866i −0.425146 0.905125i \(-0.639777\pi\)
0.739160 0.673530i \(-0.235223\pi\)
\(912\) 987.714 + 1478.22i 1.08302 + 1.62085i
\(913\) 97.1105 + 488.207i 0.106364 + 0.534729i
\(914\) −1612.34 + 1612.34i −1.76404 + 1.76404i
\(915\) 0 0
\(916\) −264.666 109.628i −0.288937 0.119682i
\(917\) 606.617i 0.661524i
\(918\) 4200.59 + 2722.69i 4.57580 + 2.96590i
\(919\) 1285.69 1.39901 0.699504 0.714629i \(-0.253404\pi\)
0.699504 + 0.714629i \(0.253404\pi\)
\(920\) 0 0
\(921\) −1121.56 749.400i −1.21776 0.813681i
\(922\) 1819.78 + 1819.78i 1.97373 + 1.97373i
\(923\) −448.882 + 89.2882i −0.486330 + 0.0967370i
\(924\) −1209.95 + 808.462i −1.30947 + 0.874959i
\(925\) 0 0
\(926\) −1281.95 + 531.000i −1.38439 + 0.573434i
\(927\) 44.4683 + 107.356i 0.0479701 + 0.115810i
\(928\) −18.2323 + 91.6600i −0.0196469 + 0.0987715i
\(929\) −965.295 1444.67i −1.03907 1.55508i −0.814112 0.580708i \(-0.802776\pi\)
−0.224957 0.974369i \(-0.572224\pi\)
\(930\) 0 0
\(931\) 131.261 131.261i 0.140989 0.140989i
\(932\) 729.459 1091.71i 0.782681 1.17136i
\(933\) −326.298 135.157i −0.349730 0.144863i
\(934\) 1951.09i 2.08897i
\(935\) 0 0
\(936\) 2253.91 2.40802
\(937\) 625.091 1509.10i 0.667119 1.61057i −0.119288 0.992860i \(-0.538061\pi\)
0.786407 0.617708i \(-0.211939\pi\)
\(938\) 1348.22 + 900.850i 1.43733 + 0.960395i
\(939\) 755.826 + 755.826i 0.804926 + 0.804926i
\(940\) 0 0
\(941\) −237.401 + 158.626i −0.252286 + 0.168572i −0.675282 0.737559i \(-0.735978\pi\)
0.422997 + 0.906131i \(0.360978\pi\)
\(942\) 1114.43 + 221.674i 1.18305 + 0.235323i
\(943\) 2210.17 915.481i 2.34376 0.970817i
\(944\) 547.922 + 1322.80i 0.580426 + 1.40127i
\(945\) 0 0
\(946\) −118.922 177.979i −0.125710 0.188139i
\(947\) −3.15865 15.8796i −0.00333543 0.0167683i 0.979082 0.203467i \(-0.0652211\pi\)
−0.982417 + 0.186699i \(0.940221\pi\)
\(948\) 3626.13 3626.13i 3.82503 3.82503i
\(949\) 141.937 212.423i 0.149565 0.223839i
\(950\) 0 0
\(951\) 2668.73i 2.80623i
\(952\) 1750.43 373.660i 1.83869 0.392500i
\(953\) 1030.31 1.08112 0.540560 0.841306i \(-0.318212\pi\)
0.540560 + 0.841306i \(0.318212\pi\)
\(954\) −1788.82 + 4318.60i −1.87508 + 4.52684i
\(955\) 0 0
\(956\) 2920.64 + 2920.64i 3.05506 + 3.05506i
\(957\) 55.7273 11.0848i 0.0582312 0.0115829i
\(958\) −2314.10 + 1546.23i −2.41555 + 1.61402i
\(959\) 85.2662 + 16.9605i 0.0889116 + 0.0176856i
\(960\) 0 0
\(961\) 353.359 + 853.085i 0.367700 + 0.887706i
\(962\) −50.2605 + 252.677i −0.0522458 + 0.262657i
\(963\) −1166.74 1746.15i −1.21157 1.81324i
\(964\) 48.4463 + 243.556i 0.0502555 + 0.252652i
\(965\) 0 0
\(966\) 2224.88 3329.78i 2.30319 3.44697i
\(967\) 444.501 + 184.118i 0.459670 + 0.190402i 0.600488 0.799634i \(-0.294973\pi\)
−0.140818 + 0.990036i \(0.544973\pi\)
\(968\) 1869.95i 1.93176i
\(969\) −719.287 + 495.276i −0.742298 + 0.511120i
\(970\) 0 0
\(971\) 347.780 839.615i 0.358167 0.864691i −0.637391 0.770541i \(-0.719986\pi\)
0.995558 0.0941509i \(-0.0300136\pi\)
\(972\) −5323.90 3557.32i −5.47727 3.65979i
\(973\) −195.163 195.163i −0.200578 0.200578i
\(974\) 1312.76 261.125i 1.34781 0.268095i
\(975\) 0 0
\(976\) 1019.23 + 202.737i 1.04429 + 0.207722i
\(977\) −793.653 + 328.742i −0.812337 + 0.336481i −0.749886 0.661567i \(-0.769892\pi\)
−0.0624510 + 0.998048i \(0.519892\pi\)
\(978\) −1907.53 4605.19i −1.95044 4.70878i
\(979\) −8.97117 + 45.1011i −0.00916360 + 0.0460685i
\(980\) 0 0
\(981\) −689.812 3467.92i −0.703172 3.53509i
\(982\) −1523.19 + 1523.19i −1.55111 + 1.55111i
\(983\) −901.935 + 1349.84i −0.917533 + 1.37319i 0.0102031 + 0.999948i \(0.496752\pi\)
−0.927736 + 0.373237i \(0.878248\pi\)
\(984\) −6843.24 2834.56i −6.95451 2.88065i
\(985\) 0 0
\(986\) −119.734 22.0835i −0.121434 0.0223971i
\(987\) −71.8826 −0.0728294
\(988\) −160.389 + 387.214i −0.162337 + 0.391917i
\(989\) 343.478 + 229.504i 0.347298 + 0.232057i
\(990\) 0 0
\(991\) −1713.25 + 340.786i −1.72881 + 0.343881i −0.956581 0.291467i \(-0.905857\pi\)
−0.772226 + 0.635348i \(0.780857\pi\)
\(992\) 243.532 162.723i 0.245496 0.164035i
\(993\) −1162.58 231.251i −1.17077 0.232881i
\(994\) 1675.69 694.094i 1.68581 0.698284i
\(995\) 0 0
\(996\) −1010.92 + 5082.26i −1.01498 + 5.10267i
\(997\) 300.262 + 449.374i 0.301165 + 0.450726i 0.950928 0.309411i \(-0.100132\pi\)
−0.649763 + 0.760137i \(0.725132\pi\)
\(998\) −208.171 1046.55i −0.208588 1.04864i
\(999\) 812.721 812.721i 0.813535 0.813535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.e.401.12 96
5.2 odd 4 425.3.t.e.299.12 96
5.3 odd 4 425.3.t.h.299.1 96
5.4 even 2 85.3.q.a.61.1 yes 96
17.12 odd 16 inner 425.3.u.e.301.12 96
85.12 even 16 425.3.t.h.199.1 96
85.29 odd 16 85.3.q.a.46.1 96
85.63 even 16 425.3.t.e.199.12 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.q.a.46.1 96 85.29 odd 16
85.3.q.a.61.1 yes 96 5.4 even 2
425.3.t.e.199.12 96 85.63 even 16
425.3.t.e.299.12 96 5.2 odd 4
425.3.t.h.199.1 96 85.12 even 16
425.3.t.h.299.1 96 5.3 odd 4
425.3.u.e.301.12 96 17.12 odd 16 inner
425.3.u.e.401.12 96 1.1 even 1 trivial