Properties

Label 425.3.t.e.199.12
Level $425$
Weight $3$
Character 425.199
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,0,-48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 199.12
Character \(\chi\) \(=\) 425.199
Dual form 425.3.t.e.299.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.38065 - 1.40031i) q^{2} +(-3.15183 - 4.71704i) q^{3} +(6.63952 - 6.63952i) q^{4} +(-17.2606 - 11.5332i) q^{6} +(-1.04150 - 5.23596i) q^{7} +(7.54727 - 18.2207i) q^{8} +(-8.87234 + 21.4197i) q^{9} +(2.84290 - 4.25470i) q^{11} +(-52.2455 - 10.3923i) q^{12} +(3.48556 - 3.48556i) q^{13} +(-10.8529 - 16.2426i) q^{14} -34.6077i q^{16} +(-0.237334 + 16.9983i) q^{17} +84.8367i q^{18} +(3.46526 + 8.36588i) q^{19} +(-21.4157 + 21.4157i) q^{21} +(3.65295 - 18.3646i) q^{22} +(20.0759 - 30.0458i) q^{23} +(-109.736 + 21.8278i) q^{24} +(6.90260 - 16.6644i) q^{26} +(78.9247 - 15.6991i) q^{27} +(-41.6793 - 27.8492i) q^{28} +(-0.381842 + 1.91965i) q^{29} +(3.40793 + 5.10033i) q^{31} +(-18.2725 - 44.1137i) q^{32} -29.0299 q^{33} +(23.0007 + 57.7979i) q^{34} +(83.3086 + 201.125i) q^{36} +(-7.93518 - 11.8758i) q^{37} +(23.4297 + 23.4297i) q^{38} +(-27.4274 - 5.45566i) q^{39} +(-64.9302 + 12.9154i) q^{41} +(-42.4103 + 102.388i) q^{42} +(-10.5616 - 4.37477i) q^{43} +(-9.37368 - 47.1247i) q^{44} +(25.7963 - 129.687i) q^{46} +(1.67827 - 1.67827i) q^{47} +(-163.246 + 109.077i) q^{48} +(18.9395 - 7.84500i) q^{49} +(80.9300 - 52.4564i) q^{51} -46.2849i q^{52} +(50.9049 - 21.0855i) q^{53} +(244.833 - 163.592i) q^{54} +(-103.263 - 20.5404i) q^{56} +(28.5403 - 42.7136i) q^{57} +(1.39723 + 7.02437i) q^{58} +(-38.2228 - 15.8324i) q^{59} +(5.85814 + 29.4509i) q^{61} +(18.6631 + 12.4703i) q^{62} +(121.393 + 24.1466i) q^{63} +(-25.6607 - 25.6607i) q^{64} +(-98.1402 + 40.6510i) q^{66} -83.0052 q^{67} +(111.285 + 114.437i) q^{68} -205.003 q^{69} +(77.2000 - 51.5834i) q^{71} +(323.321 + 323.321i) q^{72} +(10.1112 - 50.8326i) q^{73} +(-43.4560 - 29.0364i) q^{74} +(78.5531 + 32.5378i) q^{76} +(-25.2383 - 10.4541i) q^{77} +(-100.362 + 19.9633i) q^{78} +(53.4837 - 80.0441i) q^{79} +(-175.265 - 175.265i) q^{81} +(-201.421 + 134.585i) q^{82} +(37.2261 + 89.8717i) q^{83} +284.379i q^{84} -41.8312 q^{86} +(10.2586 - 4.24924i) q^{87} +(-56.0675 - 83.9110i) q^{88} +(-6.35442 + 6.35442i) q^{89} +(-21.8805 - 14.6201i) q^{91} +(-66.1949 - 332.784i) q^{92} +(13.3173 - 32.1507i) q^{93} +(3.32355 - 8.02376i) q^{94} +(-150.494 + 225.231i) q^{96} +(70.8202 + 14.0870i) q^{97} +(53.0424 - 53.0424i) q^{98} +(65.9113 + 98.6432i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 48 q^{13} + 64 q^{14} + 128 q^{17} - 48 q^{19} + 96 q^{22} + 144 q^{23} - 240 q^{24} - 224 q^{26} - 64 q^{31} - 400 q^{32} - 512 q^{33} - 64 q^{34} + 192 q^{36} + 144 q^{37} - 208 q^{38} - 16 q^{39}+ \cdots + 592 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.38065 1.40031i 1.69033 0.700156i 0.690594 0.723243i \(-0.257349\pi\)
0.999733 + 0.0230865i \(0.00734933\pi\)
\(3\) −3.15183 4.71704i −1.05061 1.57235i −0.795993 0.605306i \(-0.793051\pi\)
−0.254617 0.967042i \(-0.581949\pi\)
\(4\) 6.63952 6.63952i 1.65988 1.65988i
\(5\) 0 0
\(6\) −17.2606 11.5332i −2.87676 1.92219i
\(7\) −1.04150 5.23596i −0.148785 0.747995i −0.981071 0.193648i \(-0.937968\pi\)
0.832286 0.554347i \(-0.187032\pi\)
\(8\) 7.54727 18.2207i 0.943408 2.27759i
\(9\) −8.87234 + 21.4197i −0.985815 + 2.37997i
\(10\) 0 0
\(11\) 2.84290 4.25470i 0.258445 0.386791i −0.679443 0.733728i \(-0.737778\pi\)
0.937888 + 0.346938i \(0.112778\pi\)
\(12\) −52.2455 10.3923i −4.35380 0.866024i
\(13\) 3.48556 3.48556i 0.268120 0.268120i −0.560222 0.828342i \(-0.689284\pi\)
0.828342 + 0.560222i \(0.189284\pi\)
\(14\) −10.8529 16.2426i −0.775209 1.16018i
\(15\) 0 0
\(16\) 34.6077i 2.16298i
\(17\) −0.237334 + 16.9983i −0.0139608 + 0.999903i
\(18\) 84.8367i 4.71315i
\(19\) 3.46526 + 8.36588i 0.182382 + 0.440309i 0.988457 0.151505i \(-0.0484119\pi\)
−0.806074 + 0.591814i \(0.798412\pi\)
\(20\) 0 0
\(21\) −21.4157 + 21.4157i −1.01979 + 1.01979i
\(22\) 3.65295 18.3646i 0.166043 0.834755i
\(23\) 20.0759 30.0458i 0.872867 1.30634i −0.0780686 0.996948i \(-0.524875\pi\)
0.950935 0.309390i \(-0.100125\pi\)
\(24\) −109.736 + 21.8278i −4.57232 + 0.909490i
\(25\) 0 0
\(26\) 6.90260 16.6644i 0.265485 0.640937i
\(27\) 78.9247 15.6991i 2.92314 0.581448i
\(28\) −41.6793 27.8492i −1.48855 0.994616i
\(29\) −0.381842 + 1.91965i −0.0131670 + 0.0661948i −0.986810 0.161882i \(-0.948244\pi\)
0.973643 + 0.228077i \(0.0732437\pi\)
\(30\) 0 0
\(31\) 3.40793 + 5.10033i 0.109933 + 0.164527i 0.882357 0.470581i \(-0.155956\pi\)
−0.772423 + 0.635108i \(0.780956\pi\)
\(32\) −18.2725 44.1137i −0.571015 1.37855i
\(33\) −29.0299 −0.879695
\(34\) 23.0007 + 57.7979i 0.676490 + 1.69994i
\(35\) 0 0
\(36\) 83.3086 + 201.125i 2.31413 + 5.58680i
\(37\) −7.93518 11.8758i −0.214464 0.320969i 0.708603 0.705608i \(-0.249326\pi\)
−0.923067 + 0.384639i \(0.874326\pi\)
\(38\) 23.4297 + 23.4297i 0.616571 + 0.616571i
\(39\) −27.4274 5.45566i −0.703268 0.139889i
\(40\) 0 0
\(41\) −64.9302 + 12.9154i −1.58366 + 0.315010i −0.906950 0.421237i \(-0.861596\pi\)
−0.676712 + 0.736247i \(0.736596\pi\)
\(42\) −42.4103 + 102.388i −1.00977 + 2.43780i
\(43\) −10.5616 4.37477i −0.245619 0.101739i 0.256478 0.966550i \(-0.417438\pi\)
−0.502097 + 0.864811i \(0.667438\pi\)
\(44\) −9.37368 47.1247i −0.213038 1.07101i
\(45\) 0 0
\(46\) 25.7963 129.687i 0.560790 2.81928i
\(47\) 1.67827 1.67827i 0.0357079 0.0357079i −0.689027 0.724735i \(-0.741962\pi\)
0.724735 + 0.689027i \(0.241962\pi\)
\(48\) −163.246 + 109.077i −3.40096 + 2.27245i
\(49\) 18.9395 7.84500i 0.386520 0.160102i
\(50\) 0 0
\(51\) 80.9300 52.4564i 1.58686 1.02856i
\(52\) 46.2849i 0.890094i
\(53\) 50.9049 21.0855i 0.960469 0.397839i 0.153313 0.988178i \(-0.451006\pi\)
0.807156 + 0.590338i \(0.201006\pi\)
\(54\) 244.833 163.592i 4.53395 3.02949i
\(55\) 0 0
\(56\) −103.263 20.5404i −1.84399 0.366792i
\(57\) 28.5403 42.7136i 0.500707 0.749362i
\(58\) 1.39723 + 7.02437i 0.0240902 + 0.121110i
\(59\) −38.2228 15.8324i −0.647844 0.268346i 0.0344693 0.999406i \(-0.489026\pi\)
−0.682313 + 0.731060i \(0.739026\pi\)
\(60\) 0 0
\(61\) 5.85814 + 29.4509i 0.0960351 + 0.482801i 0.998631 + 0.0523118i \(0.0166590\pi\)
−0.902596 + 0.430489i \(0.858341\pi\)
\(62\) 18.6631 + 12.4703i 0.301018 + 0.201134i
\(63\) 121.393 + 24.1466i 1.92688 + 0.383280i
\(64\) −25.6607 25.6607i −0.400948 0.400948i
\(65\) 0 0
\(66\) −98.1402 + 40.6510i −1.48697 + 0.615924i
\(67\) −83.0052 −1.23888 −0.619442 0.785042i \(-0.712641\pi\)
−0.619442 + 0.785042i \(0.712641\pi\)
\(68\) 111.285 + 114.437i 1.63654 + 1.68289i
\(69\) −205.003 −2.97106
\(70\) 0 0
\(71\) 77.2000 51.5834i 1.08732 0.726526i 0.123307 0.992369i \(-0.460650\pi\)
0.964017 + 0.265842i \(0.0856500\pi\)
\(72\) 323.321 + 323.321i 4.49056 + 4.49056i
\(73\) 10.1112 50.8326i 0.138510 0.696337i −0.847652 0.530553i \(-0.821984\pi\)
0.986162 0.165784i \(-0.0530156\pi\)
\(74\) −43.4560 29.0364i −0.587243 0.392383i
\(75\) 0 0
\(76\) 78.5531 + 32.5378i 1.03359 + 0.428128i
\(77\) −25.2383 10.4541i −0.327770 0.135767i
\(78\) −100.362 + 19.9633i −1.28670 + 0.255940i
\(79\) 53.4837 80.0441i 0.677009 1.01322i −0.320806 0.947145i \(-0.603954\pi\)
0.997815 0.0660709i \(-0.0210463\pi\)
\(80\) 0 0
\(81\) −175.265 175.265i −2.16376 2.16376i
\(82\) −201.421 + 134.585i −2.45635 + 1.64128i
\(83\) 37.2261 + 89.8717i 0.448507 + 1.08279i 0.972881 + 0.231304i \(0.0742993\pi\)
−0.524374 + 0.851488i \(0.675701\pi\)
\(84\) 284.379i 3.38547i
\(85\) 0 0
\(86\) −41.8312 −0.486410
\(87\) 10.2586 4.24924i 0.117915 0.0488418i
\(88\) −56.0675 83.9110i −0.637131 0.953534i
\(89\) −6.35442 + 6.35442i −0.0713979 + 0.0713979i −0.741904 0.670506i \(-0.766077\pi\)
0.670506 + 0.741904i \(0.266077\pi\)
\(90\) 0 0
\(91\) −21.8805 14.6201i −0.240445 0.160660i
\(92\) −66.1949 332.784i −0.719509 3.61722i
\(93\) 13.3173 32.1507i 0.143197 0.345707i
\(94\) 3.32355 8.02376i 0.0353569 0.0853592i
\(95\) 0 0
\(96\) −150.494 + 225.231i −1.56765 + 2.34616i
\(97\) 70.8202 + 14.0870i 0.730105 + 0.145227i 0.546126 0.837703i \(-0.316102\pi\)
0.183979 + 0.982930i \(0.441102\pi\)
\(98\) 53.0424 53.0424i 0.541249 0.541249i
\(99\) 65.9113 + 98.6432i 0.665771 + 0.996396i
\(100\) 0 0
\(101\) 83.3457i 0.825205i −0.910911 0.412602i \(-0.864620\pi\)
0.910911 0.412602i \(-0.135380\pi\)
\(102\) 200.141 290.664i 1.96217 2.84965i
\(103\) 5.01201i 0.0486603i 0.999704 + 0.0243302i \(0.00774530\pi\)
−0.999704 + 0.0243302i \(0.992255\pi\)
\(104\) −37.2029 89.8158i −0.357721 0.863614i
\(105\) 0 0
\(106\) 142.565 142.565i 1.34496 1.34496i
\(107\) −17.6714 + 88.8403i −0.165154 + 0.830284i 0.806016 + 0.591894i \(0.201620\pi\)
−0.971170 + 0.238390i \(0.923380\pi\)
\(108\) 419.787 628.256i 3.88692 5.81719i
\(109\) 149.579 29.7531i 1.37228 0.272964i 0.546740 0.837302i \(-0.315868\pi\)
0.825544 + 0.564338i \(0.190868\pi\)
\(110\) 0 0
\(111\) −31.0085 + 74.8612i −0.279356 + 0.674425i
\(112\) −181.204 + 36.0438i −1.61790 + 0.321820i
\(113\) −176.235 117.757i −1.55961 1.04210i −0.972592 0.232518i \(-0.925304\pi\)
−0.587013 0.809577i \(-0.699696\pi\)
\(114\) 36.6725 184.365i 0.321689 1.61724i
\(115\) 0 0
\(116\) 10.2103 + 15.2808i 0.0880198 + 0.131731i
\(117\) 43.7347 + 105.585i 0.373801 + 0.902434i
\(118\) −151.388 −1.28295
\(119\) 89.2499 16.4611i 0.749999 0.138328i
\(120\) 0 0
\(121\) 36.2843 + 87.5981i 0.299870 + 0.723951i
\(122\) 61.0448 + 91.3600i 0.500367 + 0.748852i
\(123\) 265.571 + 265.571i 2.15912 + 2.15912i
\(124\) 56.4908 + 11.2367i 0.455571 + 0.0906187i
\(125\) 0 0
\(126\) 444.202 88.3573i 3.52541 0.701248i
\(127\) 51.5570 124.469i 0.405960 0.980075i −0.580229 0.814453i \(-0.697037\pi\)
0.986189 0.165621i \(-0.0529630\pi\)
\(128\) 53.7719 + 22.2730i 0.420093 + 0.174008i
\(129\) 12.6524 + 63.6081i 0.0980810 + 0.493086i
\(130\) 0 0
\(131\) −22.1681 + 111.446i −0.169222 + 0.850736i 0.799132 + 0.601155i \(0.205293\pi\)
−0.968354 + 0.249581i \(0.919707\pi\)
\(132\) −192.745 + 192.745i −1.46019 + 1.46019i
\(133\) 40.1944 26.8570i 0.302213 0.201933i
\(134\) −280.612 + 116.233i −2.09412 + 0.867413i
\(135\) 0 0
\(136\) 307.931 + 132.615i 2.26420 + 0.975113i
\(137\) 16.2847i 0.118867i −0.998232 0.0594333i \(-0.981071\pi\)
0.998232 0.0594333i \(-0.0189294\pi\)
\(138\) −693.045 + 287.069i −5.02206 + 2.08021i
\(139\) 42.9869 28.7229i 0.309258 0.206640i −0.391249 0.920285i \(-0.627957\pi\)
0.700507 + 0.713645i \(0.252957\pi\)
\(140\) 0 0
\(141\) −13.2061 2.62686i −0.0936604 0.0186302i
\(142\) 188.754 282.490i 1.32925 1.98936i
\(143\) −4.92092 24.7391i −0.0344120 0.173001i
\(144\) 741.286 + 307.051i 5.14782 + 2.13230i
\(145\) 0 0
\(146\) −36.9990 186.006i −0.253418 1.27402i
\(147\) −96.6993 64.6124i −0.657818 0.439540i
\(148\) −131.536 26.1641i −0.888754 0.176784i
\(149\) 178.810 + 178.810i 1.20007 + 1.20007i 0.974145 + 0.225924i \(0.0725401\pi\)
0.225924 + 0.974145i \(0.427460\pi\)
\(150\) 0 0
\(151\) 38.4098 15.9098i 0.254369 0.105363i −0.251855 0.967765i \(-0.581041\pi\)
0.506225 + 0.862402i \(0.331041\pi\)
\(152\) 178.586 1.17490
\(153\) −361.994 155.899i −2.36597 1.01895i
\(154\) −99.9610 −0.649097
\(155\) 0 0
\(156\) −218.328 + 145.882i −1.39954 + 0.935142i
\(157\) 38.7039 + 38.7039i 0.246522 + 0.246522i 0.819541 0.573020i \(-0.194228\pi\)
−0.573020 + 0.819541i \(0.694228\pi\)
\(158\) 68.7233 345.495i 0.434957 2.18668i
\(159\) −259.905 173.663i −1.63462 1.09222i
\(160\) 0 0
\(161\) −178.228 73.8243i −1.10700 0.458536i
\(162\) −837.935 347.084i −5.17244 2.14250i
\(163\) 235.503 46.8445i 1.44481 0.287390i 0.590448 0.807076i \(-0.298951\pi\)
0.854357 + 0.519686i \(0.173951\pi\)
\(164\) −345.353 + 516.857i −2.10581 + 3.15157i
\(165\) 0 0
\(166\) 251.697 + 251.697i 1.51625 + 1.51625i
\(167\) −85.3608 + 57.0363i −0.511143 + 0.341535i −0.784246 0.620450i \(-0.786950\pi\)
0.273103 + 0.961985i \(0.411950\pi\)
\(168\) 228.579 + 551.838i 1.36059 + 3.28475i
\(169\) 144.702i 0.856223i
\(170\) 0 0
\(171\) −209.940 −1.22772
\(172\) −99.1704 + 41.0777i −0.576572 + 0.238824i
\(173\) 17.4964 + 26.1852i 0.101135 + 0.151360i 0.878586 0.477584i \(-0.158487\pi\)
−0.777451 + 0.628944i \(0.783487\pi\)
\(174\) 28.7304 28.7304i 0.165117 0.165117i
\(175\) 0 0
\(176\) −147.245 98.3861i −0.836620 0.559012i
\(177\) 45.7895 + 230.200i 0.258698 + 1.30056i
\(178\) −12.5839 + 30.3803i −0.0706961 + 0.170676i
\(179\) −121.040 + 292.217i −0.676202 + 1.63250i 0.0946731 + 0.995508i \(0.469819\pi\)
−0.770875 + 0.636987i \(0.780181\pi\)
\(180\) 0 0
\(181\) −168.125 + 251.617i −0.928869 + 1.39015i −0.00813199 + 0.999967i \(0.502589\pi\)
−0.920737 + 0.390184i \(0.872411\pi\)
\(182\) −94.4430 18.7859i −0.518917 0.103219i
\(183\) 120.457 120.457i 0.658236 0.658236i
\(184\) −395.937 592.561i −2.15183 3.22044i
\(185\) 0 0
\(186\) 127.339i 0.684618i
\(187\) 71.6481 + 49.3344i 0.383145 + 0.263820i
\(188\) 22.2858i 0.118542i
\(189\) −164.400 396.896i −0.869840 2.09998i
\(190\) 0 0
\(191\) −5.18071 + 5.18071i −0.0271241 + 0.0271241i −0.720539 0.693415i \(-0.756105\pi\)
0.693415 + 0.720539i \(0.256105\pi\)
\(192\) −40.1645 + 201.921i −0.209190 + 1.05167i
\(193\) −170.929 + 255.813i −0.885642 + 1.32546i 0.0593066 + 0.998240i \(0.481111\pi\)
−0.944949 + 0.327218i \(0.893889\pi\)
\(194\) 259.145 51.5471i 1.33580 0.265707i
\(195\) 0 0
\(196\) 73.6622 177.836i 0.375827 0.907328i
\(197\) 45.9352 9.13709i 0.233174 0.0463811i −0.0771202 0.997022i \(-0.524573\pi\)
0.310294 + 0.950641i \(0.399573\pi\)
\(198\) 360.955 + 241.182i 1.82300 + 1.21809i
\(199\) −10.2205 + 51.3818i −0.0513591 + 0.258200i −0.997931 0.0642930i \(-0.979521\pi\)
0.946572 + 0.322493i \(0.104521\pi\)
\(200\) 0 0
\(201\) 261.618 + 391.539i 1.30158 + 1.94796i
\(202\) −116.710 281.763i −0.577772 1.39487i
\(203\) 10.4489 0.0514724
\(204\) 189.051 885.621i 0.926722 4.34128i
\(205\) 0 0
\(206\) 7.01839 + 16.9439i 0.0340698 + 0.0822519i
\(207\) 465.451 + 696.597i 2.24856 + 3.36520i
\(208\) −120.627 120.627i −0.579938 0.579938i
\(209\) 45.4457 + 9.03971i 0.217444 + 0.0432522i
\(210\) 0 0
\(211\) −195.890 + 38.9649i −0.928388 + 0.184668i −0.636051 0.771647i \(-0.719433\pi\)
−0.292337 + 0.956315i \(0.594433\pi\)
\(212\) 197.986 477.981i 0.933898 2.25463i
\(213\) −486.642 201.574i −2.28471 0.946356i
\(214\) 64.6632 + 325.084i 0.302165 + 1.51908i
\(215\) 0 0
\(216\) 309.617 1556.55i 1.43341 7.20624i
\(217\) 23.1558 23.1558i 0.106709 0.106709i
\(218\) 464.011 310.042i 2.12849 1.42221i
\(219\) −271.649 + 112.521i −1.24040 + 0.513792i
\(220\) 0 0
\(221\) 58.4215 + 60.0760i 0.264351 + 0.271837i
\(222\) 296.501i 1.33559i
\(223\) −101.785 + 42.1607i −0.456435 + 0.189062i −0.599042 0.800718i \(-0.704452\pi\)
0.142607 + 0.989779i \(0.454452\pi\)
\(224\) −211.947 + 141.618i −0.946191 + 0.632225i
\(225\) 0 0
\(226\) −760.687 151.310i −3.36587 0.669514i
\(227\) −142.623 + 213.450i −0.628294 + 0.940309i 0.371635 + 0.928379i \(0.378797\pi\)
−0.999929 + 0.0119297i \(0.996203\pi\)
\(228\) −94.1038 473.092i −0.412736 2.07496i
\(229\) −28.1869 11.6754i −0.123087 0.0509842i 0.320290 0.947320i \(-0.396220\pi\)
−0.443377 + 0.896335i \(0.646220\pi\)
\(230\) 0 0
\(231\) 30.2346 + 152.000i 0.130886 + 0.658007i
\(232\) 32.0955 + 21.4455i 0.138343 + 0.0924376i
\(233\) 137.146 + 27.2801i 0.588611 + 0.117082i 0.480405 0.877047i \(-0.340490\pi\)
0.108205 + 0.994129i \(0.465490\pi\)
\(234\) 295.704 + 295.704i 1.26369 + 1.26369i
\(235\) 0 0
\(236\) −358.900 + 148.661i −1.52076 + 0.629921i
\(237\) −546.143 −2.30440
\(238\) 278.672 180.627i 1.17089 0.758937i
\(239\) 439.887 1.84053 0.920265 0.391295i \(-0.127973\pi\)
0.920265 + 0.391295i \(0.127973\pi\)
\(240\) 0 0
\(241\) −21.9897 + 14.6931i −0.0912437 + 0.0609671i −0.600355 0.799734i \(-0.704974\pi\)
0.509111 + 0.860701i \(0.329974\pi\)
\(242\) 245.329 + 245.329i 1.01376 + 1.01376i
\(243\) −133.036 + 668.815i −0.547471 + 2.75232i
\(244\) 234.435 + 156.644i 0.960799 + 0.641985i
\(245\) 0 0
\(246\) 1269.69 + 525.922i 5.16133 + 2.13789i
\(247\) 41.2382 + 17.0814i 0.166956 + 0.0691555i
\(248\) 118.652 23.6014i 0.478436 0.0951669i
\(249\) 306.599 458.857i 1.23132 1.84280i
\(250\) 0 0
\(251\) 166.889 + 166.889i 0.664897 + 0.664897i 0.956530 0.291634i \(-0.0941988\pi\)
−0.291634 + 0.956530i \(0.594199\pi\)
\(252\) 966.316 645.672i 3.83459 2.56219i
\(253\) −70.7618 170.834i −0.279691 0.675234i
\(254\) 492.984i 1.94088i
\(255\) 0 0
\(256\) 358.132 1.39895
\(257\) 380.517 157.615i 1.48061 0.613289i 0.511361 0.859366i \(-0.329141\pi\)
0.969250 + 0.246077i \(0.0791415\pi\)
\(258\) 131.845 + 197.320i 0.511027 + 0.764805i
\(259\) −53.9170 + 53.9170i −0.208174 + 0.208174i
\(260\) 0 0
\(261\) −37.7305 25.2107i −0.144561 0.0965928i
\(262\) 81.1173 + 407.804i 0.309608 + 1.55650i
\(263\) 109.341 263.972i 0.415745 1.00370i −0.567822 0.823151i \(-0.692214\pi\)
0.983567 0.180545i \(-0.0577861\pi\)
\(264\) −219.097 + 528.946i −0.829912 + 2.00358i
\(265\) 0 0
\(266\) 98.2751 147.079i 0.369455 0.552929i
\(267\) 50.0021 + 9.94604i 0.187274 + 0.0372511i
\(268\) −551.115 + 551.115i −2.05640 + 2.05640i
\(269\) 152.969 + 228.934i 0.568657 + 0.851055i 0.998659 0.0517731i \(-0.0164873\pi\)
−0.430002 + 0.902828i \(0.641487\pi\)
\(270\) 0 0
\(271\) 89.0741i 0.328687i −0.986403 0.164343i \(-0.947449\pi\)
0.986403 0.164343i \(-0.0525505\pi\)
\(272\) 588.273 + 8.21356i 2.16277 + 0.0301969i
\(273\) 149.291i 0.546854i
\(274\) −22.8037 55.0530i −0.0832252 0.200923i
\(275\) 0 0
\(276\) −1361.12 + 1361.12i −4.93160 + 4.93160i
\(277\) 39.7079 199.625i 0.143350 0.720667i −0.840520 0.541781i \(-0.817750\pi\)
0.983870 0.178887i \(-0.0572496\pi\)
\(278\) 105.103 157.297i 0.378067 0.565817i
\(279\) −139.484 + 27.7451i −0.499943 + 0.0994448i
\(280\) 0 0
\(281\) −10.2241 + 24.6831i −0.0363847 + 0.0878404i −0.941027 0.338331i \(-0.890138\pi\)
0.904643 + 0.426171i \(0.140138\pi\)
\(282\) −48.3237 + 9.61219i −0.171361 + 0.0340858i
\(283\) 105.177 + 70.2769i 0.371649 + 0.248328i 0.727343 0.686275i \(-0.240755\pi\)
−0.355693 + 0.934603i \(0.615755\pi\)
\(284\) 170.082 855.060i 0.598880 3.01077i
\(285\) 0 0
\(286\) −51.2784 76.7436i −0.179295 0.268334i
\(287\) 135.249 + 326.521i 0.471252 + 1.13770i
\(288\) 1107.02 3.84383
\(289\) −288.887 8.06856i −0.999610 0.0279189i
\(290\) 0 0
\(291\) −156.764 378.462i −0.538708 1.30056i
\(292\) −270.370 404.638i −0.925926 1.38575i
\(293\) −274.643 274.643i −0.937349 0.937349i 0.0608010 0.998150i \(-0.480635\pi\)
−0.998150 + 0.0608010i \(0.980635\pi\)
\(294\) −417.384 83.0229i −1.41967 0.282391i
\(295\) 0 0
\(296\) −276.275 + 54.9545i −0.933362 + 0.185657i
\(297\) 157.580 380.432i 0.530572 1.28091i
\(298\) 854.886 + 354.105i 2.86874 + 1.18827i
\(299\) −34.7504 174.702i −0.116222 0.584288i
\(300\) 0 0
\(301\) −11.9062 + 59.8566i −0.0395555 + 0.198859i
\(302\) 107.571 107.571i 0.356197 0.356197i
\(303\) −393.145 + 262.691i −1.29751 + 0.866968i
\(304\) 289.523 119.925i 0.952380 0.394489i
\(305\) 0 0
\(306\) −1442.08 20.1346i −4.71269 0.0657994i
\(307\) 237.767i 0.774485i −0.921978 0.387242i \(-0.873428\pi\)
0.921978 0.387242i \(-0.126572\pi\)
\(308\) −236.980 + 98.1605i −0.769417 + 0.318703i
\(309\) 23.6419 15.7970i 0.0765110 0.0511230i
\(310\) 0 0
\(311\) 61.0589 + 12.1454i 0.196331 + 0.0390526i 0.292276 0.956334i \(-0.405587\pi\)
−0.0959453 + 0.995387i \(0.530587\pi\)
\(312\) −306.408 + 458.572i −0.982077 + 1.46978i
\(313\) −36.7577 184.794i −0.117437 0.590395i −0.994025 0.109153i \(-0.965186\pi\)
0.876588 0.481242i \(-0.159814\pi\)
\(314\) 185.042 + 76.6469i 0.589306 + 0.244098i
\(315\) 0 0
\(316\) −176.348 886.560i −0.558063 2.80557i
\(317\) −391.135 261.348i −1.23386 0.824442i −0.244464 0.969658i \(-0.578612\pi\)
−0.989400 + 0.145217i \(0.953612\pi\)
\(318\) −1121.83 223.146i −3.52777 0.701716i
\(319\) 7.08199 + 7.08199i 0.0222006 + 0.0222006i
\(320\) 0 0
\(321\) 474.761 196.653i 1.47901 0.612625i
\(322\) −705.903 −2.19224
\(323\) −143.029 + 56.9182i −0.442813 + 0.176217i
\(324\) −2327.35 −7.18318
\(325\) 0 0
\(326\) 730.558 488.143i 2.24098 1.49737i
\(327\) −611.794 611.794i −1.87093 1.87093i
\(328\) −254.717 + 1280.55i −0.776577 + 3.90412i
\(329\) −10.5353 7.03946i −0.0320222 0.0213965i
\(330\) 0 0
\(331\) 193.036 + 79.9583i 0.583191 + 0.241566i 0.654718 0.755873i \(-0.272787\pi\)
−0.0715270 + 0.997439i \(0.522787\pi\)
\(332\) 843.869 + 349.542i 2.54177 + 1.05284i
\(333\) 324.781 64.6029i 0.975317 0.194003i
\(334\) −208.707 + 312.352i −0.624871 + 0.935185i
\(335\) 0 0
\(336\) 741.146 + 741.146i 2.20579 + 2.20579i
\(337\) −199.913 + 133.577i −0.593212 + 0.396372i −0.815625 0.578581i \(-0.803607\pi\)
0.222413 + 0.974953i \(0.428607\pi\)
\(338\) 202.628 + 489.187i 0.599490 + 1.44730i
\(339\) 1202.46i 3.54708i
\(340\) 0 0
\(341\) 31.3888 0.0920492
\(342\) −709.734 + 293.981i −2.07524 + 0.859595i
\(343\) −206.132 308.499i −0.600969 0.899414i
\(344\) −159.423 + 159.423i −0.463438 + 0.463438i
\(345\) 0 0
\(346\) 95.8168 + 64.0228i 0.276927 + 0.185037i
\(347\) 63.7204 + 320.344i 0.183632 + 0.923182i 0.957191 + 0.289457i \(0.0934748\pi\)
−0.773559 + 0.633725i \(0.781525\pi\)
\(348\) 39.8991 96.3249i 0.114653 0.276796i
\(349\) 22.5880 54.5323i 0.0647221 0.156253i −0.888209 0.459439i \(-0.848050\pi\)
0.952931 + 0.303186i \(0.0980504\pi\)
\(350\) 0 0
\(351\) 220.377 329.817i 0.627853 0.939649i
\(352\) −239.637 47.6668i −0.680788 0.135417i
\(353\) −279.425 + 279.425i −0.791571 + 0.791571i −0.981750 0.190178i \(-0.939093\pi\)
0.190178 + 0.981750i \(0.439093\pi\)
\(354\) 477.150 + 714.106i 1.34788 + 2.01725i
\(355\) 0 0
\(356\) 84.3806i 0.237024i
\(357\) −358.948 369.113i −1.00546 1.03393i
\(358\) 1157.38i 3.23290i
\(359\) 53.3154 + 128.715i 0.148511 + 0.358537i 0.980576 0.196142i \(-0.0628412\pi\)
−0.832065 + 0.554679i \(0.812841\pi\)
\(360\) 0 0
\(361\) 197.286 197.286i 0.546498 0.546498i
\(362\) −216.031 + 1086.06i −0.596770 + 3.00016i
\(363\) 298.842 447.249i 0.823256 1.23209i
\(364\) −242.346 + 48.2056i −0.665786 + 0.132433i
\(365\) 0 0
\(366\) 238.546 575.902i 0.651766 1.57350i
\(367\) −477.255 + 94.9319i −1.30042 + 0.258670i −0.796268 0.604944i \(-0.793195\pi\)
−0.504154 + 0.863614i \(0.668195\pi\)
\(368\) −1039.81 694.781i −2.82558 1.88799i
\(369\) 299.438 1505.38i 0.811485 4.07961i
\(370\) 0 0
\(371\) −163.420 244.576i −0.440486 0.659233i
\(372\) −125.045 301.886i −0.336143 0.811521i
\(373\) −176.006 −0.471867 −0.235933 0.971769i \(-0.575815\pi\)
−0.235933 + 0.971769i \(0.575815\pi\)
\(374\) 311.301 + 66.4526i 0.832356 + 0.177681i
\(375\) 0 0
\(376\) −17.9129 43.2457i −0.0476408 0.115015i
\(377\) 5.36012 + 8.02199i 0.0142178 + 0.0212785i
\(378\) −1111.56 1111.56i −2.94063 2.94063i
\(379\) −434.443 86.4160i −1.14629 0.228011i −0.414830 0.909899i \(-0.636159\pi\)
−0.731456 + 0.681888i \(0.761159\pi\)
\(380\) 0 0
\(381\) −749.627 + 149.110i −1.96752 + 0.391365i
\(382\) −10.2596 + 24.7688i −0.0268575 + 0.0648397i
\(383\) 538.287 + 222.966i 1.40545 + 0.582157i 0.951160 0.308697i \(-0.0998930\pi\)
0.454290 + 0.890854i \(0.349893\pi\)
\(384\) −64.4168 323.845i −0.167752 0.843347i
\(385\) 0 0
\(386\) −219.633 + 1104.17i −0.568998 + 2.86055i
\(387\) 187.413 187.413i 0.484270 0.484270i
\(388\) 563.743 376.681i 1.45295 0.970827i
\(389\) 358.440 148.471i 0.921441 0.381673i 0.129016 0.991643i \(-0.458818\pi\)
0.792425 + 0.609969i \(0.208818\pi\)
\(390\) 0 0
\(391\) 505.963 + 348.389i 1.29402 + 0.891019i
\(392\) 404.299i 1.03138i
\(393\) 595.568 246.692i 1.51544 0.627716i
\(394\) 142.496 95.2130i 0.361666 0.241657i
\(395\) 0 0
\(396\) 1092.56 + 217.324i 2.75900 + 0.548799i
\(397\) 53.1910 79.6060i 0.133982 0.200519i −0.758412 0.651776i \(-0.774024\pi\)
0.892394 + 0.451257i \(0.149024\pi\)
\(398\) 37.3987 + 188.016i 0.0939665 + 0.472401i
\(399\) −253.372 104.950i −0.635017 0.263032i
\(400\) 0 0
\(401\) −15.3440 77.1397i −0.0382644 0.192368i 0.956925 0.290334i \(-0.0937664\pi\)
−0.995190 + 0.0979657i \(0.968766\pi\)
\(402\) 1432.72 + 957.312i 3.56398 + 2.38137i
\(403\) 29.6561 + 5.89896i 0.0735883 + 0.0146376i
\(404\) −553.375 553.375i −1.36974 1.36974i
\(405\) 0 0
\(406\) 35.3241 14.6317i 0.0870052 0.0360387i
\(407\) −73.0870 −0.179575
\(408\) −344.992 1870.50i −0.845568 4.58457i
\(409\) 41.8341 0.102284 0.0511420 0.998691i \(-0.483714\pi\)
0.0511420 + 0.998691i \(0.483714\pi\)
\(410\) 0 0
\(411\) −76.8157 + 51.3266i −0.186900 + 0.124882i
\(412\) 33.2774 + 33.2774i 0.0807703 + 0.0807703i
\(413\) −43.0889 + 216.623i −0.104331 + 0.524510i
\(414\) 2548.98 + 1703.18i 6.15697 + 4.11395i
\(415\) 0 0
\(416\) −217.451 90.0711i −0.522718 0.216517i
\(417\) −270.974 112.241i −0.649819 0.269164i
\(418\) 166.295 33.0781i 0.397834 0.0791341i
\(419\) −141.224 + 211.357i −0.337051 + 0.504432i −0.960819 0.277177i \(-0.910601\pi\)
0.623768 + 0.781610i \(0.285601\pi\)
\(420\) 0 0
\(421\) 23.1007 + 23.1007i 0.0548710 + 0.0548710i 0.734010 0.679139i \(-0.237647\pi\)
−0.679139 + 0.734010i \(0.737647\pi\)
\(422\) −607.673 + 406.034i −1.43998 + 0.962166i
\(423\) 21.0579 + 50.8383i 0.0497823 + 0.120185i
\(424\) 1086.66i 2.56288i
\(425\) 0 0
\(426\) −1927.44 −4.52450
\(427\) 148.102 61.3460i 0.346844 0.143668i
\(428\) 472.527 + 707.187i 1.10404 + 1.65231i
\(429\) −101.186 + 101.186i −0.235864 + 0.235864i
\(430\) 0 0
\(431\) 505.056 + 337.468i 1.17182 + 0.782987i 0.980108 0.198463i \(-0.0635950\pi\)
0.191715 + 0.981451i \(0.438595\pi\)
\(432\) −543.309 2731.40i −1.25766 6.32268i
\(433\) 90.2325 217.841i 0.208389 0.503096i −0.784781 0.619774i \(-0.787224\pi\)
0.993170 + 0.116678i \(0.0372244\pi\)
\(434\) 45.8564 110.707i 0.105660 0.255086i
\(435\) 0 0
\(436\) 795.586 1190.68i 1.82474 2.73092i
\(437\) 320.928 + 63.8365i 0.734388 + 0.146079i
\(438\) −760.786 + 760.786i −1.73695 + 1.73695i
\(439\) −372.897 558.080i −0.849424 1.27125i −0.960735 0.277467i \(-0.910505\pi\)
0.111311 0.993786i \(-0.464495\pi\)
\(440\) 0 0
\(441\) 475.282i 1.07774i
\(442\) 281.628 + 121.288i 0.637168 + 0.274407i
\(443\) 310.122i 0.700049i −0.936741 0.350024i \(-0.886173\pi\)
0.936741 0.350024i \(-0.113827\pi\)
\(444\) 291.161 + 702.924i 0.655767 + 1.58316i
\(445\) 0 0
\(446\) −285.062 + 285.062i −0.639152 + 0.639152i
\(447\) 279.877 1407.04i 0.626122 3.14773i
\(448\) −107.633 + 161.084i −0.240252 + 0.359562i
\(449\) −172.129 + 34.2385i −0.383360 + 0.0762551i −0.383008 0.923745i \(-0.625112\pi\)
−0.000351796 1.00000i \(0.500112\pi\)
\(450\) 0 0
\(451\) −129.639 + 312.976i −0.287447 + 0.693959i
\(452\) −1951.97 + 388.270i −4.31851 + 0.859005i
\(453\) −196.108 131.035i −0.432910 0.289262i
\(454\) −183.261 + 921.318i −0.403660 + 2.02933i
\(455\) 0 0
\(456\) −562.871 842.396i −1.23437 1.84736i
\(457\) 238.465 + 575.705i 0.521805 + 1.25975i 0.936781 + 0.349917i \(0.113790\pi\)
−0.414976 + 0.909832i \(0.636210\pi\)
\(458\) −111.639 −0.243754
\(459\) 248.127 + 1345.31i 0.540582 + 2.93097i
\(460\) 0 0
\(461\) −269.146 649.777i −0.583831 1.40949i −0.889314 0.457296i \(-0.848818\pi\)
0.305483 0.952198i \(-0.401182\pi\)
\(462\) 315.060 + 471.521i 0.681948 + 1.02061i
\(463\) −268.136 268.136i −0.579127 0.579127i 0.355536 0.934663i \(-0.384298\pi\)
−0.934663 + 0.355536i \(0.884298\pi\)
\(464\) 66.4346 + 13.2147i 0.143178 + 0.0284799i
\(465\) 0 0
\(466\) 501.845 99.8231i 1.07692 0.214213i
\(467\) 204.048 492.616i 0.436934 1.05485i −0.540068 0.841621i \(-0.681602\pi\)
0.977002 0.213230i \(-0.0683984\pi\)
\(468\) 991.410 + 410.655i 2.11840 + 0.877469i
\(469\) 86.4498 + 434.612i 0.184328 + 0.926679i
\(470\) 0 0
\(471\) 60.5800 304.556i 0.128620 0.646616i
\(472\) −576.955 + 576.955i −1.22236 + 1.22236i
\(473\) −48.6389 + 32.4995i −0.102831 + 0.0687093i
\(474\) −1846.32 + 764.771i −3.89519 + 1.61344i
\(475\) 0 0
\(476\) 483.283 701.870i 1.01530 1.47452i
\(477\) 1277.45i 2.67808i
\(478\) 1487.11 615.979i 3.11110 1.28866i
\(479\) 632.407 422.561i 1.32027 0.882173i 0.322345 0.946622i \(-0.395529\pi\)
0.997921 + 0.0644488i \(0.0205289\pi\)
\(480\) 0 0
\(481\) −69.0525 13.7354i −0.143560 0.0285559i
\(482\) −53.7648 + 80.4646i −0.111545 + 0.166939i
\(483\) 213.510 + 1073.39i 0.442050 + 2.22234i
\(484\) 822.519 + 340.699i 1.69942 + 0.703923i
\(485\) 0 0
\(486\) 486.803 + 2447.32i 1.00165 + 5.03565i
\(487\) −304.140 203.220i −0.624518 0.417289i 0.202645 0.979252i \(-0.435046\pi\)
−0.827162 + 0.561963i \(0.810046\pi\)
\(488\) 580.829 + 115.534i 1.19022 + 0.236750i
\(489\) −963.234 963.234i −1.96980 1.96980i
\(490\) 0 0
\(491\) −543.876 + 225.281i −1.10769 + 0.458820i −0.860142 0.510055i \(-0.829625\pi\)
−0.247548 + 0.968876i \(0.579625\pi\)
\(492\) 3526.53 7.16775
\(493\) −32.5402 6.94628i −0.0660045 0.0140898i
\(494\) 163.331 0.330630
\(495\) 0 0
\(496\) 176.511 117.941i 0.355868 0.237783i
\(497\) −350.492 350.492i −0.705216 0.705216i
\(498\) 393.960 1980.57i 0.791085 3.97705i
\(499\) −242.463 162.009i −0.485898 0.324666i 0.288376 0.957517i \(-0.406885\pi\)
−0.774274 + 0.632851i \(0.781885\pi\)
\(500\) 0 0
\(501\) 538.085 + 222.882i 1.07402 + 0.444875i
\(502\) 797.891 + 330.497i 1.58942 + 0.658361i
\(503\) −615.564 + 122.443i −1.22379 + 0.243426i −0.764360 0.644790i \(-0.776945\pi\)
−0.459426 + 0.888216i \(0.651945\pi\)
\(504\) 1356.16 2029.63i 2.69079 4.02705i
\(505\) 0 0
\(506\) −478.443 478.443i −0.945539 0.945539i
\(507\) 682.565 456.075i 1.34628 0.899556i
\(508\) −484.104 1168.73i −0.952961 2.30065i
\(509\) 905.441i 1.77886i 0.457069 + 0.889431i \(0.348899\pi\)
−0.457069 + 0.889431i \(0.651101\pi\)
\(510\) 0 0
\(511\) −276.688 −0.541465
\(512\) 995.633 412.405i 1.94460 0.805478i
\(513\) 404.831 + 605.873i 0.789145 + 1.18104i
\(514\) 1065.69 1065.69i 2.07332 2.07332i
\(515\) 0 0
\(516\) 506.334 + 338.321i 0.981267 + 0.655662i
\(517\) −2.36939 11.9117i −0.00458295 0.0230400i
\(518\) −106.774 + 257.775i −0.206127 + 0.497636i
\(519\) 68.3712 165.063i 0.131736 0.318040i
\(520\) 0 0
\(521\) −500.960 + 749.739i −0.961535 + 1.43904i −0.0640736 + 0.997945i \(0.520409\pi\)
−0.897461 + 0.441093i \(0.854591\pi\)
\(522\) −162.857 32.3942i −0.311986 0.0620579i
\(523\) 33.6388 33.6388i 0.0643190 0.0643190i −0.674216 0.738535i \(-0.735518\pi\)
0.738535 + 0.674216i \(0.235518\pi\)
\(524\) 592.765 + 887.136i 1.13123 + 1.69301i
\(525\) 0 0
\(526\) 1045.51i 1.98766i
\(527\) −87.5060 + 56.7187i −0.166046 + 0.107626i
\(528\) 1004.66i 1.90276i
\(529\) −297.265 717.661i −0.561938 1.35664i
\(530\) 0 0
\(531\) 678.251 678.251i 1.27731 1.27731i
\(532\) 88.5536 445.189i 0.166454 0.836822i
\(533\) −181.301 + 271.336i −0.340151 + 0.509072i
\(534\) 182.967 36.3945i 0.342636 0.0681544i
\(535\) 0 0
\(536\) −626.463 + 1512.41i −1.16877 + 2.82167i
\(537\) 1759.90 350.065i 3.27727 0.651891i
\(538\) 837.713 + 559.742i 1.55709 + 1.04041i
\(539\) 20.4650 102.884i 0.0379684 0.190880i
\(540\) 0 0
\(541\) −193.644 289.809i −0.357937 0.535691i 0.608178 0.793800i \(-0.291901\pi\)
−0.966116 + 0.258109i \(0.916901\pi\)
\(542\) −124.732 301.129i −0.230132 0.555588i
\(543\) 1716.79 3.16168
\(544\) 754.196 300.132i 1.38639 0.551714i
\(545\) 0 0
\(546\) 209.054 + 504.702i 0.382883 + 0.924362i
\(547\) −121.428 181.730i −0.221989 0.332230i 0.703712 0.710485i \(-0.251524\pi\)
−0.925702 + 0.378255i \(0.876524\pi\)
\(548\) −108.123 108.123i −0.197304 0.197304i
\(549\) −682.805 135.818i −1.24372 0.247392i
\(550\) 0 0
\(551\) −17.3827 + 3.45764i −0.0315476 + 0.00627521i
\(552\) −1547.21 + 3735.30i −2.80292 + 6.76685i
\(553\) −474.811 196.673i −0.858609 0.355648i
\(554\) −145.299 730.466i −0.262272 1.31853i
\(555\) 0 0
\(556\) 94.7058 476.118i 0.170334 0.856328i
\(557\) −441.292 + 441.292i −0.792267 + 0.792267i −0.981862 0.189596i \(-0.939282\pi\)
0.189596 + 0.981862i \(0.439282\pi\)
\(558\) −432.695 + 289.118i −0.775440 + 0.518132i
\(559\) −52.0617 + 21.5647i −0.0931336 + 0.0385772i
\(560\) 0 0
\(561\) 6.88978 493.461i 0.0122813 0.879609i
\(562\) 97.7621i 0.173954i
\(563\) −342.135 + 141.717i −0.607700 + 0.251718i −0.665245 0.746625i \(-0.731673\pi\)
0.0575448 + 0.998343i \(0.481673\pi\)
\(564\) −105.123 + 70.2412i −0.186389 + 0.124541i
\(565\) 0 0
\(566\) 453.976 + 90.3014i 0.802078 + 0.159543i
\(567\) −735.142 + 1100.22i −1.29655 + 1.94042i
\(568\) −357.237 1795.95i −0.628938 3.16189i
\(569\) 891.706 + 369.357i 1.56715 + 0.649133i 0.986312 0.164889i \(-0.0527264\pi\)
0.580834 + 0.814022i \(0.302726\pi\)
\(570\) 0 0
\(571\) −62.0643 312.018i −0.108694 0.546442i −0.996308 0.0858532i \(-0.972638\pi\)
0.887614 0.460589i \(-0.152362\pi\)
\(572\) −196.928 131.583i −0.344280 0.230041i
\(573\) 40.7663 + 8.10893i 0.0711454 + 0.0141517i
\(574\) 914.462 + 914.462i 1.59314 + 1.59314i
\(575\) 0 0
\(576\) 777.315 321.974i 1.34950 0.558983i
\(577\) −163.289 −0.282996 −0.141498 0.989939i \(-0.545192\pi\)
−0.141498 + 0.989939i \(0.545192\pi\)
\(578\) −987.927 + 377.256i −1.70922 + 0.652691i
\(579\) 1745.42 3.01455
\(580\) 0 0
\(581\) 431.794 288.516i 0.743192 0.496585i
\(582\) −1059.93 1059.93i −1.82119 1.82119i
\(583\) 55.0050 276.529i 0.0943482 0.474321i
\(584\) −849.894 567.881i −1.45530 0.972399i
\(585\) 0 0
\(586\) −1313.06 543.887i −2.24072 0.928135i
\(587\) −52.3344 21.6776i −0.0891557 0.0369295i 0.337660 0.941268i \(-0.390365\pi\)
−0.426816 + 0.904339i \(0.640365\pi\)
\(588\) −1071.03 + 213.041i −1.82148 + 0.362315i
\(589\) −30.8594 + 46.1843i −0.0523929 + 0.0784114i
\(590\) 0 0
\(591\) −187.880 187.880i −0.317902 0.317902i
\(592\) −410.995 + 274.618i −0.694248 + 0.463882i
\(593\) −310.327 749.195i −0.523316 1.26340i −0.935832 0.352447i \(-0.885350\pi\)
0.412515 0.910951i \(-0.364650\pi\)
\(594\) 1506.77i 2.53665i
\(595\) 0 0
\(596\) 2374.43 3.98394
\(597\) 274.583 113.736i 0.459938 0.190513i
\(598\) −362.117 541.946i −0.605547 0.906265i
\(599\) −453.053 + 453.053i −0.756349 + 0.756349i −0.975656 0.219307i \(-0.929620\pi\)
0.219307 + 0.975656i \(0.429620\pi\)
\(600\) 0 0
\(601\) −332.402 222.104i −0.553081 0.369557i 0.247401 0.968913i \(-0.420423\pi\)
−0.800483 + 0.599356i \(0.795423\pi\)
\(602\) 43.5671 + 219.027i 0.0723707 + 0.363832i
\(603\) 736.451 1777.95i 1.22131 2.94851i
\(604\) 149.389 360.656i 0.247332 0.597113i
\(605\) 0 0
\(606\) −961.238 + 1438.59i −1.58620 + 2.37392i
\(607\) 900.705 + 179.161i 1.48386 + 0.295159i 0.869527 0.493886i \(-0.164424\pi\)
0.614336 + 0.789045i \(0.289424\pi\)
\(608\) 305.731 305.731i 0.502847 0.502847i
\(609\) −32.9331 49.2879i −0.0540774 0.0809326i
\(610\) 0 0
\(611\) 11.6994i 0.0191480i
\(612\) −3438.56 + 1368.37i −5.61856 + 2.23591i
\(613\) 1.10159i 0.00179704i 1.00000 0.000898520i \(0.000286008\pi\)
−1.00000 0.000898520i \(0.999714\pi\)
\(614\) −332.948 803.807i −0.542260 1.30913i
\(615\) 0 0
\(616\) −380.961 + 380.961i −0.618443 + 0.618443i
\(617\) −151.416 + 761.218i −0.245406 + 1.23374i 0.639800 + 0.768541i \(0.279017\pi\)
−0.885206 + 0.465199i \(0.845983\pi\)
\(618\) 57.8043 86.5103i 0.0935345 0.139984i
\(619\) 835.815 166.254i 1.35027 0.268585i 0.533620 0.845724i \(-0.320831\pi\)
0.816646 + 0.577139i \(0.195831\pi\)
\(620\) 0 0
\(621\) 1112.80 2686.53i 1.79194 4.32613i
\(622\) 223.426 44.4423i 0.359206 0.0714506i
\(623\) 39.8896 + 26.6534i 0.0640283 + 0.0427823i
\(624\) −188.807 + 949.199i −0.302576 + 1.52115i
\(625\) 0 0
\(626\) −383.034 573.251i −0.611876 0.915736i
\(627\) −100.596 242.861i −0.160441 0.387338i
\(628\) 513.951 0.818393
\(629\) 203.753 132.066i 0.323931 0.209962i
\(630\) 0 0
\(631\) −1.11445 2.69052i −0.00176616 0.00426390i 0.922994 0.384814i \(-0.125735\pi\)
−0.924760 + 0.380550i \(0.875735\pi\)
\(632\) −1054.80 1578.63i −1.66899 2.49782i
\(633\) 801.211 + 801.211i 1.26574 + 1.26574i
\(634\) −1688.26 335.816i −2.66287 0.529678i
\(635\) 0 0
\(636\) −2878.68 + 572.605i −4.52622 + 0.900322i
\(637\) 38.6706 93.3590i 0.0607073 0.146560i
\(638\) 33.8588 + 14.0248i 0.0530702 + 0.0219824i
\(639\) 419.957 + 2111.27i 0.657210 + 3.30402i
\(640\) 0 0
\(641\) −49.4146 + 248.424i −0.0770898 + 0.387557i 0.922907 + 0.385023i \(0.125806\pi\)
−0.999997 + 0.00253359i \(0.999194\pi\)
\(642\) 1329.63 1329.63i 2.07107 2.07107i
\(643\) −704.026 + 470.415i −1.09491 + 0.731595i −0.965606 0.260010i \(-0.916274\pi\)
−0.129303 + 0.991605i \(0.541274\pi\)
\(644\) −1673.50 + 693.188i −2.59861 + 1.07638i
\(645\) 0 0
\(646\) −403.827 + 392.705i −0.625119 + 0.607903i
\(647\) 631.331i 0.975783i 0.872904 + 0.487891i \(0.162234\pi\)
−0.872904 + 0.487891i \(0.837766\pi\)
\(648\) −4516.22 + 1870.68i −6.96948 + 2.88685i
\(649\) −176.026 + 117.617i −0.271226 + 0.181227i
\(650\) 0 0
\(651\) −182.210 36.2438i −0.279893 0.0556741i
\(652\) 1252.60 1874.65i 1.92117 2.87524i
\(653\) 204.845 + 1029.82i 0.313698 + 1.57707i 0.740077 + 0.672522i \(0.234789\pi\)
−0.426379 + 0.904545i \(0.640211\pi\)
\(654\) −2924.97 1211.56i −4.47243 1.85254i
\(655\) 0 0
\(656\) 446.972 + 2247.08i 0.681360 + 3.42543i
\(657\) 999.110 + 667.584i 1.52072 + 1.01611i
\(658\) −45.4736 9.04526i −0.0691088 0.0137466i
\(659\) −494.059 494.059i −0.749711 0.749711i 0.224714 0.974425i \(-0.427855\pi\)
−0.974425 + 0.224714i \(0.927855\pi\)
\(660\) 0 0
\(661\) 399.021 165.280i 0.603663 0.250046i −0.0598532 0.998207i \(-0.519063\pi\)
0.663516 + 0.748162i \(0.269063\pi\)
\(662\) 764.556 1.15492
\(663\) 99.2466 464.926i 0.149693 0.701246i
\(664\) 1918.48 2.88928
\(665\) 0 0
\(666\) 1007.51 673.195i 1.51277 1.01080i
\(667\) 50.0115 + 50.0115i 0.0749797 + 0.0749797i
\(668\) −188.061 + 945.448i −0.281529 + 1.41534i
\(669\) 519.683 + 347.241i 0.776806 + 0.519045i
\(670\) 0 0
\(671\) 141.959 + 58.8012i 0.211563 + 0.0876322i
\(672\) 1336.04 + 553.406i 1.98816 + 0.823521i
\(673\) 693.283 137.903i 1.03014 0.204907i 0.349047 0.937105i \(-0.386505\pi\)
0.681092 + 0.732198i \(0.261505\pi\)
\(674\) −488.785 + 731.519i −0.725201 + 1.08534i
\(675\) 0 0
\(676\) 960.750 + 960.750i 1.42123 + 1.42123i
\(677\) −710.811 + 474.949i −1.04994 + 0.701549i −0.955802 0.294010i \(-0.905010\pi\)
−0.0941403 + 0.995559i \(0.530010\pi\)
\(678\) 1683.82 + 4065.10i 2.48351 + 5.99572i
\(679\) 385.483i 0.567722i
\(680\) 0 0
\(681\) 1456.38 2.13858
\(682\) 106.115 43.9541i 0.155593 0.0644489i
\(683\) 595.659 + 891.467i 0.872122 + 1.30522i 0.951270 + 0.308360i \(0.0997801\pi\)
−0.0791477 + 0.996863i \(0.525220\pi\)
\(684\) −1393.90 + 1393.90i −2.03786 + 2.03786i
\(685\) 0 0
\(686\) −1128.86 754.278i −1.64556 1.09953i
\(687\) 33.7669 + 169.758i 0.0491512 + 0.247100i
\(688\) −151.400 + 365.513i −0.220059 + 0.531269i
\(689\) 103.937 250.927i 0.150852 0.364190i
\(690\) 0 0
\(691\) −30.8540 + 46.1763i −0.0446512 + 0.0668253i −0.853124 0.521709i \(-0.825295\pi\)
0.808472 + 0.588534i \(0.200295\pi\)
\(692\) 290.025 + 57.6896i 0.419111 + 0.0833664i
\(693\) 447.846 447.846i 0.646242 0.646242i
\(694\) 663.999 + 993.744i 0.956770 + 1.43191i
\(695\) 0 0
\(696\) 218.989i 0.314639i
\(697\) −204.131 1106.77i −0.292870 1.58791i
\(698\) 215.985i 0.309434i
\(699\) −303.580 732.907i −0.434306 1.04851i
\(700\) 0 0
\(701\) −234.497 + 234.497i −0.334518 + 0.334518i −0.854299 0.519781i \(-0.826013\pi\)
0.519781 + 0.854299i \(0.326013\pi\)
\(702\) 283.170 1423.59i 0.403376 2.02791i
\(703\) 71.8544 107.538i 0.102211 0.152970i
\(704\) −182.129 + 36.2277i −0.258706 + 0.0514599i
\(705\) 0 0
\(706\) −553.356 + 1335.92i −0.783791 + 1.89224i
\(707\) −436.395 + 86.8043i −0.617249 + 0.122778i
\(708\) 1832.44 + 1224.39i 2.58819 + 1.72937i
\(709\) −6.19721 + 31.1555i −0.00874077 + 0.0439428i −0.984910 0.173070i \(-0.944631\pi\)
0.976169 + 0.217013i \(0.0696313\pi\)
\(710\) 0 0
\(711\) 1240.00 + 1855.78i 1.74402 + 2.61010i
\(712\) 67.8235 + 163.740i 0.0952577 + 0.229973i
\(713\) 221.661 0.310885
\(714\) −1730.35 745.205i −2.42346 1.04370i
\(715\) 0 0
\(716\) 1136.53 + 2743.83i 1.58733 + 3.83216i
\(717\) −1386.45 2074.97i −1.93368 2.89396i
\(718\) 360.482 + 360.482i 0.502064 + 0.502064i
\(719\) 495.464 + 98.5540i 0.689102 + 0.137071i 0.527207 0.849737i \(-0.323239\pi\)
0.161895 + 0.986808i \(0.448239\pi\)
\(720\) 0 0
\(721\) 26.2427 5.22000i 0.0363977 0.00723995i
\(722\) 390.693 943.216i 0.541126 1.30639i
\(723\) 138.616 + 57.4165i 0.191723 + 0.0794142i
\(724\) 554.347 + 2786.89i 0.765672 + 3.84929i
\(725\) 0 0
\(726\) 383.994 1930.47i 0.528917 2.65904i
\(727\) 57.2885 57.2885i 0.0788013 0.0788013i −0.666608 0.745409i \(-0.732254\pi\)
0.745409 + 0.666608i \(0.232254\pi\)
\(728\) −431.526 + 288.336i −0.592755 + 0.396066i
\(729\) 1513.18 626.782i 2.07570 0.859783i
\(730\) 0 0
\(731\) 76.8704 178.492i 0.105158 0.244175i
\(732\) 1599.56i 2.18519i
\(733\) −831.666 + 344.487i −1.13461 + 0.469969i −0.869344 0.494207i \(-0.835458\pi\)
−0.265262 + 0.964176i \(0.585458\pi\)
\(734\) −1480.50 + 989.238i −2.01703 + 1.34774i
\(735\) 0 0
\(736\) −1692.27 336.613i −2.29928 0.457354i
\(737\) −235.976 + 353.162i −0.320184 + 0.479189i
\(738\) −1095.70 5508.46i −1.48469 7.46404i
\(739\) −726.586 300.962i −0.983201 0.407255i −0.167591 0.985857i \(-0.553599\pi\)
−0.815611 + 0.578601i \(0.803599\pi\)
\(740\) 0 0
\(741\) −49.4019 248.360i −0.0666692 0.335169i
\(742\) −894.949 597.986i −1.20613 0.805911i
\(743\) −588.634 117.087i −0.792239 0.157586i −0.217649 0.976027i \(-0.569839\pi\)
−0.574591 + 0.818441i \(0.694839\pi\)
\(744\) −485.300 485.300i −0.652286 0.652286i
\(745\) 0 0
\(746\) −595.016 + 246.464i −0.797609 + 0.330380i
\(747\) −2255.31 −3.01916
\(748\) 803.266 148.153i 1.07388 0.198065i
\(749\) 483.570 0.645620
\(750\) 0 0
\(751\) −134.595 + 89.9336i −0.179221 + 0.119752i −0.641945 0.766751i \(-0.721872\pi\)
0.462724 + 0.886503i \(0.346872\pi\)
\(752\) −58.0811 58.0811i −0.0772355 0.0772355i
\(753\) 261.217 1313.23i 0.346902 1.74400i
\(754\) 29.3540 + 19.6137i 0.0389310 + 0.0260129i
\(755\) 0 0
\(756\) −3726.74 1543.66i −4.92954 2.04188i
\(757\) −419.645 173.822i −0.554352 0.229620i 0.0878790 0.996131i \(-0.471991\pi\)
−0.642231 + 0.766511i \(0.721991\pi\)
\(758\) −1589.71 + 316.213i −2.09724 + 0.417168i
\(759\) −582.803 + 872.227i −0.767857 + 1.14918i
\(760\) 0 0
\(761\) −395.123 395.123i −0.519215 0.519215i 0.398119 0.917334i \(-0.369663\pi\)
−0.917334 + 0.398119i \(0.869663\pi\)
\(762\) −2325.43 + 1553.80i −3.05174 + 2.03911i
\(763\) −311.572 752.202i −0.408352 0.985848i
\(764\) 68.7948i 0.0900456i
\(765\) 0 0
\(766\) 2131.99 2.78327
\(767\) −188.413 + 78.0431i −0.245649 + 0.101751i
\(768\) −1128.77 1689.33i −1.46975 2.19964i
\(769\) 568.899 568.899i 0.739790 0.739790i −0.232747 0.972537i \(-0.574771\pi\)
0.972537 + 0.232747i \(0.0747714\pi\)
\(770\) 0 0
\(771\) −1942.80 1298.14i −2.51985 1.68371i
\(772\) 563.591 + 2833.36i 0.730040 + 3.67016i
\(773\) −497.404 + 1200.84i −0.643472 + 1.55348i 0.178493 + 0.983941i \(0.442878\pi\)
−0.821965 + 0.569538i \(0.807122\pi\)
\(774\) 371.141 896.013i 0.479510 1.15764i
\(775\) 0 0
\(776\) 791.174 1184.08i 1.01955 1.52587i
\(777\) 424.266 + 84.3917i 0.546031 + 0.108612i
\(778\) 1003.86 1003.86i 1.29031 1.29031i
\(779\) −333.049 498.443i −0.427534 0.639850i
\(780\) 0 0
\(781\) 475.109i 0.608334i
\(782\) 2198.34 + 469.274i 2.81118 + 0.600095i
\(783\) 157.502i 0.201152i
\(784\) −271.497 655.452i −0.346297 0.836035i
\(785\) 0 0
\(786\) 1667.96 1667.96i 2.12209 2.12209i
\(787\) 6.61174 33.2395i 0.00840120 0.0422357i −0.976357 0.216163i \(-0.930646\pi\)
0.984759 + 0.173927i \(0.0556458\pi\)
\(788\) 244.322 365.654i 0.310053 0.464028i
\(789\) −1589.79 + 316.229i −2.01495 + 0.400797i
\(790\) 0 0
\(791\) −433.021 + 1045.41i −0.547435 + 1.32163i
\(792\) 2294.80 456.464i 2.89747 0.576344i
\(793\) 123.072 + 82.2339i 0.155198 + 0.103700i
\(794\) 68.3472 343.604i 0.0860796 0.432751i
\(795\) 0 0
\(796\) 273.291 + 409.009i 0.343331 + 0.513831i
\(797\) −28.4474 68.6780i −0.0356931 0.0861707i 0.905028 0.425352i \(-0.139850\pi\)
−0.940721 + 0.339182i \(0.889850\pi\)
\(798\) −1003.52 −1.25755
\(799\) 28.1295 + 28.9262i 0.0352059 + 0.0362030i
\(800\) 0 0
\(801\) −79.7313 192.488i −0.0995397 0.240310i
\(802\) −159.893 239.296i −0.199367 0.298374i
\(803\) −187.532 187.532i −0.233540 0.233540i
\(804\) 4336.65 + 862.614i 5.39385 + 1.07290i
\(805\) 0 0
\(806\) 108.517 21.5854i 0.134637 0.0267809i
\(807\) 597.760 1443.12i 0.740718 1.78825i
\(808\) −1518.62 629.032i −1.87948 0.778505i
\(809\) −64.3000 323.258i −0.0794809 0.399577i −0.999961 0.00878888i \(-0.997202\pi\)
0.920480 0.390789i \(-0.127798\pi\)
\(810\) 0 0
\(811\) 47.8095 240.355i 0.0589513 0.296368i −0.940051 0.341035i \(-0.889223\pi\)
0.999002 + 0.0446666i \(0.0142225\pi\)
\(812\) 69.3757 69.3757i 0.0854380 0.0854380i
\(813\) −420.167 + 280.746i −0.516810 + 0.345322i
\(814\) −247.082 + 102.345i −0.303541 + 0.125731i
\(815\) 0 0
\(816\) −1815.39 2800.80i −2.22474 3.43235i
\(817\) 103.517i 0.126704i
\(818\) 141.427 58.5809i 0.172893 0.0716148i
\(819\) 507.289 338.959i 0.619400 0.413870i
\(820\) 0 0
\(821\) 613.444 + 122.022i 0.747191 + 0.148625i 0.553978 0.832531i \(-0.313109\pi\)
0.193213 + 0.981157i \(0.438109\pi\)
\(822\) −187.814 + 281.084i −0.228484 + 0.341951i
\(823\) 115.470 + 580.505i 0.140303 + 0.705352i 0.985334 + 0.170635i \(0.0545819\pi\)
−0.845031 + 0.534717i \(0.820418\pi\)
\(824\) 91.3225 + 37.8270i 0.110828 + 0.0459066i
\(825\) 0 0
\(826\) 157.671 + 792.664i 0.190885 + 0.959641i
\(827\) 12.4759 + 8.33614i 0.0150858 + 0.0100800i 0.563090 0.826395i \(-0.309612\pi\)
−0.548004 + 0.836475i \(0.684612\pi\)
\(828\) 7715.44 + 1534.70i 9.31817 + 1.85350i
\(829\) 360.941 + 360.941i 0.435393 + 0.435393i 0.890458 0.455065i \(-0.150384\pi\)
−0.455065 + 0.890458i \(0.650384\pi\)
\(830\) 0 0
\(831\) −1066.79 + 441.880i −1.28374 + 0.531744i
\(832\) −178.884 −0.215004
\(833\) 128.857 + 323.802i 0.154690 + 0.388718i
\(834\) −1073.24 −1.28686
\(835\) 0 0
\(836\) 361.757 241.718i 0.432724 0.289137i
\(837\) 349.041 + 349.041i 0.417014 + 0.417014i
\(838\) −181.464 + 912.283i −0.216545 + 1.08864i
\(839\) −1028.00 686.885i −1.22526 0.818695i −0.237008 0.971508i \(-0.576167\pi\)
−0.988255 + 0.152813i \(0.951167\pi\)
\(840\) 0 0
\(841\) 773.443 + 320.371i 0.919671 + 0.380940i
\(842\) 110.444 + 45.7472i 0.131168 + 0.0543316i
\(843\) 148.656 29.5695i 0.176342 0.0350765i
\(844\) −1041.91 + 1559.32i −1.23449 + 1.84754i
\(845\) 0 0
\(846\) 142.379 + 142.379i 0.168297 + 0.168297i
\(847\) 420.870 281.216i 0.496895 0.332015i
\(848\) −729.719 1761.70i −0.860518 2.07747i
\(849\) 717.624i 0.845258i
\(850\) 0 0
\(851\) −516.125 −0.606492
\(852\) −4569.42 + 1892.72i −5.36317 + 2.22150i
\(853\) −360.989 540.259i −0.423200 0.633363i 0.557201 0.830378i \(-0.311875\pi\)
−0.980401 + 0.197014i \(0.936875\pi\)
\(854\) 414.779 414.779i 0.485690 0.485690i
\(855\) 0 0
\(856\) 1485.36 + 992.488i 1.73524 + 1.15945i
\(857\) 156.735 + 787.962i 0.182888 + 0.919442i 0.957814 + 0.287389i \(0.0927874\pi\)
−0.774925 + 0.632053i \(0.782213\pi\)
\(858\) −200.382 + 483.765i −0.233546 + 0.563829i
\(859\) 348.417 841.152i 0.405607 0.979222i −0.580672 0.814137i \(-0.697210\pi\)
0.986279 0.165085i \(-0.0527898\pi\)
\(860\) 0 0
\(861\) 1113.93 1667.11i 1.29376 1.93625i
\(862\) 2179.98 + 433.625i 2.52898 + 0.503045i
\(863\) 634.157 634.157i 0.734828 0.734828i −0.236744 0.971572i \(-0.576080\pi\)
0.971572 + 0.236744i \(0.0760802\pi\)
\(864\) −2134.69 3194.80i −2.47071 3.69768i
\(865\) 0 0
\(866\) 862.797i 0.996302i
\(867\) 872.464 + 1388.13i 1.00630 + 1.60107i
\(868\) 307.487i 0.354247i
\(869\) −188.515 455.114i −0.216933 0.523722i
\(870\) 0 0
\(871\) −289.320 + 289.320i −0.332170 + 0.332170i
\(872\) 586.789 2949.99i 0.672924 3.38302i
\(873\) −930.080 + 1391.96i −1.06538 + 1.59446i
\(874\) 1174.34 233.590i 1.34363 0.267265i
\(875\) 0 0
\(876\) −1056.53 + 2550.70i −1.20609 + 2.91176i
\(877\) −215.684 + 42.9023i −0.245934 + 0.0489193i −0.316518 0.948587i \(-0.602514\pi\)
0.0705838 + 0.997506i \(0.477514\pi\)
\(878\) −2042.12 1364.50i −2.32588 1.55410i
\(879\) −429.876 + 2161.13i −0.489051 + 2.45863i
\(880\) 0 0
\(881\) −21.8952 32.7685i −0.0248527 0.0371947i 0.818835 0.574029i \(-0.194620\pi\)
−0.843688 + 0.536834i \(0.819620\pi\)
\(882\) 665.544 + 1606.76i 0.754585 + 1.82173i
\(883\) −1402.81 −1.58869 −0.794343 0.607469i \(-0.792185\pi\)
−0.794343 + 0.607469i \(0.792185\pi\)
\(884\) 786.767 + 10.9850i 0.890008 + 0.0124264i
\(885\) 0 0
\(886\) −434.267 1048.41i −0.490144 1.18331i
\(887\) 547.484 + 819.368i 0.617231 + 0.923751i 1.00000 9.26296e-5i \(-2.94849e-5\pi\)
−0.382769 + 0.923844i \(0.625029\pi\)
\(888\) 1129.99 + 1129.99i 1.27252 + 1.27252i
\(889\) −705.414 140.316i −0.793492 0.157835i
\(890\) 0 0
\(891\) −1243.96 + 247.439i −1.39614 + 0.277709i
\(892\) −395.877 + 955.731i −0.443808 + 1.07145i
\(893\) 19.8559 + 8.22457i 0.0222350 + 0.00921005i
\(894\) −1024.12 5148.61i −1.14555 5.75908i
\(895\) 0 0
\(896\) 60.6175 304.745i 0.0676535 0.340117i
\(897\) −714.551 + 714.551i −0.796601 + 0.796601i
\(898\) −533.963 + 356.783i −0.594614 + 0.397308i
\(899\) −11.0921 + 4.59451i −0.0123383 + 0.00511069i
\(900\) 0 0
\(901\) 346.337 + 870.303i 0.384392 + 0.965930i
\(902\) 1239.60i 1.37428i
\(903\) 319.872 132.496i 0.354233 0.146728i
\(904\) −3475.71 + 2322.39i −3.84481 + 2.56902i
\(905\) 0 0
\(906\) −846.465 168.372i −0.934289 0.185842i
\(907\) 44.9747 67.3094i 0.0495863 0.0742111i −0.805848 0.592122i \(-0.798290\pi\)
0.855434 + 0.517911i \(0.173290\pi\)
\(908\) 470.259 + 2364.15i 0.517907 + 2.60369i
\(909\) 1785.24 + 739.471i 1.96396 + 0.813499i
\(910\) 0 0
\(911\) 286.067 + 1438.15i 0.314014 + 1.57866i 0.739160 + 0.673530i \(0.235223\pi\)
−0.425146 + 0.905125i \(0.639777\pi\)
\(912\) −1478.22 987.714i −1.62085 1.08302i
\(913\) 488.207 + 97.1105i 0.534729 + 0.106364i
\(914\) 1612.34 + 1612.34i 1.76404 + 1.76404i
\(915\) 0 0
\(916\) −264.666 + 109.628i −0.288937 + 0.119682i
\(917\) 606.617 0.661524
\(918\) 2722.69 + 4200.59i 2.96590 + 4.57580i
\(919\) −1285.69 −1.39901 −0.699504 0.714629i \(-0.746596\pi\)
−0.699504 + 0.714629i \(0.746596\pi\)
\(920\) 0 0
\(921\) −1121.56 + 749.400i −1.21776 + 0.813681i
\(922\) −1819.78 1819.78i −1.97373 1.97373i
\(923\) 89.2882 448.882i 0.0967370 0.486330i
\(924\) 1209.95 + 808.462i 1.30947 + 0.874959i
\(925\) 0 0
\(926\) −1281.95 531.000i −1.38439 0.573434i
\(927\) −107.356 44.4683i −0.115810 0.0479701i
\(928\) 91.6600 18.2323i 0.0987715 0.0196469i
\(929\) 965.295 1444.67i 1.03907 1.55508i 0.224957 0.974369i \(-0.427776\pi\)
0.814112 0.580708i \(-0.197224\pi\)
\(930\) 0 0
\(931\) 131.261 + 131.261i 0.140989 + 0.140989i
\(932\) 1091.71 729.459i 1.17136 0.782681i
\(933\) −135.157 326.298i −0.144863 0.349730i
\(934\) 1951.09i 2.08897i
\(935\) 0 0
\(936\) 2253.91 2.40802
\(937\) 1509.10 625.091i 1.61057 0.667119i 0.617708 0.786407i \(-0.288061\pi\)
0.992860 + 0.119288i \(0.0380612\pi\)
\(938\) 900.850 + 1348.22i 0.960395 + 1.43733i
\(939\) −755.826 + 755.826i −0.804926 + 0.804926i
\(940\) 0 0
\(941\) −237.401 158.626i −0.252286 0.168572i 0.422997 0.906131i \(-0.360978\pi\)
−0.675282 + 0.737559i \(0.735978\pi\)
\(942\) −221.674 1114.43i −0.235323 1.18305i
\(943\) −915.481 + 2210.17i −0.970817 + 2.34376i
\(944\) −547.922 + 1322.80i −0.580426 + 1.40127i
\(945\) 0 0
\(946\) −118.922 + 177.979i −0.125710 + 0.188139i
\(947\) 15.8796 + 3.15865i 0.0167683 + 0.00333543i 0.203467 0.979082i \(-0.434779\pi\)
−0.186699 + 0.982417i \(0.559779\pi\)
\(948\) −3626.13 + 3626.13i −3.82503 + 3.82503i
\(949\) −141.937 212.423i −0.149565 0.223839i
\(950\) 0 0
\(951\) 2668.73i 2.80623i
\(952\) 373.660 1750.43i 0.392500 1.83869i
\(953\) 1030.31i 1.08112i 0.841306 + 0.540560i \(0.181788\pi\)
−0.841306 + 0.540560i \(0.818212\pi\)
\(954\) 1788.82 + 4318.60i 1.87508 + 4.52684i
\(955\) 0 0
\(956\) 2920.64 2920.64i 3.05506 3.05506i
\(957\) 11.0848 55.7273i 0.0115829 0.0582312i
\(958\) 1546.23 2314.10i 1.61402 2.41555i
\(959\) −85.2662 + 16.9605i −0.0889116 + 0.0176856i
\(960\) 0 0
\(961\) 353.359 853.085i 0.367700 0.887706i
\(962\) −252.677 + 50.2605i −0.262657 + 0.0522458i
\(963\) −1746.15 1166.74i −1.81324 1.21157i
\(964\) −48.4463 + 243.556i −0.0502555 + 0.252652i
\(965\) 0 0
\(966\) 2224.88 + 3329.78i 2.30319 + 3.44697i
\(967\) −184.118 444.501i −0.190402 0.459670i 0.799634 0.600488i \(-0.205027\pi\)
−0.990036 + 0.140818i \(0.955027\pi\)
\(968\) 1869.95 1.93176
\(969\) 719.287 + 495.276i 0.742298 + 0.511120i
\(970\) 0 0
\(971\) 347.780 + 839.615i 0.358167 + 0.864691i 0.995558 + 0.0941509i \(0.0300136\pi\)
−0.637391 + 0.770541i \(0.719986\pi\)
\(972\) 3557.32 + 5323.90i 3.65979 + 5.47727i
\(973\) −195.163 195.163i −0.200578 0.200578i
\(974\) −1312.76 261.125i −1.34781 0.268095i
\(975\) 0 0
\(976\) 1019.23 202.737i 1.04429 0.207722i
\(977\) −328.742 + 793.653i −0.336481 + 0.812337i 0.661567 + 0.749886i \(0.269892\pi\)
−0.998048 + 0.0624510i \(0.980108\pi\)
\(978\) −4605.19 1907.53i −4.70878 1.95044i
\(979\) 8.97117 + 45.1011i 0.00916360 + 0.0460685i
\(980\) 0 0
\(981\) −689.812 + 3467.92i −0.703172 + 3.53509i
\(982\) −1523.19 + 1523.19i −1.55111 + 1.55111i
\(983\) 1349.84 901.935i 1.37319 0.917533i 0.373237 0.927736i \(-0.378248\pi\)
0.999948 + 0.0102031i \(0.00324780\pi\)
\(984\) 6843.24 2834.56i 6.95451 2.88065i
\(985\) 0 0
\(986\) −119.734 + 22.0835i −0.121434 + 0.0223971i
\(987\) 71.8826i 0.0728294i
\(988\) 387.214 160.389i 0.391917 0.162337i
\(989\) −343.478 + 229.504i −0.347298 + 0.232057i
\(990\) 0 0
\(991\) −1713.25 340.786i −1.72881 0.343881i −0.772226 0.635348i \(-0.780857\pi\)
−0.956581 + 0.291467i \(0.905857\pi\)
\(992\) 162.723 243.532i 0.164035 0.245496i
\(993\) −231.251 1162.58i −0.232881 1.17077i
\(994\) −1675.69 694.094i −1.68581 0.698284i
\(995\) 0 0
\(996\) −1010.92 5082.26i −1.01498 5.10267i
\(997\) −449.374 300.262i −0.450726 0.301165i 0.309411 0.950928i \(-0.399868\pi\)
−0.760137 + 0.649763i \(0.774868\pi\)
\(998\) −1046.55 208.171i −1.04864 0.208588i
\(999\) −812.721 812.721i −0.813535 0.813535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.t.e.199.12 96
5.2 odd 4 425.3.u.e.301.12 96
5.3 odd 4 85.3.q.a.46.1 96
5.4 even 2 425.3.t.h.199.1 96
17.10 odd 16 425.3.t.h.299.1 96
85.27 even 16 425.3.u.e.401.12 96
85.44 odd 16 inner 425.3.t.e.299.12 96
85.78 even 16 85.3.q.a.61.1 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.3.q.a.46.1 96 5.3 odd 4
85.3.q.a.61.1 yes 96 85.78 even 16
425.3.t.e.199.12 96 1.1 even 1 trivial
425.3.t.e.299.12 96 85.44 odd 16 inner
425.3.t.h.199.1 96 5.4 even 2
425.3.t.h.299.1 96 17.10 odd 16
425.3.u.e.301.12 96 5.2 odd 4
425.3.u.e.401.12 96 85.27 even 16