Properties

Label 425.3.t.f.24.6
Level $425$
Weight $3$
Character 425.24
Analytic conductor $11.580$
Analytic rank $0$
Dimension $96$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(12\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 24.6
Character \(\chi\) \(=\) 425.24
Dual form 425.3.t.f.124.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.387390 - 0.160462i) q^{2} +(-1.40425 - 0.938292i) q^{3} +(-2.70410 - 2.70410i) q^{4} +(0.393433 + 0.588815i) q^{6} +(-1.84965 - 0.367918i) q^{7} +(1.25549 + 3.03101i) q^{8} +(-2.35262 - 5.67972i) q^{9} +(-16.4446 + 10.9879i) q^{11} +(1.26001 + 6.33449i) q^{12} +(4.15401 + 4.15401i) q^{13} +(0.657498 + 0.439326i) q^{14} +13.9211i q^{16} +(9.03903 - 14.3978i) q^{17} +2.57777i q^{18} +(-0.863349 + 2.08431i) q^{19} +(2.25216 + 2.25216i) q^{21} +(8.13362 - 1.61788i) q^{22} +(14.1508 - 9.45525i) q^{23} +(1.08095 - 5.43432i) q^{24} +(-0.942660 - 2.27578i) q^{26} +(-4.99092 + 25.0911i) q^{27} +(4.00675 + 5.99653i) q^{28} +(8.72414 - 1.73534i) q^{29} +(-4.59107 - 3.06766i) q^{31} +(7.25575 - 17.5169i) q^{32} +33.4023 q^{33} +(-5.81193 + 4.12713i) q^{34} +(-8.99683 + 21.7203i) q^{36} +(47.8471 + 31.9704i) q^{37} +(0.668906 - 0.668906i) q^{38} +(-1.93561 - 9.73095i) q^{39} +(-12.0488 + 60.5735i) q^{41} +(-0.511078 - 1.23385i) q^{42} +(-14.5262 + 6.01694i) q^{43} +(74.1804 + 14.7554i) q^{44} +(-6.99908 + 1.39220i) q^{46} +(47.7291 + 47.7291i) q^{47} +(13.0620 - 19.5487i) q^{48} +(-41.9843 - 17.3905i) q^{49} +(-26.2024 + 11.7369i) q^{51} -22.4657i q^{52} +(66.3355 + 27.4771i) q^{53} +(5.95960 - 8.91917i) q^{54} +(-1.20704 - 6.06822i) q^{56} +(3.16805 - 2.11682i) q^{57} +(-3.65810 - 0.727641i) q^{58} +(11.8299 - 4.90011i) q^{59} +(77.9573 + 15.5067i) q^{61} +(1.28629 + 1.92507i) q^{62} +(2.26184 + 11.3710i) q^{63} +(33.7532 - 33.7532i) q^{64} +(-12.9397 - 5.35980i) q^{66} -121.122 q^{67} +(-63.3756 + 14.4906i) q^{68} -28.7431 q^{69} +(2.12776 - 3.18442i) q^{71} +(14.2616 - 14.2616i) q^{72} +(-13.2164 + 2.62891i) q^{73} +(-13.4055 - 20.0627i) q^{74} +(7.97078 - 3.30160i) q^{76} +(34.4594 - 14.2735i) q^{77} +(-0.811615 + 4.08026i) q^{78} +(-45.3705 + 30.3156i) q^{79} +(-8.57232 + 8.57232i) q^{81} +(14.3873 - 21.5322i) q^{82} +(-20.1994 + 48.7656i) q^{83} -12.1802i q^{84} +6.59279 q^{86} +(-13.8792 - 5.74893i) q^{87} +(-53.9504 - 36.0485i) q^{88} +(-60.0205 - 60.0205i) q^{89} +(-6.15512 - 9.21178i) q^{91} +(-63.8331 - 12.6972i) q^{92} +(3.56867 + 8.61554i) q^{93} +(-10.8311 - 26.1485i) q^{94} +(-26.6249 + 17.7902i) q^{96} +(7.28522 + 36.6253i) q^{97} +(13.4738 + 13.4738i) q^{98} +(101.096 + 67.5502i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 24 q^{13} - 32 q^{14} + 64 q^{17} + 24 q^{19} + 48 q^{22} + 72 q^{23} + 336 q^{24} - 224 q^{26} - 64 q^{31} + 400 q^{32} - 256 q^{33} - 64 q^{34} + 192 q^{36} + 72 q^{37} + 496 q^{38} - 16 q^{39}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.387390 0.160462i −0.193695 0.0802311i 0.283728 0.958905i \(-0.408429\pi\)
−0.477423 + 0.878674i \(0.658429\pi\)
\(3\) −1.40425 0.938292i −0.468084 0.312764i 0.299065 0.954233i \(-0.403325\pi\)
−0.767149 + 0.641469i \(0.778325\pi\)
\(4\) −2.70410 2.70410i −0.676026 0.676026i
\(5\) 0 0
\(6\) 0.393433 + 0.588815i 0.0655722 + 0.0981358i
\(7\) −1.84965 0.367918i −0.264235 0.0525597i 0.0611945 0.998126i \(-0.480509\pi\)
−0.325430 + 0.945566i \(0.605509\pi\)
\(8\) 1.25549 + 3.03101i 0.156936 + 0.378876i
\(9\) −2.35262 5.67972i −0.261402 0.631080i
\(10\) 0 0
\(11\) −16.4446 + 10.9879i −1.49496 + 0.998902i −0.504157 + 0.863612i \(0.668197\pi\)
−0.990806 + 0.135290i \(0.956803\pi\)
\(12\) 1.26001 + 6.33449i 0.105001 + 0.527874i
\(13\) 4.15401 + 4.15401i 0.319539 + 0.319539i 0.848590 0.529051i \(-0.177452\pi\)
−0.529051 + 0.848590i \(0.677452\pi\)
\(14\) 0.657498 + 0.439326i 0.0469642 + 0.0313804i
\(15\) 0 0
\(16\) 13.9211i 0.870068i
\(17\) 9.03903 14.3978i 0.531708 0.846928i
\(18\) 2.57777i 0.143209i
\(19\) −0.863349 + 2.08431i −0.0454394 + 0.109700i −0.944970 0.327158i \(-0.893909\pi\)
0.899530 + 0.436859i \(0.143909\pi\)
\(20\) 0 0
\(21\) 2.25216 + 2.25216i 0.107246 + 0.107246i
\(22\) 8.13362 1.61788i 0.369710 0.0735399i
\(23\) 14.1508 9.45525i 0.615251 0.411098i −0.208522 0.978018i \(-0.566865\pi\)
0.823773 + 0.566920i \(0.191865\pi\)
\(24\) 1.08095 5.43432i 0.0450397 0.226430i
\(25\) 0 0
\(26\) −0.942660 2.27578i −0.0362561 0.0875301i
\(27\) −4.99092 + 25.0911i −0.184849 + 0.929299i
\(28\) 4.00675 + 5.99653i 0.143098 + 0.214162i
\(29\) 8.72414 1.73534i 0.300832 0.0598393i −0.0423662 0.999102i \(-0.513490\pi\)
0.343199 + 0.939263i \(0.388490\pi\)
\(30\) 0 0
\(31\) −4.59107 3.06766i −0.148099 0.0989567i 0.479313 0.877644i \(-0.340886\pi\)
−0.627412 + 0.778687i \(0.715886\pi\)
\(32\) 7.25575 17.5169i 0.226742 0.547404i
\(33\) 33.4023 1.01219
\(34\) −5.81193 + 4.12713i −0.170939 + 0.121386i
\(35\) 0 0
\(36\) −8.99683 + 21.7203i −0.249912 + 0.603341i
\(37\) 47.8471 + 31.9704i 1.29317 + 0.864066i 0.995876 0.0907218i \(-0.0289174\pi\)
0.297289 + 0.954787i \(0.403917\pi\)
\(38\) 0.668906 0.668906i 0.0176028 0.0176028i
\(39\) −1.93561 9.73095i −0.0496309 0.249512i
\(40\) 0 0
\(41\) −12.0488 + 60.5735i −0.293873 + 1.47740i 0.498246 + 0.867036i \(0.333978\pi\)
−0.792120 + 0.610366i \(0.791022\pi\)
\(42\) −0.511078 1.23385i −0.0121685 0.0293774i
\(43\) −14.5262 + 6.01694i −0.337818 + 0.139929i −0.545142 0.838343i \(-0.683524\pi\)
0.207324 + 0.978272i \(0.433524\pi\)
\(44\) 74.1804 + 14.7554i 1.68592 + 0.335350i
\(45\) 0 0
\(46\) −6.99908 + 1.39220i −0.152154 + 0.0302653i
\(47\) 47.7291 + 47.7291i 1.01551 + 1.01551i 0.999878 + 0.0156344i \(0.00497680\pi\)
0.0156344 + 0.999878i \(0.495023\pi\)
\(48\) 13.0620 19.5487i 0.272126 0.407265i
\(49\) −41.9843 17.3905i −0.856822 0.354907i
\(50\) 0 0
\(51\) −26.2024 + 11.7369i −0.513773 + 0.230135i
\(52\) 22.4657i 0.432033i
\(53\) 66.3355 + 27.4771i 1.25161 + 0.518435i 0.907326 0.420429i \(-0.138120\pi\)
0.344288 + 0.938864i \(0.388120\pi\)
\(54\) 5.95960 8.91917i 0.110363 0.165170i
\(55\) 0 0
\(56\) −1.20704 6.06822i −0.0215543 0.108361i
\(57\) 3.16805 2.11682i 0.0555799 0.0371373i
\(58\) −3.65810 0.727641i −0.0630707 0.0125455i
\(59\) 11.8299 4.90011i 0.200507 0.0830527i −0.280170 0.959950i \(-0.590391\pi\)
0.480677 + 0.876898i \(0.340391\pi\)
\(60\) 0 0
\(61\) 77.9573 + 15.5067i 1.27799 + 0.254208i 0.786997 0.616956i \(-0.211635\pi\)
0.490992 + 0.871164i \(0.336635\pi\)
\(62\) 1.28629 + 1.92507i 0.0207467 + 0.0310496i
\(63\) 2.26184 + 11.3710i 0.0359022 + 0.180493i
\(64\) 33.7532 33.7532i 0.527393 0.527393i
\(65\) 0 0
\(66\) −12.9397 5.35980i −0.196056 0.0812091i
\(67\) −121.122 −1.80780 −0.903898 0.427748i \(-0.859307\pi\)
−0.903898 + 0.427748i \(0.859307\pi\)
\(68\) −63.3756 + 14.4906i −0.931994 + 0.213097i
\(69\) −28.7431 −0.416566
\(70\) 0 0
\(71\) 2.12776 3.18442i 0.0299685 0.0448510i −0.816183 0.577794i \(-0.803914\pi\)
0.846151 + 0.532943i \(0.178914\pi\)
\(72\) 14.2616 14.2616i 0.198078 0.198078i
\(73\) −13.2164 + 2.62891i −0.181047 + 0.0360125i −0.284781 0.958593i \(-0.591921\pi\)
0.103734 + 0.994605i \(0.466921\pi\)
\(74\) −13.4055 20.0627i −0.181155 0.271117i
\(75\) 0 0
\(76\) 7.97078 3.30160i 0.104879 0.0434421i
\(77\) 34.4594 14.2735i 0.447524 0.185371i
\(78\) −0.811615 + 4.08026i −0.0104053 + 0.0523111i
\(79\) −45.3705 + 30.3156i −0.574311 + 0.383742i −0.808542 0.588439i \(-0.799743\pi\)
0.234231 + 0.972181i \(0.424743\pi\)
\(80\) 0 0
\(81\) −8.57232 + 8.57232i −0.105831 + 0.105831i
\(82\) 14.3873 21.5322i 0.175455 0.262587i
\(83\) −20.1994 + 48.7656i −0.243366 + 0.587537i −0.997613 0.0690534i \(-0.978002\pi\)
0.754247 + 0.656591i \(0.228002\pi\)
\(84\) 12.1802i 0.145002i
\(85\) 0 0
\(86\) 6.59279 0.0766603
\(87\) −13.8792 5.74893i −0.159531 0.0660797i
\(88\) −53.9504 36.0485i −0.613073 0.409642i
\(89\) −60.0205 60.0205i −0.674388 0.674388i 0.284336 0.958725i \(-0.408227\pi\)
−0.958725 + 0.284336i \(0.908227\pi\)
\(90\) 0 0
\(91\) −6.15512 9.21178i −0.0676387 0.101228i
\(92\) −63.8331 12.6972i −0.693839 0.138013i
\(93\) 3.56867 + 8.61554i 0.0383728 + 0.0926402i
\(94\) −10.8311 26.1485i −0.115224 0.278175i
\(95\) 0 0
\(96\) −26.6249 + 17.7902i −0.277343 + 0.185314i
\(97\) 7.28522 + 36.6253i 0.0751053 + 0.377580i 0.999996 0.00265195i \(-0.000844143\pi\)
−0.924891 + 0.380232i \(0.875844\pi\)
\(98\) 13.4738 + 13.4738i 0.137487 + 0.137487i
\(99\) 101.096 + 67.5502i 1.02117 + 0.682326i
\(100\) 0 0
\(101\) 10.0641i 0.0996450i −0.998758 0.0498225i \(-0.984134\pi\)
0.998758 0.0498225i \(-0.0158656\pi\)
\(102\) 12.0339 0.342249i 0.117979 0.00335539i
\(103\) 62.2752i 0.604614i 0.953211 + 0.302307i \(0.0977567\pi\)
−0.953211 + 0.302307i \(0.902243\pi\)
\(104\) −7.37554 + 17.8061i −0.0709187 + 0.171213i
\(105\) 0 0
\(106\) −21.2887 21.2887i −0.200837 0.200837i
\(107\) −3.60240 + 0.716562i −0.0336673 + 0.00669684i −0.211895 0.977292i \(-0.567964\pi\)
0.178228 + 0.983989i \(0.442964\pi\)
\(108\) 81.3448 54.3529i 0.753193 0.503268i
\(109\) −24.8584 + 124.971i −0.228058 + 1.14653i 0.681778 + 0.731559i \(0.261207\pi\)
−0.909836 + 0.414967i \(0.863793\pi\)
\(110\) 0 0
\(111\) −37.1919 89.7892i −0.335062 0.808911i
\(112\) 5.12181 25.7491i 0.0457305 0.229903i
\(113\) −76.9038 115.095i −0.680564 1.01854i −0.997540 0.0701028i \(-0.977667\pi\)
0.316975 0.948434i \(-0.397333\pi\)
\(114\) −1.56694 + 0.311684i −0.0137451 + 0.00273407i
\(115\) 0 0
\(116\) −28.2835 18.8984i −0.243823 0.162918i
\(117\) 13.8208 33.3664i 0.118126 0.285183i
\(118\) −5.36907 −0.0455006
\(119\) −22.0162 + 23.3052i −0.185010 + 0.195842i
\(120\) 0 0
\(121\) 103.385 249.594i 0.854425 2.06276i
\(122\) −27.7117 18.5163i −0.227145 0.151773i
\(123\) 73.7552 73.7552i 0.599636 0.599636i
\(124\) 4.11948 + 20.7100i 0.0332216 + 0.167016i
\(125\) 0 0
\(126\) 0.948408 4.76797i 0.00752705 0.0378410i
\(127\) −44.3856 107.156i −0.349493 0.843751i −0.996680 0.0814193i \(-0.974055\pi\)
0.647187 0.762331i \(-0.275945\pi\)
\(128\) −88.5594 + 36.6825i −0.691871 + 0.286582i
\(129\) 26.0441 + 5.18049i 0.201892 + 0.0401588i
\(130\) 0 0
\(131\) 87.2129 17.3477i 0.665747 0.132425i 0.149363 0.988782i \(-0.452278\pi\)
0.516384 + 0.856357i \(0.327278\pi\)
\(132\) −90.3232 90.3232i −0.684267 0.684267i
\(133\) 2.36375 3.53760i 0.0177725 0.0265985i
\(134\) 46.9216 + 19.4356i 0.350161 + 0.145041i
\(135\) 0 0
\(136\) 54.9882 + 9.32120i 0.404325 + 0.0685383i
\(137\) 10.5646i 0.0771141i 0.999256 + 0.0385571i \(0.0122761\pi\)
−0.999256 + 0.0385571i \(0.987724\pi\)
\(138\) 11.1348 + 4.61217i 0.0806868 + 0.0334216i
\(139\) −122.408 + 183.196i −0.880631 + 1.31796i 0.0667236 + 0.997771i \(0.478745\pi\)
−0.947355 + 0.320186i \(0.896255\pi\)
\(140\) 0 0
\(141\) −22.2399 111.808i −0.157730 0.792961i
\(142\) −1.33525 + 0.892188i −0.00940319 + 0.00628301i
\(143\) −113.955 22.6670i −0.796887 0.158511i
\(144\) 79.0678 32.7510i 0.549082 0.227437i
\(145\) 0 0
\(146\) 5.54176 + 1.10232i 0.0379572 + 0.00755016i
\(147\) 42.6392 + 63.8141i 0.290063 + 0.434110i
\(148\) −42.9322 215.835i −0.290083 1.45834i
\(149\) −124.308 + 124.308i −0.834279 + 0.834279i −0.988099 0.153820i \(-0.950843\pi\)
0.153820 + 0.988099i \(0.450843\pi\)
\(150\) 0 0
\(151\) 110.054 + 45.5858i 0.728833 + 0.301893i 0.716072 0.698026i \(-0.245938\pi\)
0.0127607 + 0.999919i \(0.495938\pi\)
\(152\) −7.40148 −0.0486940
\(153\) −103.041 17.4667i −0.673468 0.114162i
\(154\) −15.6396 −0.101556
\(155\) 0 0
\(156\) −21.0794 + 31.5476i −0.135125 + 0.202228i
\(157\) −125.113 + 125.113i −0.796896 + 0.796896i −0.982605 0.185709i \(-0.940542\pi\)
0.185709 + 0.982605i \(0.440542\pi\)
\(158\) 22.4406 4.46371i 0.142029 0.0282514i
\(159\) −67.3704 100.827i −0.423713 0.634131i
\(160\) 0 0
\(161\) −29.6527 + 12.2826i −0.184178 + 0.0762892i
\(162\) 4.69636 1.94530i 0.0289899 0.0120080i
\(163\) −45.3079 + 227.778i −0.277963 + 1.39741i 0.549313 + 0.835617i \(0.314889\pi\)
−0.827276 + 0.561796i \(0.810111\pi\)
\(164\) 196.378 131.216i 1.19743 0.800096i
\(165\) 0 0
\(166\) 15.6501 15.6501i 0.0942775 0.0942775i
\(167\) −44.6539 + 66.8292i −0.267388 + 0.400175i −0.940730 0.339156i \(-0.889858\pi\)
0.673342 + 0.739332i \(0.264858\pi\)
\(168\) −3.99876 + 9.65387i −0.0238022 + 0.0574635i
\(169\) 134.488i 0.795790i
\(170\) 0 0
\(171\) 13.8694 0.0811077
\(172\) 55.5507 + 23.0099i 0.322969 + 0.133778i
\(173\) 138.960 + 92.8500i 0.803236 + 0.536705i 0.888080 0.459689i \(-0.152039\pi\)
−0.0848437 + 0.996394i \(0.527039\pi\)
\(174\) 4.45416 + 4.45416i 0.0255986 + 0.0255986i
\(175\) 0 0
\(176\) −152.964 228.927i −0.869113 1.30072i
\(177\) −21.2099 4.21891i −0.119830 0.0238357i
\(178\) 13.6203 + 32.8824i 0.0765187 + 0.184732i
\(179\) −14.8103 35.7552i −0.0827390 0.199750i 0.877096 0.480316i \(-0.159478\pi\)
−0.959835 + 0.280566i \(0.909478\pi\)
\(180\) 0 0
\(181\) 53.8192 35.9608i 0.297344 0.198679i −0.397945 0.917409i \(-0.630277\pi\)
0.695289 + 0.718731i \(0.255277\pi\)
\(182\) 0.906288 + 4.55622i 0.00497960 + 0.0250342i
\(183\) −94.9221 94.9221i −0.518700 0.518700i
\(184\) 46.4250 + 31.0202i 0.252310 + 0.168588i
\(185\) 0 0
\(186\) 3.91021i 0.0210226i
\(187\) 9.55844 + 336.086i 0.0511147 + 1.79725i
\(188\) 258.129i 1.37303i
\(189\) 18.4629 44.5734i 0.0976873 0.235838i
\(190\) 0 0
\(191\) 0.0431974 + 0.0431974i 0.000226164 + 0.000226164i 0.707220 0.706994i \(-0.249949\pi\)
−0.706994 + 0.707220i \(0.749949\pi\)
\(192\) −79.0683 + 15.7277i −0.411814 + 0.0819149i
\(193\) −174.041 + 116.290i −0.901767 + 0.602541i −0.917675 0.397332i \(-0.869936\pi\)
0.0159081 + 0.999873i \(0.494936\pi\)
\(194\) 3.05475 15.3573i 0.0157461 0.0791611i
\(195\) 0 0
\(196\) 66.5042 + 160.555i 0.339307 + 0.819160i
\(197\) 45.8195 230.350i 0.232586 1.16929i −0.671190 0.741286i \(-0.734216\pi\)
0.903776 0.428005i \(-0.140784\pi\)
\(198\) −28.3244 42.3904i −0.143052 0.214093i
\(199\) −205.980 + 40.9720i −1.03508 + 0.205889i −0.683256 0.730179i \(-0.739437\pi\)
−0.351819 + 0.936068i \(0.614437\pi\)
\(200\) 0 0
\(201\) 170.086 + 113.648i 0.846201 + 0.565414i
\(202\) −1.61491 + 3.89875i −0.00799463 + 0.0193007i
\(203\) −16.7750 −0.0826357
\(204\) 102.592 + 39.1163i 0.502901 + 0.191747i
\(205\) 0 0
\(206\) 9.99282 24.1248i 0.0485088 0.117111i
\(207\) −86.9944 58.1278i −0.420263 0.280811i
\(208\) −57.8283 + 57.8283i −0.278021 + 0.278021i
\(209\) −8.70481 43.7620i −0.0416498 0.209388i
\(210\) 0 0
\(211\) 15.1489 76.1587i 0.0717957 0.360942i −0.928141 0.372230i \(-0.878593\pi\)
0.999936 + 0.0112884i \(0.00359328\pi\)
\(212\) −105.077 253.679i −0.495648 1.19660i
\(213\) −5.97584 + 2.47527i −0.0280556 + 0.0116210i
\(214\) 1.51051 + 0.300460i 0.00705848 + 0.00140402i
\(215\) 0 0
\(216\) −82.3173 + 16.3739i −0.381099 + 0.0758052i
\(217\) 7.36322 + 7.36322i 0.0339319 + 0.0339319i
\(218\) 29.6831 44.4238i 0.136161 0.203779i
\(219\) 21.0259 + 8.70922i 0.0960087 + 0.0397681i
\(220\) 0 0
\(221\) 97.3567 22.2602i 0.440528 0.100725i
\(222\) 40.7513i 0.183564i
\(223\) 339.240 + 140.518i 1.52126 + 0.630125i 0.977843 0.209341i \(-0.0671319\pi\)
0.543413 + 0.839466i \(0.317132\pi\)
\(224\) −19.8654 + 29.7306i −0.0886847 + 0.132726i
\(225\) 0 0
\(226\) 11.3234 + 56.9267i 0.0501036 + 0.251888i
\(227\) 240.374 160.613i 1.05892 0.707546i 0.101086 0.994878i \(-0.467768\pi\)
0.957831 + 0.287332i \(0.0927683\pi\)
\(228\) −14.2909 2.84263i −0.0626792 0.0124677i
\(229\) −255.217 + 105.714i −1.11448 + 0.461635i −0.862480 0.506091i \(-0.831090\pi\)
−0.252005 + 0.967726i \(0.581090\pi\)
\(230\) 0 0
\(231\) −61.7824 12.2893i −0.267456 0.0532004i
\(232\) 16.2129 + 24.2642i 0.0698830 + 0.104587i
\(233\) −12.9165 64.9355i −0.0554355 0.278693i 0.943118 0.332458i \(-0.107878\pi\)
−0.998554 + 0.0537648i \(0.982878\pi\)
\(234\) −10.7081 + 10.7081i −0.0457610 + 0.0457610i
\(235\) 0 0
\(236\) −45.2397 18.7389i −0.191694 0.0794021i
\(237\) 92.1566 0.388847
\(238\) 12.2685 5.49543i 0.0515482 0.0230900i
\(239\) 341.209 1.42765 0.713826 0.700323i \(-0.246961\pi\)
0.713826 + 0.700323i \(0.246961\pi\)
\(240\) 0 0
\(241\) −195.177 + 292.104i −0.809865 + 1.21205i 0.164344 + 0.986403i \(0.447449\pi\)
−0.974209 + 0.225646i \(0.927551\pi\)
\(242\) −80.1009 + 80.1009i −0.330996 + 0.330996i
\(243\) 245.901 48.9127i 1.01194 0.201287i
\(244\) −168.873 252.736i −0.692103 1.03580i
\(245\) 0 0
\(246\) −40.4069 + 16.7371i −0.164256 + 0.0680370i
\(247\) −12.2446 + 5.07188i −0.0495733 + 0.0205339i
\(248\) 3.53407 17.7670i 0.0142503 0.0716411i
\(249\) 74.1214 49.5264i 0.297676 0.198901i
\(250\) 0 0
\(251\) −242.068 + 242.068i −0.964413 + 0.964413i −0.999388 0.0349756i \(-0.988865\pi\)
0.0349756 + 0.999388i \(0.488865\pi\)
\(252\) 24.6322 36.8647i 0.0977470 0.146289i
\(253\) −128.810 + 310.975i −0.509131 + 1.22915i
\(254\) 48.6335i 0.191470i
\(255\) 0 0
\(256\) −150.744 −0.588842
\(257\) 176.767 + 73.2192i 0.687808 + 0.284899i 0.699087 0.715037i \(-0.253590\pi\)
−0.0112785 + 0.999936i \(0.503590\pi\)
\(258\) −9.25794 6.18596i −0.0358835 0.0239766i
\(259\) −76.7378 76.7378i −0.296285 0.296285i
\(260\) 0 0
\(261\) −30.3808 45.4680i −0.116401 0.174207i
\(262\) −36.5691 7.27404i −0.139577 0.0277635i
\(263\) 84.5519 + 204.126i 0.321490 + 0.776145i 0.999168 + 0.0407866i \(0.0129864\pi\)
−0.677678 + 0.735359i \(0.737014\pi\)
\(264\) 41.9360 + 101.243i 0.158849 + 0.383495i
\(265\) 0 0
\(266\) −1.48334 + 0.991137i −0.00557647 + 0.00372608i
\(267\) 27.9672 + 140.601i 0.104746 + 0.526595i
\(268\) 327.527 + 327.527i 1.22212 + 1.22212i
\(269\) 375.222 + 250.715i 1.39488 + 0.932028i 0.999911 + 0.0133326i \(0.00424401\pi\)
0.394967 + 0.918695i \(0.370756\pi\)
\(270\) 0 0
\(271\) 262.055i 0.966991i 0.875347 + 0.483496i \(0.160633\pi\)
−0.875347 + 0.483496i \(0.839367\pi\)
\(272\) 200.433 + 125.833i 0.736885 + 0.462622i
\(273\) 18.7110i 0.0685384i
\(274\) 1.69522 4.09263i 0.00618695 0.0149366i
\(275\) 0 0
\(276\) 77.7242 + 77.7242i 0.281610 + 0.281610i
\(277\) 398.485 79.2635i 1.43857 0.286150i 0.586660 0.809834i \(-0.300443\pi\)
0.851913 + 0.523684i \(0.175443\pi\)
\(278\) 76.8156 51.3265i 0.276315 0.184628i
\(279\) −6.62239 + 33.2930i −0.0237362 + 0.119330i
\(280\) 0 0
\(281\) 13.1151 + 31.6626i 0.0466728 + 0.112678i 0.945497 0.325632i \(-0.105577\pi\)
−0.898824 + 0.438310i \(0.855577\pi\)
\(282\) −9.32537 + 46.8818i −0.0330687 + 0.166247i
\(283\) −56.2418 84.1717i −0.198734 0.297427i 0.718695 0.695325i \(-0.244740\pi\)
−0.917429 + 0.397899i \(0.869740\pi\)
\(284\) −14.3647 + 2.85732i −0.0505799 + 0.0100610i
\(285\) 0 0
\(286\) 40.5078 + 27.0664i 0.141636 + 0.0946379i
\(287\) 44.5721 107.607i 0.155304 0.374936i
\(288\) −116.561 −0.404726
\(289\) −125.592 260.284i −0.434574 0.900636i
\(290\) 0 0
\(291\) 24.1349 58.2668i 0.0829378 0.200230i
\(292\) 42.8475 + 28.6298i 0.146738 + 0.0980472i
\(293\) 309.797 309.797i 1.05733 1.05733i 0.0590734 0.998254i \(-0.481185\pi\)
0.998254 0.0590734i \(-0.0188146\pi\)
\(294\) −6.27826 31.5629i −0.0213546 0.107357i
\(295\) 0 0
\(296\) −36.8313 + 185.163i −0.124430 + 0.625552i
\(297\) −193.625 467.452i −0.651936 1.57391i
\(298\) 68.1022 28.2089i 0.228531 0.0946606i
\(299\) 98.0596 + 19.5053i 0.327959 + 0.0652350i
\(300\) 0 0
\(301\) 29.0821 5.78478i 0.0966181 0.0192185i
\(302\) −35.3189 35.3189i −0.116950 0.116950i
\(303\) −9.44311 + 14.1326i −0.0311654 + 0.0466423i
\(304\) −29.0158 12.0188i −0.0954468 0.0395354i
\(305\) 0 0
\(306\) 37.1142 + 23.3006i 0.121288 + 0.0761456i
\(307\) 379.484i 1.23610i 0.786138 + 0.618052i \(0.212078\pi\)
−0.786138 + 0.618052i \(0.787922\pi\)
\(308\) −131.779 54.5846i −0.427853 0.177223i
\(309\) 58.4323 87.4502i 0.189101 0.283010i
\(310\) 0 0
\(311\) −30.2155 151.903i −0.0971559 0.488436i −0.998471 0.0552722i \(-0.982397\pi\)
0.901315 0.433163i \(-0.142603\pi\)
\(312\) 27.0645 18.0839i 0.0867451 0.0579612i
\(313\) 226.477 + 45.0492i 0.723570 + 0.143927i 0.543117 0.839657i \(-0.317244\pi\)
0.180452 + 0.983584i \(0.442244\pi\)
\(314\) 68.5432 28.3915i 0.218290 0.0904189i
\(315\) 0 0
\(316\) 204.663 + 40.7101i 0.647669 + 0.128829i
\(317\) 64.7874 + 96.9612i 0.204377 + 0.305871i 0.919472 0.393156i \(-0.128617\pi\)
−0.715095 + 0.699027i \(0.753617\pi\)
\(318\) 9.91970 + 49.8697i 0.0311940 + 0.156823i
\(319\) −124.397 + 124.397i −0.389960 + 0.389960i
\(320\) 0 0
\(321\) 5.73103 + 2.37387i 0.0178537 + 0.00739523i
\(322\) 13.4580 0.0417952
\(323\) 22.2056 + 31.2704i 0.0687479 + 0.0968125i
\(324\) 46.3609 0.143089
\(325\) 0 0
\(326\) 54.1016 80.9688i 0.165956 0.248371i
\(327\) 152.167 152.167i 0.465343 0.465343i
\(328\) −198.726 + 39.5290i −0.605871 + 0.120515i
\(329\) −70.7216 105.842i −0.214959 0.321709i
\(330\) 0 0
\(331\) −546.440 + 226.343i −1.65087 + 0.683815i −0.997327 0.0730702i \(-0.976720\pi\)
−0.653548 + 0.756885i \(0.726720\pi\)
\(332\) 186.488 77.2461i 0.561712 0.232669i
\(333\) 69.0171 346.972i 0.207258 1.04196i
\(334\) 28.0220 18.7237i 0.0838983 0.0560590i
\(335\) 0 0
\(336\) −31.3525 + 31.3525i −0.0933110 + 0.0933110i
\(337\) −248.770 + 372.311i −0.738190 + 1.10478i 0.252360 + 0.967633i \(0.418793\pi\)
−0.990551 + 0.137147i \(0.956207\pi\)
\(338\) −21.5803 + 52.0995i −0.0638471 + 0.154140i
\(339\) 233.780i 0.689617i
\(340\) 0 0
\(341\) 109.206 0.320251
\(342\) −5.37287 2.22552i −0.0157101 0.00650736i
\(343\) 148.093 + 98.9523i 0.431757 + 0.288491i
\(344\) −36.4748 36.4748i −0.106031 0.106031i
\(345\) 0 0
\(346\) −38.9327 58.2670i −0.112522 0.168402i
\(347\) −210.083 41.7882i −0.605427 0.120427i −0.117148 0.993114i \(-0.537375\pi\)
−0.488279 + 0.872687i \(0.662375\pi\)
\(348\) 21.9850 + 53.0764i 0.0631752 + 0.152518i
\(349\) −201.268 485.904i −0.576699 1.39228i −0.895759 0.444541i \(-0.853367\pi\)
0.319059 0.947735i \(-0.396633\pi\)
\(350\) 0 0
\(351\) −124.961 + 83.4962i −0.356014 + 0.237881i
\(352\) 73.1568 + 367.784i 0.207832 + 1.04484i
\(353\) −270.213 270.213i −0.765475 0.765475i 0.211831 0.977306i \(-0.432057\pi\)
−0.977306 + 0.211831i \(0.932057\pi\)
\(354\) 7.53953 + 5.03775i 0.0212981 + 0.0142309i
\(355\) 0 0
\(356\) 324.604i 0.911808i
\(357\) 52.7834 12.0687i 0.147853 0.0338060i
\(358\) 16.2277i 0.0453287i
\(359\) 89.6379 216.405i 0.249688 0.602800i −0.748490 0.663146i \(-0.769221\pi\)
0.998177 + 0.0603467i \(0.0192206\pi\)
\(360\) 0 0
\(361\) 251.667 + 251.667i 0.697137 + 0.697137i
\(362\) −26.6194 + 5.29492i −0.0735342 + 0.0146269i
\(363\) −379.372 + 253.488i −1.04510 + 0.698315i
\(364\) −8.26555 + 41.5537i −0.0227075 + 0.114159i
\(365\) 0 0
\(366\) 21.5405 + 52.0033i 0.0588537 + 0.142085i
\(367\) −120.703 + 606.816i −0.328892 + 1.65345i 0.363252 + 0.931691i \(0.381666\pi\)
−0.692144 + 0.721759i \(0.743334\pi\)
\(368\) 131.627 + 196.994i 0.357683 + 0.535310i
\(369\) 372.386 74.0722i 1.00918 0.200738i
\(370\) 0 0
\(371\) −112.588 75.2289i −0.303472 0.202773i
\(372\) 13.6472 32.9474i 0.0366862 0.0885682i
\(373\) 439.311 1.17778 0.588889 0.808214i \(-0.299566\pi\)
0.588889 + 0.808214i \(0.299566\pi\)
\(374\) 50.2262 131.730i 0.134295 0.352219i
\(375\) 0 0
\(376\) −84.7441 + 204.590i −0.225383 + 0.544123i
\(377\) 43.4487 + 29.0315i 0.115249 + 0.0770067i
\(378\) −14.3047 + 14.3047i −0.0378431 + 0.0378431i
\(379\) 17.8942 + 89.9601i 0.0472142 + 0.237362i 0.997185 0.0749759i \(-0.0238880\pi\)
−0.949971 + 0.312338i \(0.898888\pi\)
\(380\) 0 0
\(381\) −38.2153 + 192.121i −0.100303 + 0.504255i
\(382\) −0.00980269 0.0236658i −2.56615e−5 6.19523e-5i
\(383\) −385.118 + 159.521i −1.00553 + 0.416505i −0.823823 0.566848i \(-0.808163\pi\)
−0.181709 + 0.983352i \(0.558163\pi\)
\(384\) 158.779 + 31.5831i 0.413487 + 0.0822476i
\(385\) 0 0
\(386\) 86.0820 17.1228i 0.223010 0.0443595i
\(387\) 68.3490 + 68.3490i 0.176612 + 0.176612i
\(388\) 79.3385 118.739i 0.204481 0.306027i
\(389\) −623.992 258.466i −1.60409 0.664437i −0.612105 0.790776i \(-0.709677\pi\)
−0.991987 + 0.126339i \(0.959677\pi\)
\(390\) 0 0
\(391\) −8.22516 289.206i −0.0210362 0.739657i
\(392\) 149.088i 0.380327i
\(393\) −138.746 57.4706i −0.353044 0.146236i
\(394\) −54.7125 + 81.8831i −0.138864 + 0.207825i
\(395\) 0 0
\(396\) −90.7115 456.037i −0.229069 1.15161i
\(397\) 474.265 316.894i 1.19462 0.798221i 0.210828 0.977523i \(-0.432384\pi\)
0.983794 + 0.179302i \(0.0573839\pi\)
\(398\) 86.3690 + 17.1799i 0.217008 + 0.0431655i
\(399\) −6.63860 + 2.74980i −0.0166381 + 0.00689172i
\(400\) 0 0
\(401\) 387.307 + 77.0401i 0.965852 + 0.192120i 0.652728 0.757592i \(-0.273624\pi\)
0.313124 + 0.949712i \(0.398624\pi\)
\(402\) −47.6536 71.3186i −0.118541 0.177409i
\(403\) −6.32828 31.8144i −0.0157029 0.0789440i
\(404\) −27.2145 + 27.2145i −0.0673626 + 0.0673626i
\(405\) 0 0
\(406\) 6.49848 + 2.69176i 0.0160061 + 0.00662995i
\(407\) −1138.12 −2.79635
\(408\) −68.4713 64.6843i −0.167822 0.158540i
\(409\) −269.952 −0.660030 −0.330015 0.943976i \(-0.607054\pi\)
−0.330015 + 0.943976i \(0.607054\pi\)
\(410\) 0 0
\(411\) 9.91271 14.8354i 0.0241185 0.0360959i
\(412\) 168.399 168.399i 0.408735 0.408735i
\(413\) −23.6840 + 4.71104i −0.0573462 + 0.0114069i
\(414\) 24.3735 + 36.4775i 0.0588731 + 0.0881098i
\(415\) 0 0
\(416\) 102.906 42.6250i 0.247370 0.102464i
\(417\) 343.783 142.400i 0.824419 0.341486i
\(418\) −3.64999 + 18.3498i −0.00873205 + 0.0438990i
\(419\) 209.349 139.883i 0.499640 0.333849i −0.280080 0.959977i \(-0.590361\pi\)
0.779721 + 0.626128i \(0.215361\pi\)
\(420\) 0 0
\(421\) 322.754 322.754i 0.766636 0.766636i −0.210877 0.977513i \(-0.567632\pi\)
0.977513 + 0.210877i \(0.0676318\pi\)
\(422\) −18.0891 + 27.0723i −0.0428652 + 0.0641523i
\(423\) 158.799 383.376i 0.375412 0.906326i
\(424\) 235.561i 0.555568i
\(425\) 0 0
\(426\) 2.71217 0.00636659
\(427\) −138.488 57.3638i −0.324329 0.134341i
\(428\) 11.6789 + 7.80361i 0.0272872 + 0.0182327i
\(429\) 138.753 + 138.753i 0.323434 + 0.323434i
\(430\) 0 0
\(431\) −224.535 336.041i −0.520964 0.779677i 0.473935 0.880560i \(-0.342833\pi\)
−0.994898 + 0.100883i \(0.967833\pi\)
\(432\) −349.295 69.4791i −0.808553 0.160831i
\(433\) −151.364 365.424i −0.349569 0.843935i −0.996671 0.0815313i \(-0.974019\pi\)
0.647101 0.762404i \(-0.275981\pi\)
\(434\) −1.67092 4.03396i −0.00385005 0.00929483i
\(435\) 0 0
\(436\) 405.155 270.716i 0.929255 0.620908i
\(437\) 7.49060 + 37.6578i 0.0171410 + 0.0861734i
\(438\) −6.74773 6.74773i −0.0154058 0.0154058i
\(439\) 158.154 + 105.675i 0.360260 + 0.240718i 0.722506 0.691365i \(-0.242990\pi\)
−0.362246 + 0.932082i \(0.617990\pi\)
\(440\) 0 0
\(441\) 279.372i 0.633496i
\(442\) −41.2869 6.99867i −0.0934093 0.0158341i
\(443\) 13.9070i 0.0313928i −0.999877 0.0156964i \(-0.995003\pi\)
0.999877 0.0156964i \(-0.00499653\pi\)
\(444\) −142.229 + 343.370i −0.320335 + 0.773356i
\(445\) 0 0
\(446\) −108.870 108.870i −0.244104 0.244104i
\(447\) 291.196 57.9225i 0.651446 0.129581i
\(448\) −74.8499 + 50.0131i −0.167076 + 0.111636i
\(449\) −126.722 + 637.075i −0.282232 + 1.41887i 0.536113 + 0.844146i \(0.319892\pi\)
−0.818345 + 0.574728i \(0.805108\pi\)
\(450\) 0 0
\(451\) −467.439 1128.50i −1.03645 2.50221i
\(452\) −103.272 + 519.184i −0.228478 + 1.14864i
\(453\) −111.771 167.277i −0.246734 0.369264i
\(454\) −118.891 + 23.6489i −0.261874 + 0.0520900i
\(455\) 0 0
\(456\) 10.3936 + 6.94475i 0.0227929 + 0.0152297i
\(457\) 217.862 525.964i 0.476721 1.15091i −0.484416 0.874838i \(-0.660968\pi\)
0.961138 0.276069i \(-0.0890320\pi\)
\(458\) 115.832 0.252908
\(459\) 316.142 + 298.657i 0.688763 + 0.650669i
\(460\) 0 0
\(461\) −50.8038 + 122.651i −0.110204 + 0.266055i −0.969354 0.245668i \(-0.920993\pi\)
0.859150 + 0.511723i \(0.170993\pi\)
\(462\) 21.9619 + 14.6745i 0.0475366 + 0.0317630i
\(463\) −508.784 + 508.784i −1.09888 + 1.09888i −0.104343 + 0.994541i \(0.533274\pi\)
−0.994541 + 0.104343i \(0.966726\pi\)
\(464\) 24.1578 + 121.449i 0.0520642 + 0.261744i
\(465\) 0 0
\(466\) −5.41598 + 27.2280i −0.0116223 + 0.0584291i
\(467\) −309.814 747.957i −0.663413 1.60162i −0.792419 0.609977i \(-0.791178\pi\)
0.129005 0.991644i \(-0.458822\pi\)
\(468\) −127.599 + 52.8532i −0.272647 + 0.112934i
\(469\) 224.034 + 44.5631i 0.477684 + 0.0950172i
\(470\) 0 0
\(471\) 293.082 58.2976i 0.622255 0.123774i
\(472\) 29.7045 + 29.7045i 0.0629333 + 0.0629333i
\(473\) 172.763 258.559i 0.365250 0.546636i
\(474\) −35.7006 14.7877i −0.0753176 0.0311976i
\(475\) 0 0
\(476\) 122.554 3.48549i 0.257466 0.00732246i
\(477\) 441.410i 0.925388i
\(478\) −132.181 54.7511i −0.276529 0.114542i
\(479\) 205.016 306.828i 0.428008 0.640559i −0.553305 0.832979i \(-0.686634\pi\)
0.981313 + 0.192420i \(0.0616336\pi\)
\(480\) 0 0
\(481\) 65.9519 + 331.563i 0.137114 + 0.689320i
\(482\) 122.481 81.8395i 0.254111 0.169791i
\(483\) 53.1645 + 10.5751i 0.110072 + 0.0218946i
\(484\) −954.494 + 395.365i −1.97210 + 0.816869i
\(485\) 0 0
\(486\) −103.108 20.5095i −0.212157 0.0422006i
\(487\) 298.584 + 446.863i 0.613109 + 0.917583i 0.999990 0.00454704i \(-0.00144737\pi\)
−0.386880 + 0.922130i \(0.626447\pi\)
\(488\) 50.8734 + 255.758i 0.104249 + 0.524094i
\(489\) 277.346 277.346i 0.567170 0.567170i
\(490\) 0 0
\(491\) −654.145 270.956i −1.33227 0.551845i −0.400969 0.916092i \(-0.631327\pi\)
−0.931303 + 0.364247i \(0.881327\pi\)
\(492\) −398.883 −0.810739
\(493\) 53.8728 141.294i 0.109275 0.286600i
\(494\) 5.55728 0.0112495
\(495\) 0 0
\(496\) 42.7051 63.9127i 0.0860990 0.128856i
\(497\) −5.10722 + 5.10722i −0.0102761 + 0.0102761i
\(498\) −36.6610 + 7.29233i −0.0736165 + 0.0146432i
\(499\) 10.2364 + 15.3199i 0.0205139 + 0.0307012i 0.841585 0.540125i \(-0.181623\pi\)
−0.821071 + 0.570826i \(0.806623\pi\)
\(500\) 0 0
\(501\) 125.411 51.9468i 0.250321 0.103686i
\(502\) 132.617 54.9319i 0.264178 0.109426i
\(503\) 154.344 775.937i 0.306846 1.54262i −0.452400 0.891815i \(-0.649432\pi\)
0.759246 0.650804i \(-0.225568\pi\)
\(504\) −31.6260 + 21.1318i −0.0627501 + 0.0419282i
\(505\) 0 0
\(506\) 99.7996 99.7996i 0.197232 0.197232i
\(507\) −126.189 + 188.856i −0.248894 + 0.372497i
\(508\) −169.739 + 409.785i −0.334131 + 0.806664i
\(509\) 563.079i 1.10625i 0.833100 + 0.553123i \(0.186564\pi\)
−0.833100 + 0.553123i \(0.813436\pi\)
\(510\) 0 0
\(511\) 25.4130 0.0497319
\(512\) 412.634 + 170.919i 0.805926 + 0.333826i
\(513\) −47.9886 32.0650i −0.0935451 0.0625048i
\(514\) −56.7287 56.7287i −0.110367 0.110367i
\(515\) 0 0
\(516\) −56.4173 84.4345i −0.109336 0.163633i
\(517\) −1309.33 260.442i −2.53255 0.503756i
\(518\) 17.4139 + 42.0410i 0.0336177 + 0.0811602i
\(519\) −108.014 260.770i −0.208120 0.502447i
\(520\) 0 0
\(521\) 204.589 136.702i 0.392685 0.262384i −0.343516 0.939147i \(-0.611618\pi\)
0.736201 + 0.676763i \(0.236618\pi\)
\(522\) 4.47331 + 22.4888i 0.00856955 + 0.0430820i
\(523\) 375.197 + 375.197i 0.717394 + 0.717394i 0.968071 0.250677i \(-0.0806532\pi\)
−0.250677 + 0.968071i \(0.580653\pi\)
\(524\) −282.743 188.923i −0.539585 0.360539i
\(525\) 0 0
\(526\) 92.6438i 0.176129i
\(527\) −85.6663 + 38.3726i −0.162555 + 0.0728132i
\(528\) 464.996i 0.880674i
\(529\) −91.5967 + 221.134i −0.173151 + 0.418023i
\(530\) 0 0
\(531\) −55.6624 55.6624i −0.104826 0.104826i
\(532\) −15.9578 + 3.17421i −0.0299960 + 0.00596657i
\(533\) −301.673 + 201.572i −0.565991 + 0.378183i
\(534\) 11.7269 58.9550i 0.0219605 0.110403i
\(535\) 0 0
\(536\) −152.067 367.123i −0.283708 0.684931i
\(537\) −12.7514 + 64.1057i −0.0237457 + 0.119377i
\(538\) −105.127 157.334i −0.195403 0.292442i
\(539\) 881.499 175.341i 1.63543 0.325308i
\(540\) 0 0
\(541\) 320.302 + 214.019i 0.592056 + 0.395599i 0.815194 0.579187i \(-0.196630\pi\)
−0.223138 + 0.974787i \(0.571630\pi\)
\(542\) 42.0499 101.517i 0.0775828 0.187301i
\(543\) −109.318 −0.201321
\(544\) −186.620 262.803i −0.343051 0.483093i
\(545\) 0 0
\(546\) 3.00240 7.24845i 0.00549891 0.0132755i
\(547\) −446.787 298.533i −0.816795 0.545765i 0.0755382 0.997143i \(-0.475933\pi\)
−0.892333 + 0.451378i \(0.850933\pi\)
\(548\) 28.5679 28.5679i 0.0521311 0.0521311i
\(549\) −95.3301 479.257i −0.173643 0.872963i
\(550\) 0 0
\(551\) −3.91499 + 19.6820i −0.00710525 + 0.0357205i
\(552\) −36.0865 87.1205i −0.0653741 0.157827i
\(553\) 95.0732 39.3806i 0.171923 0.0712127i
\(554\) −167.088 33.2358i −0.301602 0.0599924i
\(555\) 0 0
\(556\) 826.385 164.378i 1.48630 0.295644i
\(557\) −369.217 369.217i −0.662868 0.662868i 0.293187 0.956055i \(-0.405284\pi\)
−0.956055 + 0.293187i \(0.905284\pi\)
\(558\) 7.90772 11.8347i 0.0141715 0.0212092i
\(559\) −85.3363 35.3474i −0.152659 0.0632333i
\(560\) 0 0
\(561\) 301.924 480.918i 0.538189 0.857252i
\(562\) 14.3702i 0.0255698i
\(563\) −927.087 384.012i −1.64669 0.682082i −0.649743 0.760154i \(-0.725124\pi\)
−0.996948 + 0.0780721i \(0.975124\pi\)
\(564\) −242.200 + 362.478i −0.429433 + 0.642692i
\(565\) 0 0
\(566\) 8.28111 + 41.6320i 0.0146309 + 0.0735547i
\(567\) 19.0097 12.7019i 0.0335268 0.0224019i
\(568\) 12.3234 + 2.45127i 0.0216961 + 0.00431562i
\(569\) −332.996 + 137.931i −0.585230 + 0.242410i −0.655597 0.755111i \(-0.727583\pi\)
0.0703670 + 0.997521i \(0.477583\pi\)
\(570\) 0 0
\(571\) 258.662 + 51.4510i 0.452998 + 0.0901069i 0.416316 0.909220i \(-0.363321\pi\)
0.0366821 + 0.999327i \(0.488321\pi\)
\(572\) 246.852 + 369.440i 0.431559 + 0.645874i
\(573\) −0.0201283 0.101192i −3.51279e−5 0.000176600i
\(574\) −34.5336 + 34.5336i −0.0601630 + 0.0601630i
\(575\) 0 0
\(576\) −271.117 112.300i −0.470688 0.194966i
\(577\) −342.604 −0.593768 −0.296884 0.954914i \(-0.595947\pi\)
−0.296884 + 0.954914i \(0.595947\pi\)
\(578\) 6.88727 + 120.984i 0.0119157 + 0.209315i
\(579\) 353.512 0.610556
\(580\) 0 0
\(581\) 55.3035 82.7675i 0.0951867 0.142457i
\(582\) −18.6992 + 18.6992i −0.0321293 + 0.0321293i
\(583\) −1392.78 + 277.040i −2.38898 + 0.475198i
\(584\) −24.5613 36.7586i −0.0420570 0.0629428i
\(585\) 0 0
\(586\) −169.723 + 70.3015i −0.289629 + 0.119968i
\(587\) 924.930 383.118i 1.57569 0.652672i 0.587966 0.808886i \(-0.299929\pi\)
0.987723 + 0.156214i \(0.0499288\pi\)
\(588\) 57.2591 287.861i 0.0973794 0.489559i
\(589\) 10.3576 6.92076i 0.0175851 0.0117500i
\(590\) 0 0
\(591\) −280.478 + 280.478i −0.474582 + 0.474582i
\(592\) −445.063 + 666.084i −0.751796 + 1.12514i
\(593\) 339.173 818.835i 0.571961 1.38084i −0.327923 0.944705i \(-0.606349\pi\)
0.899883 0.436131i \(-0.143651\pi\)
\(594\) 212.156i 0.357165i
\(595\) 0 0
\(596\) 672.281 1.12799
\(597\) 327.692 + 135.734i 0.548897 + 0.227361i
\(598\) −34.8574 23.2910i −0.0582900 0.0389482i
\(599\) 288.858 + 288.858i 0.482234 + 0.482234i 0.905844 0.423611i \(-0.139238\pi\)
−0.423611 + 0.905844i \(0.639238\pi\)
\(600\) 0 0
\(601\) −109.235 163.481i −0.181755 0.272015i 0.729393 0.684095i \(-0.239803\pi\)
−0.911148 + 0.412079i \(0.864803\pi\)
\(602\) −12.1943 2.42560i −0.0202564 0.00402924i
\(603\) 284.954 + 687.940i 0.472561 + 1.14086i
\(604\) −174.328 420.866i −0.288623 0.696797i
\(605\) 0 0
\(606\) 5.92591 3.95957i 0.00977874 0.00653394i
\(607\) 58.1380 + 292.279i 0.0957792 + 0.481515i 0.998666 + 0.0516361i \(0.0164436\pi\)
−0.902887 + 0.429878i \(0.858556\pi\)
\(608\) 30.2464 + 30.2464i 0.0497474 + 0.0497474i
\(609\) 23.5564 + 15.7399i 0.0386805 + 0.0258455i
\(610\) 0 0
\(611\) 396.534i 0.648992i
\(612\) 231.401 + 325.864i 0.378106 + 0.532458i
\(613\) 376.625i 0.614397i −0.951645 0.307199i \(-0.900608\pi\)
0.951645 0.307199i \(-0.0993916\pi\)
\(614\) 60.8928 147.008i 0.0991739 0.239427i
\(615\) 0 0
\(616\) 86.5264 + 86.5264i 0.140465 + 0.140465i
\(617\) −223.361 + 44.4293i −0.362012 + 0.0720086i −0.372745 0.927934i \(-0.621583\pi\)
0.0107334 + 0.999942i \(0.496583\pi\)
\(618\) −36.6686 + 24.5011i −0.0593342 + 0.0396459i
\(619\) 64.5005 324.266i 0.104201 0.523854i −0.893063 0.449932i \(-0.851448\pi\)
0.997264 0.0739224i \(-0.0235517\pi\)
\(620\) 0 0
\(621\) 166.617 + 402.249i 0.268304 + 0.647743i
\(622\) −12.6696 + 63.6943i −0.0203691 + 0.102402i
\(623\) 88.9342 + 133.099i 0.142752 + 0.213643i
\(624\) 135.465 26.9457i 0.217092 0.0431823i
\(625\) 0 0
\(626\) −80.5064 53.7926i −0.128604 0.0859307i
\(627\) −28.8378 + 69.6206i −0.0459933 + 0.111038i
\(628\) 676.635 1.07744
\(629\) 892.795 399.910i 1.41939 0.635787i
\(630\) 0 0
\(631\) 116.241 280.631i 0.184217 0.444740i −0.804610 0.593803i \(-0.797626\pi\)
0.988828 + 0.149063i \(0.0476258\pi\)
\(632\) −148.849 99.4577i −0.235521 0.157370i
\(633\) −92.7320 + 92.7320i −0.146496 + 0.146496i
\(634\) −9.53938 47.9577i −0.0150463 0.0756431i
\(635\) 0 0
\(636\) −90.4699 + 454.823i −0.142248 + 0.715130i
\(637\) −102.163 246.643i −0.160381 0.387195i
\(638\) 68.1512 28.2292i 0.106820 0.0442463i
\(639\) −23.0924 4.59337i −0.0361384 0.00718837i
\(640\) 0 0
\(641\) 344.400 68.5054i 0.537285 0.106873i 0.0810131 0.996713i \(-0.474184\pi\)
0.456272 + 0.889840i \(0.349184\pi\)
\(642\) −1.83923 1.83923i −0.00286484 0.00286484i
\(643\) 129.923 194.444i 0.202058 0.302402i −0.716577 0.697508i \(-0.754292\pi\)
0.918635 + 0.395106i \(0.129292\pi\)
\(644\) 113.397 + 46.9707i 0.176083 + 0.0729359i
\(645\) 0 0
\(646\) −3.58449 15.6770i −0.00554875 0.0242678i
\(647\) 877.981i 1.35700i 0.734599 + 0.678502i \(0.237370\pi\)
−0.734599 + 0.678502i \(0.762630\pi\)
\(648\) −36.7452 15.2204i −0.0567055 0.0234882i
\(649\) −140.696 + 210.566i −0.216789 + 0.324447i
\(650\) 0 0
\(651\) −3.43098 17.2487i −0.00527032 0.0264957i
\(652\) 738.454 493.419i 1.13260 0.756777i
\(653\) 841.416 + 167.368i 1.28854 + 0.256306i 0.791365 0.611345i \(-0.209371\pi\)
0.497174 + 0.867651i \(0.334371\pi\)
\(654\) −83.3651 + 34.5309i −0.127470 + 0.0527996i
\(655\) 0 0
\(656\) −843.248 167.732i −1.28544 0.255690i
\(657\) 46.0247 + 68.8808i 0.0700528 + 0.104841i
\(658\) 10.4131 + 52.3504i 0.0158254 + 0.0795599i
\(659\) −73.9544 + 73.9544i −0.112222 + 0.112222i −0.760988 0.648766i \(-0.775285\pi\)
0.648766 + 0.760988i \(0.275285\pi\)
\(660\) 0 0
\(661\) −33.3477 13.8131i −0.0504504 0.0208972i 0.357316 0.933984i \(-0.383692\pi\)
−0.407766 + 0.913086i \(0.633692\pi\)
\(662\) 248.005 0.374629
\(663\) −157.600 60.0900i −0.237707 0.0906334i
\(664\) −173.169 −0.260797
\(665\) 0 0
\(666\) −82.4124 + 123.339i −0.123742 + 0.185194i
\(667\) 107.045 107.045i 0.160488 0.160488i
\(668\) 301.462 59.9645i 0.451290 0.0897672i
\(669\) −344.532 515.629i −0.514996 0.770745i
\(670\) 0 0
\(671\) −1452.36 + 601.588i −2.16447 + 0.896555i
\(672\) 55.7920 23.1098i 0.0830238 0.0343896i
\(673\) −75.0718 + 377.412i −0.111548 + 0.560790i 0.884076 + 0.467343i \(0.154789\pi\)
−0.995624 + 0.0934470i \(0.970211\pi\)
\(674\) 156.113 104.311i 0.231621 0.154765i
\(675\) 0 0
\(676\) −363.671 + 363.671i −0.537975 + 0.537975i
\(677\) −498.196 + 745.603i −0.735887 + 1.10133i 0.255040 + 0.966931i \(0.417912\pi\)
−0.990927 + 0.134403i \(0.957088\pi\)
\(678\) 37.5129 90.5641i 0.0553287 0.133575i
\(679\) 70.4242i 0.103718i
\(680\) 0 0
\(681\) −488.248 −0.716958
\(682\) −42.3051 17.5234i −0.0620310 0.0256941i
\(683\) 673.860 + 450.259i 0.986618 + 0.659237i 0.940534 0.339701i \(-0.110326\pi\)
0.0460841 + 0.998938i \(0.485326\pi\)
\(684\) −37.5043 37.5043i −0.0548309 0.0548309i
\(685\) 0 0
\(686\) −41.4915 62.0964i −0.0604832 0.0905195i
\(687\) 457.580 + 91.0184i 0.666056 + 0.132487i
\(688\) −83.7623 202.220i −0.121748 0.293925i
\(689\) 161.418 + 389.698i 0.234279 + 0.565600i
\(690\) 0 0
\(691\) 503.216 336.238i 0.728243 0.486597i −0.135342 0.990799i \(-0.543213\pi\)
0.863586 + 0.504202i \(0.168213\pi\)
\(692\) −124.686 626.838i −0.180182 0.905835i
\(693\) −162.139 162.139i −0.233967 0.233967i
\(694\) 74.6787 + 49.8987i 0.107606 + 0.0719002i
\(695\) 0 0
\(696\) 49.2855i 0.0708126i
\(697\) 763.213 + 721.001i 1.09500 + 1.03444i
\(698\) 220.530i 0.315946i
\(699\) −42.7904 + 103.305i −0.0612167 + 0.147790i
\(700\) 0 0
\(701\) 654.391 + 654.391i 0.933510 + 0.933510i 0.997923 0.0644129i \(-0.0205175\pi\)
−0.0644129 + 0.997923i \(0.520517\pi\)
\(702\) 61.8065 12.2941i 0.0880435 0.0175129i
\(703\) −107.945 + 72.1266i −0.153549 + 0.102598i
\(704\) −184.180 + 925.934i −0.261619 + 1.31525i
\(705\) 0 0
\(706\) 61.3188 + 148.037i 0.0868538 + 0.209684i
\(707\) −3.70278 + 18.6151i −0.00523731 + 0.0263297i
\(708\) 45.9454 + 68.7622i 0.0648947 + 0.0971218i
\(709\) 534.037 106.227i 0.753226 0.149826i 0.196479 0.980508i \(-0.437049\pi\)
0.556747 + 0.830682i \(0.312049\pi\)
\(710\) 0 0
\(711\) 278.924 + 186.371i 0.392298 + 0.262125i
\(712\) 106.568 257.278i 0.149674 0.361345i
\(713\) −93.9727 −0.131799
\(714\) −22.3844 3.79444i −0.0313506 0.00531434i
\(715\) 0 0
\(716\) −56.6372 + 136.734i −0.0791022 + 0.190970i
\(717\) −479.144 320.154i −0.668262 0.446518i
\(718\) −69.4497 + 69.4497i −0.0967266 + 0.0967266i
\(719\) −39.1006 196.572i −0.0543819 0.273396i 0.944021 0.329884i \(-0.107010\pi\)
−0.998403 + 0.0564880i \(0.982010\pi\)
\(720\) 0 0
\(721\) 22.9122 115.187i 0.0317783 0.159760i
\(722\) −57.1101 137.876i −0.0790999 0.190964i
\(723\) 548.157 227.054i 0.758171 0.314045i
\(724\) −242.775 48.2909i −0.335324 0.0667001i
\(725\) 0 0
\(726\) 187.640 37.3239i 0.258457 0.0514104i
\(727\) −623.022 623.022i −0.856977 0.856977i 0.134004 0.990981i \(-0.457216\pi\)
−0.990981 + 0.134004i \(0.957216\pi\)
\(728\) 20.1933 30.2215i 0.0277381 0.0415130i
\(729\) −290.399 120.287i −0.398352 0.165003i
\(730\) 0 0
\(731\) −44.6721 + 263.532i −0.0611109 + 0.360509i
\(732\) 513.358i 0.701309i
\(733\) −509.805 211.168i −0.695505 0.288088i 0.00678636 0.999977i \(-0.497840\pi\)
−0.702292 + 0.711889i \(0.747840\pi\)
\(734\) 144.130 215.706i 0.196363 0.293878i
\(735\) 0 0
\(736\) −62.9524 316.483i −0.0855331 0.430004i
\(737\) 1991.81 1330.88i 2.70259 1.80581i
\(738\) −156.144 31.0591i −0.211578 0.0420855i
\(739\) −1115.79 + 462.177i −1.50987 + 0.625409i −0.975531 0.219861i \(-0.929440\pi\)
−0.534340 + 0.845270i \(0.679440\pi\)
\(740\) 0 0
\(741\) 21.9534 + 4.36681i 0.0296267 + 0.00589313i
\(742\) 31.5441 + 47.2091i 0.0425122 + 0.0636241i
\(743\) −46.2789 232.660i −0.0622865 0.313136i 0.937065 0.349156i \(-0.113532\pi\)
−0.999351 + 0.0360207i \(0.988532\pi\)
\(744\) −21.6334 + 21.6334i −0.0290771 + 0.0290771i
\(745\) 0 0
\(746\) −170.185 70.4928i −0.228130 0.0944944i
\(747\) 324.496 0.434399
\(748\) 882.964 934.658i 1.18043 1.24954i
\(749\) 6.92681 0.00924807
\(750\) 0 0
\(751\) −611.599 + 915.323i −0.814380 + 1.21881i 0.158469 + 0.987364i \(0.449344\pi\)
−0.972849 + 0.231442i \(0.925656\pi\)
\(752\) −664.440 + 664.440i −0.883564 + 0.883564i
\(753\) 567.054 112.794i 0.753060 0.149793i
\(754\) −12.1731 18.2184i −0.0161448 0.0241623i
\(755\) 0 0
\(756\) −170.457 + 70.6055i −0.225472 + 0.0933935i
\(757\) −552.363 + 228.796i −0.729674 + 0.302241i −0.716418 0.697671i \(-0.754220\pi\)
−0.0132561 + 0.999912i \(0.504220\pi\)
\(758\) 7.50317 37.7210i 0.00989864 0.0497638i
\(759\) 472.668 315.827i 0.622751 0.416109i
\(760\) 0 0
\(761\) −334.015 + 334.015i −0.438916 + 0.438916i −0.891647 0.452731i \(-0.850450\pi\)
0.452731 + 0.891647i \(0.350450\pi\)
\(762\) 45.6324 68.2938i 0.0598851 0.0896244i
\(763\) 91.9584 222.007i 0.120522 0.290966i
\(764\) 0.233620i 0.000305786i
\(765\) 0 0
\(766\) 174.788 0.228183
\(767\) 69.4966 + 28.7864i 0.0906083 + 0.0375312i
\(768\) 211.682 + 141.441i 0.275628 + 0.184169i
\(769\) 796.827 + 796.827i 1.03619 + 1.03619i 0.999320 + 0.0368659i \(0.0117374\pi\)
0.0368659 + 0.999320i \(0.488263\pi\)
\(770\) 0 0
\(771\) −179.524 268.677i −0.232846 0.348479i
\(772\) 785.087 + 156.163i 1.01695 + 0.202284i
\(773\) 387.361 + 935.171i 0.501113 + 1.20979i 0.948878 + 0.315643i \(0.102220\pi\)
−0.447765 + 0.894151i \(0.647780\pi\)
\(774\) −15.5103 37.4452i −0.0200391 0.0483788i
\(775\) 0 0
\(776\) −101.865 + 68.0640i −0.131269 + 0.0877114i
\(777\) 35.7569 + 179.762i 0.0460191 + 0.231354i
\(778\) 200.254 + 200.254i 0.257396 + 0.257396i
\(779\) −115.851 77.4095i −0.148718 0.0993703i
\(780\) 0 0
\(781\) 75.7462i 0.0969862i
\(782\) −43.2203 + 113.355i −0.0552689 + 0.144956i
\(783\) 227.559i 0.290624i
\(784\) 242.094 584.466i 0.308793 0.745493i
\(785\) 0 0
\(786\) 44.5270 + 44.5270i 0.0566502 + 0.0566502i
\(787\) 1101.19 219.041i 1.39923 0.278323i 0.562886 0.826534i \(-0.309691\pi\)
0.836340 + 0.548211i \(0.184691\pi\)
\(788\) −746.792 + 498.991i −0.947706 + 0.633237i
\(789\) 72.7978 365.979i 0.0922659 0.463852i
\(790\) 0 0
\(791\) 99.8995 + 241.179i 0.126295 + 0.304904i
\(792\) −77.8208 + 391.232i −0.0982586 + 0.493979i
\(793\) 259.420 + 388.250i 0.327138 + 0.489597i
\(794\) −234.575 + 46.6599i −0.295435 + 0.0587656i
\(795\) 0 0
\(796\) 667.784 + 446.199i 0.838924 + 0.560551i
\(797\) 84.7173 204.526i 0.106295 0.256620i −0.861779 0.507285i \(-0.830649\pi\)
0.968074 + 0.250665i \(0.0806493\pi\)
\(798\) 3.01296 0.00377565
\(799\) 1118.62 255.768i 1.40002 0.320110i
\(800\) 0 0
\(801\) −199.694 + 482.105i −0.249306 + 0.601879i
\(802\) −137.677 91.9927i −0.171667 0.114704i
\(803\) 188.453 188.453i 0.234686 0.234686i
\(804\) −152.615 767.248i −0.189820 0.954289i
\(805\) 0 0
\(806\) −2.65350 + 13.3400i −0.00329218 + 0.0165509i
\(807\) −291.663 704.136i −0.361416 0.872536i
\(808\) 30.5045 12.6354i 0.0377531 0.0156378i
\(809\) −751.667 149.516i −0.929132 0.184816i −0.292749 0.956189i \(-0.594570\pi\)
−0.636383 + 0.771374i \(0.719570\pi\)
\(810\) 0 0
\(811\) −1340.74 + 266.689i −1.65319 + 0.328840i −0.931601 0.363481i \(-0.881588\pi\)
−0.721589 + 0.692322i \(0.756588\pi\)
\(812\) 45.3615 + 45.3615i 0.0558639 + 0.0558639i
\(813\) 245.884 367.991i 0.302440 0.452634i
\(814\) 440.894 + 182.624i 0.541639 + 0.224354i
\(815\) 0 0
\(816\) −163.390 364.766i −0.200233 0.447017i
\(817\) 35.4718i 0.0434171i
\(818\) 104.577 + 43.3171i 0.127844 + 0.0529549i
\(819\) −37.8397 + 56.6311i −0.0462023 + 0.0691466i
\(820\) 0 0
\(821\) 183.972 + 924.890i 0.224083 + 1.12654i 0.914952 + 0.403562i \(0.132228\pi\)
−0.690869 + 0.722980i \(0.742772\pi\)
\(822\) −6.22061 + 4.15648i −0.00756765 + 0.00505654i
\(823\) 823.095 + 163.724i 1.00012 + 0.198935i 0.667886 0.744263i \(-0.267199\pi\)
0.332229 + 0.943199i \(0.392199\pi\)
\(824\) −188.757 + 78.1856i −0.229074 + 0.0948854i
\(825\) 0 0
\(826\) 9.93089 + 1.97538i 0.0120229 + 0.00239150i
\(827\) 656.015 + 981.796i 0.793247 + 1.18718i 0.978855 + 0.204554i \(0.0655743\pi\)
−0.185609 + 0.982624i \(0.559426\pi\)
\(828\) 78.0583 + 392.426i 0.0942734 + 0.473944i
\(829\) 121.810 121.810i 0.146936 0.146936i −0.629812 0.776748i \(-0.716868\pi\)
0.776748 + 0.629812i \(0.216868\pi\)
\(830\) 0 0
\(831\) −633.946 262.589i −0.762871 0.315991i
\(832\) 280.422 0.337045
\(833\) −629.881 + 447.287i −0.756160 + 0.536959i
\(834\) −156.028 −0.187084
\(835\) 0 0
\(836\) −94.7984 + 141.876i −0.113395 + 0.169708i
\(837\) 99.8845 99.8845i 0.119336 0.119336i
\(838\) −103.546 + 20.5965i −0.123563 + 0.0245782i
\(839\) −720.467 1078.26i −0.858722 1.28517i −0.957023 0.290011i \(-0.906341\pi\)
0.0983016 0.995157i \(-0.468659\pi\)
\(840\) 0 0
\(841\) −703.884 + 291.558i −0.836960 + 0.346680i
\(842\) −176.821 + 73.2418i −0.210002 + 0.0869855i
\(843\) 11.2919 56.7680i 0.0133949 0.0673405i
\(844\) −246.905 + 164.977i −0.292542 + 0.195470i
\(845\) 0 0
\(846\) −123.035 + 123.035i −0.145431 + 0.145431i
\(847\) −283.057 + 423.625i −0.334188 + 0.500147i
\(848\) −382.511 + 923.462i −0.451074 + 1.08899i
\(849\) 170.970i 0.201378i
\(850\) 0 0
\(851\) 979.362 1.15084
\(852\) 22.8527 + 9.46589i 0.0268224 + 0.0111102i
\(853\) −317.095 211.876i −0.371740 0.248389i 0.355641 0.934623i \(-0.384263\pi\)
−0.727381 + 0.686234i \(0.759263\pi\)
\(854\) 44.4443 + 44.4443i 0.0520425 + 0.0520425i
\(855\) 0 0
\(856\) −6.69467 10.0193i −0.00782087 0.0117048i
\(857\) −1462.52 290.914i −1.70656 0.339456i −0.757089 0.653311i \(-0.773379\pi\)
−0.949471 + 0.313855i \(0.898379\pi\)
\(858\) −31.4870 76.0163i −0.0366981 0.0885970i
\(859\) 104.148 + 251.434i 0.121243 + 0.292706i 0.972835 0.231498i \(-0.0743628\pi\)
−0.851592 + 0.524204i \(0.824363\pi\)
\(860\) 0 0
\(861\) −163.557 + 109.285i −0.189962 + 0.126928i
\(862\) 33.0609 + 166.208i 0.0383537 + 0.192817i
\(863\) 299.499 + 299.499i 0.347044 + 0.347044i 0.859007 0.511963i \(-0.171082\pi\)
−0.511963 + 0.859007i \(0.671082\pi\)
\(864\) 403.306 + 269.480i 0.466789 + 0.311898i
\(865\) 0 0
\(866\) 165.850i 0.191512i
\(867\) −67.8597 + 483.346i −0.0782695 + 0.557493i
\(868\) 39.8218i 0.0458777i
\(869\) 412.994 997.056i 0.475252 1.14736i
\(870\) 0 0
\(871\) −503.143 503.143i −0.577661 0.577661i
\(872\) −409.999 + 81.5538i −0.470182 + 0.0935250i
\(873\) 190.882 127.543i 0.218650 0.146098i
\(874\) 3.14087 15.7902i 0.00359367 0.0180666i
\(875\) 0 0
\(876\) −33.3056 80.4069i −0.0380201 0.0917887i
\(877\) 51.3586 258.197i 0.0585617 0.294410i −0.940395 0.340085i \(-0.889544\pi\)
0.998956 + 0.0456757i \(0.0145441\pi\)
\(878\) −44.3104 66.3152i −0.0504674 0.0755299i
\(879\) −725.713 + 144.353i −0.825612 + 0.164224i
\(880\) 0 0
\(881\) 1188.52 + 794.144i 1.34906 + 0.901412i 0.999371 0.0354553i \(-0.0112881\pi\)
0.349686 + 0.936867i \(0.386288\pi\)
\(882\) 44.8286 108.226i 0.0508261 0.122705i
\(883\) −898.781 −1.01787 −0.508936 0.860804i \(-0.669961\pi\)
−0.508936 + 0.860804i \(0.669961\pi\)
\(884\) −323.457 203.069i −0.365901 0.229716i
\(885\) 0 0
\(886\) −2.23155 + 5.38744i −0.00251868 + 0.00608063i
\(887\) 56.3214 + 37.6327i 0.0634965 + 0.0424270i 0.586913 0.809650i \(-0.300343\pi\)
−0.523417 + 0.852077i \(0.675343\pi\)
\(888\) 225.458 225.458i 0.253894 0.253894i
\(889\) 42.6730 + 214.532i 0.0480011 + 0.241318i
\(890\) 0 0
\(891\) 46.7763 235.160i 0.0524986 0.263928i
\(892\) −537.365 1297.31i −0.602428 1.45439i
\(893\) −140.689 + 58.2753i −0.157546 + 0.0652579i
\(894\) −122.101 24.2874i −0.136578 0.0271671i
\(895\) 0 0
\(896\) 177.300 35.2671i 0.197879 0.0393607i
\(897\) −119.399 119.399i −0.133109 0.133109i
\(898\) 151.317 226.462i 0.168505 0.252185i
\(899\) −45.3766 18.7956i −0.0504745 0.0209072i
\(900\) 0 0
\(901\) 995.218 706.718i 1.10457 0.784370i
\(902\) 512.175i 0.567821i
\(903\) −46.2664 19.1642i −0.0512363 0.0212228i
\(904\) 252.301 377.596i 0.279094 0.417694i
\(905\) 0 0
\(906\) 16.4573 + 82.7362i 0.0181647 + 0.0913203i
\(907\) −18.1601 + 12.1342i −0.0200222 + 0.0133784i −0.565541 0.824720i \(-0.691333\pi\)
0.545519 + 0.838099i \(0.316333\pi\)
\(908\) −1084.31 215.683i −1.19417 0.237536i
\(909\) −57.1615 + 23.6771i −0.0628839 + 0.0260474i
\(910\) 0 0
\(911\) 473.629 + 94.2107i 0.519901 + 0.103415i 0.448063 0.894002i \(-0.352114\pi\)
0.0718370 + 0.997416i \(0.477114\pi\)
\(912\) 29.4685 + 44.1027i 0.0323119 + 0.0483582i
\(913\) −203.662 1023.88i −0.223069 1.12145i
\(914\) −168.795 + 168.795i −0.184677 + 0.184677i
\(915\) 0 0
\(916\) 975.996 + 404.271i 1.06550 + 0.441344i
\(917\) −167.696 −0.182874
\(918\) −74.5472 166.426i −0.0812061 0.181292i
\(919\) 77.0647 0.0838572 0.0419286 0.999121i \(-0.486650\pi\)
0.0419286 + 0.999121i \(0.486650\pi\)
\(920\) 0 0
\(921\) 356.067 532.891i 0.386609 0.578601i
\(922\) 39.3618 39.3618i 0.0426917 0.0426917i
\(923\) 22.0669 4.38937i 0.0239077 0.00475555i
\(924\) 133.835 + 200.298i 0.144843 + 0.216772i
\(925\) 0 0
\(926\) 278.738 115.457i 0.301013 0.124684i
\(927\) 353.705 146.510i 0.381559 0.158047i
\(928\) 32.9023 165.411i 0.0354551 0.178245i
\(929\) −596.669 + 398.682i −0.642271 + 0.429151i −0.833596 0.552375i \(-0.813722\pi\)
0.191325 + 0.981527i \(0.438722\pi\)
\(930\) 0 0
\(931\) 72.4942 72.4942i 0.0778670 0.0778670i
\(932\) −140.665 + 210.520i −0.150928 + 0.225880i
\(933\) −100.100 + 241.662i −0.107288 + 0.259016i
\(934\) 339.465i 0.363452i
\(935\) 0 0
\(936\) 118.486 0.126587
\(937\) 215.009 + 89.0595i 0.229465 + 0.0950475i 0.494454 0.869204i \(-0.335368\pi\)
−0.264989 + 0.964252i \(0.585368\pi\)
\(938\) −79.6377 53.2122i −0.0849016 0.0567294i
\(939\) −275.762 275.762i −0.293677 0.293677i
\(940\) 0 0
\(941\) −580.541 868.841i −0.616940 0.923317i 0.383059 0.923724i \(-0.374870\pi\)
−1.00000 0.000407033i \(0.999870\pi\)
\(942\) −122.892 24.4447i −0.130458 0.0259497i
\(943\) 402.237 + 971.086i 0.426550 + 1.02978i
\(944\) 68.2148 + 164.685i 0.0722614 + 0.174455i
\(945\) 0 0
\(946\) −108.416 + 72.4410i −0.114604 + 0.0765762i
\(947\) 242.166 + 1217.45i 0.255719 + 1.28559i 0.868640 + 0.495444i \(0.164994\pi\)
−0.612921 + 0.790144i \(0.710006\pi\)
\(948\) −249.201 249.201i −0.262870 0.262870i
\(949\) −65.8217 43.9807i −0.0693590 0.0463442i
\(950\) 0 0
\(951\) 196.948i 0.207095i
\(952\) −98.2793 37.4721i −0.103235 0.0393614i
\(953\) 1337.30i 1.40325i −0.712545 0.701626i \(-0.752458\pi\)
0.712545 0.701626i \(-0.247542\pi\)
\(954\) −70.8296 + 170.998i −0.0742449 + 0.179243i
\(955\) 0 0
\(956\) −922.665 922.665i −0.965130 0.965130i
\(957\) 291.406 57.9642i 0.304499 0.0605687i
\(958\) −128.655 + 85.9647i −0.134296 + 0.0897335i
\(959\) 3.88692 19.5408i 0.00405309 0.0203763i
\(960\) 0 0
\(961\) −356.091 859.681i −0.370542 0.894569i
\(962\) 27.6542 139.027i 0.0287465 0.144519i
\(963\) 12.5449 + 18.7748i 0.0130269 + 0.0194962i
\(964\) 1317.66 262.099i 1.36687 0.271887i
\(965\) 0 0
\(966\) −18.8985 12.6276i −0.0195637 0.0130720i
\(967\) 86.2341 208.188i 0.0891770 0.215292i −0.872998 0.487723i \(-0.837828\pi\)
0.962175 + 0.272431i \(0.0878276\pi\)
\(968\) 886.322 0.915622
\(969\) −1.84143 64.7469i −0.00190035 0.0668183i
\(970\) 0 0
\(971\) 190.485 459.871i 0.196174 0.473605i −0.794929 0.606702i \(-0.792492\pi\)
0.991103 + 0.133097i \(0.0424921\pi\)
\(972\) −797.206 532.676i −0.820171 0.548021i
\(973\) 293.812 293.812i 0.301965 0.301965i
\(974\) −43.9639 221.022i −0.0451375 0.226922i
\(975\) 0 0
\(976\) −215.870 + 1085.25i −0.221178 + 1.11194i
\(977\) 230.443 + 556.340i 0.235868 + 0.569437i 0.996848 0.0793394i \(-0.0252811\pi\)
−0.760979 + 0.648776i \(0.775281\pi\)
\(978\) −151.945 + 62.9376i −0.155363 + 0.0643534i
\(979\) 1646.51 + 327.512i 1.68183 + 0.334537i
\(980\) 0 0
\(981\) 768.284 152.821i 0.783164 0.155781i
\(982\) 209.931 + 209.931i 0.213779 + 0.213779i
\(983\) −1007.10 + 1507.23i −1.02452 + 1.53330i −0.190400 + 0.981707i \(0.560979\pi\)
−0.834116 + 0.551590i \(0.814021\pi\)
\(984\) 316.151 + 130.954i 0.321292 + 0.133083i
\(985\) 0 0
\(986\) −43.5421 + 46.0913i −0.0441603 + 0.0467458i
\(987\) 214.987i 0.217819i
\(988\) 46.8255 + 19.3958i 0.0473943 + 0.0196314i
\(989\) −148.665 + 222.493i −0.150319 + 0.224968i
\(990\) 0 0
\(991\) −141.139 709.553i −0.142421 0.715997i −0.984324 0.176369i \(-0.943565\pi\)
0.841903 0.539628i \(-0.181435\pi\)
\(992\) −87.0476 + 58.1633i −0.0877496 + 0.0586324i
\(993\) 979.715 + 194.877i 0.986622 + 0.196251i
\(994\) 2.79800 1.15897i 0.00281489 0.00116597i
\(995\) 0 0
\(996\) −334.356 66.5076i −0.335699 0.0667747i
\(997\) −333.769 499.520i −0.334773 0.501024i 0.625447 0.780266i \(-0.284917\pi\)
−0.960220 + 0.279243i \(0.909917\pi\)
\(998\) −1.50723 7.57734i −0.00151025 0.00759253i
\(999\) −1040.97 + 1040.97i −1.04202 + 1.04202i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.t.f.24.6 96
5.2 odd 4 425.3.u.c.126.7 96
5.3 odd 4 425.3.u.d.126.6 yes 96
5.4 even 2 425.3.t.g.24.7 96
17.5 odd 16 425.3.t.g.124.7 96
85.22 even 16 425.3.u.c.226.7 yes 96
85.39 odd 16 inner 425.3.t.f.124.6 96
85.73 even 16 425.3.u.d.226.6 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.3.t.f.24.6 96 1.1 even 1 trivial
425.3.t.f.124.6 96 85.39 odd 16 inner
425.3.t.g.24.7 96 5.4 even 2
425.3.t.g.124.7 96 17.5 odd 16
425.3.u.c.126.7 96 5.2 odd 4
425.3.u.c.226.7 yes 96 85.22 even 16
425.3.u.d.126.6 yes 96 5.3 odd 4
425.3.u.d.226.6 yes 96 85.73 even 16