Properties

Label 4225.2.a.cb.1.7
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4225,2,Mod(1,4225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,16,0,16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 26x^{16} + 281x^{14} - 1632x^{12} + 5482x^{10} - 10620x^{8} + 11052x^{6} - 5165x^{4} + 760x^{2} - 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 845)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.887876\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.887876 q^{2} +1.26907 q^{3} -1.21168 q^{4} -1.12678 q^{6} +2.28128 q^{7} +2.85157 q^{8} -1.38947 q^{9} -3.13829 q^{11} -1.53770 q^{12} -2.02549 q^{14} -0.108488 q^{16} +1.72423 q^{17} +1.23367 q^{18} -4.27007 q^{19} +2.89510 q^{21} +2.78641 q^{22} +8.63424 q^{23} +3.61884 q^{24} -5.57053 q^{27} -2.76417 q^{28} -7.94250 q^{29} +4.17039 q^{31} -5.60682 q^{32} -3.98270 q^{33} -1.53090 q^{34} +1.68358 q^{36} +8.80437 q^{37} +3.79129 q^{38} +2.94700 q^{41} -2.57049 q^{42} -0.153762 q^{43} +3.80259 q^{44} -7.66614 q^{46} +6.54786 q^{47} -0.137679 q^{48} -1.79577 q^{49} +2.18817 q^{51} -1.93126 q^{53} +4.94594 q^{54} +6.50522 q^{56} -5.41901 q^{57} +7.05195 q^{58} +5.51115 q^{59} -9.90052 q^{61} -3.70279 q^{62} -3.16976 q^{63} +5.19513 q^{64} +3.53615 q^{66} -6.45526 q^{67} -2.08921 q^{68} +10.9574 q^{69} -4.74432 q^{71} -3.96216 q^{72} +13.1891 q^{73} -7.81719 q^{74} +5.17394 q^{76} -7.15931 q^{77} +13.4510 q^{79} -2.90099 q^{81} -2.61657 q^{82} +6.32511 q^{83} -3.50792 q^{84} +0.136522 q^{86} -10.0796 q^{87} -8.94905 q^{88} +15.7373 q^{89} -10.4619 q^{92} +5.29250 q^{93} -5.81368 q^{94} -7.11543 q^{96} +12.0815 q^{97} +1.59442 q^{98} +4.36055 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 16 q^{4} + 16 q^{6} + 18 q^{9} + 22 q^{11} + 4 q^{14} - 12 q^{16} + 28 q^{19} + 26 q^{21} + 34 q^{24} - 20 q^{29} + 32 q^{31} + 18 q^{34} + 32 q^{36} + 52 q^{41} + 50 q^{44} + 30 q^{46} + 44 q^{49}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.887876 −0.627823 −0.313912 0.949452i \(-0.601640\pi\)
−0.313912 + 0.949452i \(0.601640\pi\)
\(3\) 1.26907 0.732697 0.366348 0.930478i \(-0.380608\pi\)
0.366348 + 0.930478i \(0.380608\pi\)
\(4\) −1.21168 −0.605838
\(5\) 0 0
\(6\) −1.12678 −0.460004
\(7\) 2.28128 0.862242 0.431121 0.902294i \(-0.358118\pi\)
0.431121 + 0.902294i \(0.358118\pi\)
\(8\) 2.85157 1.00818
\(9\) −1.38947 −0.463155
\(10\) 0 0
\(11\) −3.13829 −0.946230 −0.473115 0.881001i \(-0.656870\pi\)
−0.473115 + 0.881001i \(0.656870\pi\)
\(12\) −1.53770 −0.443896
\(13\) 0 0
\(14\) −2.02549 −0.541335
\(15\) 0 0
\(16\) −0.108488 −0.0271220
\(17\) 1.72423 0.418187 0.209094 0.977896i \(-0.432949\pi\)
0.209094 + 0.977896i \(0.432949\pi\)
\(18\) 1.23367 0.290780
\(19\) −4.27007 −0.979621 −0.489810 0.871829i \(-0.662934\pi\)
−0.489810 + 0.871829i \(0.662934\pi\)
\(20\) 0 0
\(21\) 2.89510 0.631762
\(22\) 2.78641 0.594065
\(23\) 8.63424 1.80036 0.900182 0.435514i \(-0.143433\pi\)
0.900182 + 0.435514i \(0.143433\pi\)
\(24\) 3.61884 0.738692
\(25\) 0 0
\(26\) 0 0
\(27\) −5.57053 −1.07205
\(28\) −2.76417 −0.522379
\(29\) −7.94250 −1.47488 −0.737442 0.675410i \(-0.763967\pi\)
−0.737442 + 0.675410i \(0.763967\pi\)
\(30\) 0 0
\(31\) 4.17039 0.749024 0.374512 0.927222i \(-0.377810\pi\)
0.374512 + 0.927222i \(0.377810\pi\)
\(32\) −5.60682 −0.991154
\(33\) −3.98270 −0.693300
\(34\) −1.53090 −0.262548
\(35\) 0 0
\(36\) 1.68358 0.280597
\(37\) 8.80437 1.44743 0.723715 0.690099i \(-0.242433\pi\)
0.723715 + 0.690099i \(0.242433\pi\)
\(38\) 3.79129 0.615028
\(39\) 0 0
\(40\) 0 0
\(41\) 2.94700 0.460244 0.230122 0.973162i \(-0.426088\pi\)
0.230122 + 0.973162i \(0.426088\pi\)
\(42\) −2.57049 −0.396635
\(43\) −0.153762 −0.0234486 −0.0117243 0.999931i \(-0.503732\pi\)
−0.0117243 + 0.999931i \(0.503732\pi\)
\(44\) 3.80259 0.573262
\(45\) 0 0
\(46\) −7.66614 −1.13031
\(47\) 6.54786 0.955103 0.477552 0.878604i \(-0.341524\pi\)
0.477552 + 0.878604i \(0.341524\pi\)
\(48\) −0.137679 −0.0198722
\(49\) −1.79577 −0.256539
\(50\) 0 0
\(51\) 2.18817 0.306404
\(52\) 0 0
\(53\) −1.93126 −0.265279 −0.132640 0.991164i \(-0.542345\pi\)
−0.132640 + 0.991164i \(0.542345\pi\)
\(54\) 4.94594 0.673057
\(55\) 0 0
\(56\) 6.50522 0.869297
\(57\) −5.41901 −0.717765
\(58\) 7.05195 0.925967
\(59\) 5.51115 0.717490 0.358745 0.933436i \(-0.383205\pi\)
0.358745 + 0.933436i \(0.383205\pi\)
\(60\) 0 0
\(61\) −9.90052 −1.26763 −0.633816 0.773484i \(-0.718512\pi\)
−0.633816 + 0.773484i \(0.718512\pi\)
\(62\) −3.70279 −0.470254
\(63\) −3.16976 −0.399352
\(64\) 5.19513 0.649392
\(65\) 0 0
\(66\) 3.53615 0.435270
\(67\) −6.45526 −0.788635 −0.394318 0.918974i \(-0.629019\pi\)
−0.394318 + 0.918974i \(0.629019\pi\)
\(68\) −2.08921 −0.253354
\(69\) 10.9574 1.31912
\(70\) 0 0
\(71\) −4.74432 −0.563047 −0.281524 0.959554i \(-0.590840\pi\)
−0.281524 + 0.959554i \(0.590840\pi\)
\(72\) −3.96216 −0.466945
\(73\) 13.1891 1.54367 0.771834 0.635824i \(-0.219340\pi\)
0.771834 + 0.635824i \(0.219340\pi\)
\(74\) −7.81719 −0.908730
\(75\) 0 0
\(76\) 5.17394 0.593492
\(77\) −7.15931 −0.815879
\(78\) 0 0
\(79\) 13.4510 1.51335 0.756676 0.653791i \(-0.226822\pi\)
0.756676 + 0.653791i \(0.226822\pi\)
\(80\) 0 0
\(81\) −2.90099 −0.322332
\(82\) −2.61657 −0.288952
\(83\) 6.32511 0.694271 0.347136 0.937815i \(-0.387154\pi\)
0.347136 + 0.937815i \(0.387154\pi\)
\(84\) −3.50792 −0.382745
\(85\) 0 0
\(86\) 0.136522 0.0147215
\(87\) −10.0796 −1.08064
\(88\) −8.94905 −0.953972
\(89\) 15.7373 1.66815 0.834077 0.551649i \(-0.186001\pi\)
0.834077 + 0.551649i \(0.186001\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −10.4619 −1.09073
\(93\) 5.29250 0.548807
\(94\) −5.81368 −0.599636
\(95\) 0 0
\(96\) −7.11543 −0.726216
\(97\) 12.0815 1.22669 0.613345 0.789815i \(-0.289823\pi\)
0.613345 + 0.789815i \(0.289823\pi\)
\(98\) 1.59442 0.161061
\(99\) 4.36055 0.438251
\(100\) 0 0
\(101\) 3.79100 0.377218 0.188609 0.982052i \(-0.439602\pi\)
0.188609 + 0.982052i \(0.439602\pi\)
\(102\) −1.94282 −0.192368
\(103\) −14.6259 −1.44113 −0.720564 0.693388i \(-0.756117\pi\)
−0.720564 + 0.693388i \(0.756117\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.71472 0.166548
\(107\) 4.19100 0.405159 0.202580 0.979266i \(-0.435067\pi\)
0.202580 + 0.979266i \(0.435067\pi\)
\(108\) 6.74968 0.649488
\(109\) 16.1460 1.54650 0.773252 0.634099i \(-0.218629\pi\)
0.773252 + 0.634099i \(0.218629\pi\)
\(110\) 0 0
\(111\) 11.1733 1.06053
\(112\) −0.247491 −0.0233857
\(113\) 3.51935 0.331072 0.165536 0.986204i \(-0.447065\pi\)
0.165536 + 0.986204i \(0.447065\pi\)
\(114\) 4.81141 0.450629
\(115\) 0 0
\(116\) 9.62373 0.893541
\(117\) 0 0
\(118\) −4.89322 −0.450457
\(119\) 3.93345 0.360579
\(120\) 0 0
\(121\) −1.15114 −0.104649
\(122\) 8.79043 0.795848
\(123\) 3.73994 0.337219
\(124\) −5.05316 −0.453787
\(125\) 0 0
\(126\) 2.81435 0.250722
\(127\) 2.42242 0.214955 0.107478 0.994208i \(-0.465723\pi\)
0.107478 + 0.994208i \(0.465723\pi\)
\(128\) 6.60100 0.583451
\(129\) −0.195135 −0.0171807
\(130\) 0 0
\(131\) −5.00647 −0.437418 −0.218709 0.975790i \(-0.570184\pi\)
−0.218709 + 0.975790i \(0.570184\pi\)
\(132\) 4.82575 0.420027
\(133\) −9.74121 −0.844670
\(134\) 5.73147 0.495124
\(135\) 0 0
\(136\) 4.91676 0.421609
\(137\) −12.8154 −1.09489 −0.547447 0.836840i \(-0.684400\pi\)
−0.547447 + 0.836840i \(0.684400\pi\)
\(138\) −9.72885 −0.828175
\(139\) −15.5289 −1.31714 −0.658571 0.752519i \(-0.728839\pi\)
−0.658571 + 0.752519i \(0.728839\pi\)
\(140\) 0 0
\(141\) 8.30968 0.699801
\(142\) 4.21237 0.353494
\(143\) 0 0
\(144\) 0.150740 0.0125617
\(145\) 0 0
\(146\) −11.7103 −0.969151
\(147\) −2.27896 −0.187965
\(148\) −10.6681 −0.876908
\(149\) −0.0413812 −0.00339008 −0.00169504 0.999999i \(-0.500540\pi\)
−0.00169504 + 0.999999i \(0.500540\pi\)
\(150\) 0 0
\(151\) −6.01321 −0.489348 −0.244674 0.969605i \(-0.578681\pi\)
−0.244674 + 0.969605i \(0.578681\pi\)
\(152\) −12.1764 −0.987636
\(153\) −2.39576 −0.193686
\(154\) 6.35658 0.512228
\(155\) 0 0
\(156\) 0 0
\(157\) 22.7846 1.81841 0.909205 0.416348i \(-0.136690\pi\)
0.909205 + 0.416348i \(0.136690\pi\)
\(158\) −11.9428 −0.950117
\(159\) −2.45090 −0.194369
\(160\) 0 0
\(161\) 19.6971 1.55235
\(162\) 2.57572 0.202367
\(163\) −1.52126 −0.119154 −0.0595772 0.998224i \(-0.518975\pi\)
−0.0595772 + 0.998224i \(0.518975\pi\)
\(164\) −3.57081 −0.278833
\(165\) 0 0
\(166\) −5.61592 −0.435880
\(167\) −0.0491982 −0.00380707 −0.00190353 0.999998i \(-0.500606\pi\)
−0.00190353 + 0.999998i \(0.500606\pi\)
\(168\) 8.25557 0.636931
\(169\) 0 0
\(170\) 0 0
\(171\) 5.93311 0.453717
\(172\) 0.186310 0.0142060
\(173\) −9.00465 −0.684611 −0.342305 0.939589i \(-0.611208\pi\)
−0.342305 + 0.939589i \(0.611208\pi\)
\(174\) 8.94941 0.678453
\(175\) 0 0
\(176\) 0.340467 0.0256637
\(177\) 6.99402 0.525703
\(178\) −13.9728 −1.04731
\(179\) 22.8604 1.70866 0.854332 0.519727i \(-0.173966\pi\)
0.854332 + 0.519727i \(0.173966\pi\)
\(180\) 0 0
\(181\) −17.7138 −1.31666 −0.658328 0.752731i \(-0.728736\pi\)
−0.658328 + 0.752731i \(0.728736\pi\)
\(182\) 0 0
\(183\) −12.5644 −0.928789
\(184\) 24.6211 1.81509
\(185\) 0 0
\(186\) −4.69909 −0.344554
\(187\) −5.41113 −0.395701
\(188\) −7.93388 −0.578638
\(189\) −12.7079 −0.924366
\(190\) 0 0
\(191\) 9.73516 0.704411 0.352206 0.935923i \(-0.385432\pi\)
0.352206 + 0.935923i \(0.385432\pi\)
\(192\) 6.59298 0.475807
\(193\) 10.0009 0.719883 0.359942 0.932975i \(-0.382797\pi\)
0.359942 + 0.932975i \(0.382797\pi\)
\(194\) −10.7269 −0.770145
\(195\) 0 0
\(196\) 2.17590 0.155421
\(197\) −5.99999 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) −3.87162 −0.275144
\(199\) 5.81284 0.412061 0.206031 0.978546i \(-0.433945\pi\)
0.206031 + 0.978546i \(0.433945\pi\)
\(200\) 0 0
\(201\) −8.19216 −0.577831
\(202\) −3.36593 −0.236826
\(203\) −18.1190 −1.27171
\(204\) −2.65135 −0.185632
\(205\) 0 0
\(206\) 12.9859 0.904774
\(207\) −11.9970 −0.833848
\(208\) 0 0
\(209\) 13.4007 0.926946
\(210\) 0 0
\(211\) 8.71262 0.599801 0.299901 0.953970i \(-0.403046\pi\)
0.299901 + 0.953970i \(0.403046\pi\)
\(212\) 2.34006 0.160716
\(213\) −6.02087 −0.412543
\(214\) −3.72109 −0.254368
\(215\) 0 0
\(216\) −15.8848 −1.08082
\(217\) 9.51381 0.645839
\(218\) −14.3356 −0.970930
\(219\) 16.7379 1.13104
\(220\) 0 0
\(221\) 0 0
\(222\) −9.92055 −0.665824
\(223\) 0.0454220 0.00304168 0.00152084 0.999999i \(-0.499516\pi\)
0.00152084 + 0.999999i \(0.499516\pi\)
\(224\) −12.7907 −0.854615
\(225\) 0 0
\(226\) −3.12474 −0.207855
\(227\) −6.42258 −0.426281 −0.213141 0.977022i \(-0.568369\pi\)
−0.213141 + 0.977022i \(0.568369\pi\)
\(228\) 6.56608 0.434849
\(229\) −7.27972 −0.481057 −0.240529 0.970642i \(-0.577321\pi\)
−0.240529 + 0.970642i \(0.577321\pi\)
\(230\) 0 0
\(231\) −9.08565 −0.597792
\(232\) −22.6486 −1.48695
\(233\) 4.56107 0.298806 0.149403 0.988776i \(-0.452265\pi\)
0.149403 + 0.988776i \(0.452265\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.67773 −0.434683
\(237\) 17.0702 1.10883
\(238\) −3.49241 −0.226380
\(239\) 16.9338 1.09536 0.547680 0.836688i \(-0.315511\pi\)
0.547680 + 0.836688i \(0.315511\pi\)
\(240\) 0 0
\(241\) 6.13059 0.394906 0.197453 0.980312i \(-0.436733\pi\)
0.197453 + 0.980312i \(0.436733\pi\)
\(242\) 1.02207 0.0657010
\(243\) 13.0300 0.835878
\(244\) 11.9962 0.767979
\(245\) 0 0
\(246\) −3.32060 −0.211714
\(247\) 0 0
\(248\) 11.8922 0.755152
\(249\) 8.02700 0.508690
\(250\) 0 0
\(251\) 11.5843 0.731192 0.365596 0.930774i \(-0.380865\pi\)
0.365596 + 0.930774i \(0.380865\pi\)
\(252\) 3.84072 0.241943
\(253\) −27.0967 −1.70356
\(254\) −2.15081 −0.134954
\(255\) 0 0
\(256\) −16.2511 −1.01570
\(257\) 12.4669 0.777665 0.388832 0.921309i \(-0.372879\pi\)
0.388832 + 0.921309i \(0.372879\pi\)
\(258\) 0.173256 0.0107864
\(259\) 20.0852 1.24803
\(260\) 0 0
\(261\) 11.0358 0.683101
\(262\) 4.44513 0.274621
\(263\) 28.3288 1.74683 0.873416 0.486975i \(-0.161900\pi\)
0.873416 + 0.486975i \(0.161900\pi\)
\(264\) −11.3570 −0.698972
\(265\) 0 0
\(266\) 8.64898 0.530303
\(267\) 19.9717 1.22225
\(268\) 7.82168 0.477785
\(269\) −12.1886 −0.743154 −0.371577 0.928402i \(-0.621183\pi\)
−0.371577 + 0.928402i \(0.621183\pi\)
\(270\) 0 0
\(271\) 17.6547 1.07245 0.536224 0.844076i \(-0.319850\pi\)
0.536224 + 0.844076i \(0.319850\pi\)
\(272\) −0.187058 −0.0113421
\(273\) 0 0
\(274\) 11.3785 0.687400
\(275\) 0 0
\(276\) −13.2769 −0.799174
\(277\) 11.7250 0.704489 0.352245 0.935908i \(-0.385419\pi\)
0.352245 + 0.935908i \(0.385419\pi\)
\(278\) 13.7877 0.826932
\(279\) −5.79461 −0.346914
\(280\) 0 0
\(281\) 20.2642 1.20886 0.604430 0.796659i \(-0.293401\pi\)
0.604430 + 0.796659i \(0.293401\pi\)
\(282\) −7.37796 −0.439351
\(283\) 8.24330 0.490013 0.245007 0.969521i \(-0.421210\pi\)
0.245007 + 0.969521i \(0.421210\pi\)
\(284\) 5.74858 0.341116
\(285\) 0 0
\(286\) 0 0
\(287\) 6.72292 0.396841
\(288\) 7.79048 0.459059
\(289\) −14.0270 −0.825119
\(290\) 0 0
\(291\) 15.3322 0.898792
\(292\) −15.9809 −0.935213
\(293\) 21.3215 1.24562 0.622808 0.782375i \(-0.285992\pi\)
0.622808 + 0.782375i \(0.285992\pi\)
\(294\) 2.02343 0.118009
\(295\) 0 0
\(296\) 25.1063 1.45927
\(297\) 17.4819 1.01441
\(298\) 0.0367414 0.00212837
\(299\) 0 0
\(300\) 0 0
\(301\) −0.350775 −0.0202183
\(302\) 5.33898 0.307224
\(303\) 4.81103 0.276387
\(304\) 0.463251 0.0265693
\(305\) 0 0
\(306\) 2.12714 0.121600
\(307\) −8.38560 −0.478591 −0.239296 0.970947i \(-0.576917\pi\)
−0.239296 + 0.970947i \(0.576917\pi\)
\(308\) 8.67476 0.494291
\(309\) −18.5612 −1.05591
\(310\) 0 0
\(311\) −2.82308 −0.160082 −0.0800412 0.996792i \(-0.525505\pi\)
−0.0800412 + 0.996792i \(0.525505\pi\)
\(312\) 0 0
\(313\) 19.1965 1.08505 0.542525 0.840040i \(-0.317468\pi\)
0.542525 + 0.840040i \(0.317468\pi\)
\(314\) −20.2299 −1.14164
\(315\) 0 0
\(316\) −16.2982 −0.916846
\(317\) −5.76453 −0.323768 −0.161884 0.986810i \(-0.551757\pi\)
−0.161884 + 0.986810i \(0.551757\pi\)
\(318\) 2.17610 0.122029
\(319\) 24.9259 1.39558
\(320\) 0 0
\(321\) 5.31867 0.296859
\(322\) −17.4886 −0.974600
\(323\) −7.36258 −0.409665
\(324\) 3.51506 0.195281
\(325\) 0 0
\(326\) 1.35069 0.0748079
\(327\) 20.4903 1.13312
\(328\) 8.40357 0.464010
\(329\) 14.9375 0.823530
\(330\) 0 0
\(331\) −4.06009 −0.223163 −0.111581 0.993755i \(-0.535592\pi\)
−0.111581 + 0.993755i \(0.535592\pi\)
\(332\) −7.66399 −0.420616
\(333\) −12.2334 −0.670385
\(334\) 0.0436819 0.00239017
\(335\) 0 0
\(336\) −0.314083 −0.0171346
\(337\) 24.8339 1.35279 0.676395 0.736539i \(-0.263541\pi\)
0.676395 + 0.736539i \(0.263541\pi\)
\(338\) 0 0
\(339\) 4.46629 0.242576
\(340\) 0 0
\(341\) −13.0879 −0.708749
\(342\) −5.26787 −0.284854
\(343\) −20.0656 −1.08344
\(344\) −0.438465 −0.0236404
\(345\) 0 0
\(346\) 7.99501 0.429815
\(347\) 29.1599 1.56538 0.782692 0.622409i \(-0.213846\pi\)
0.782692 + 0.622409i \(0.213846\pi\)
\(348\) 12.2132 0.654695
\(349\) 7.29040 0.390246 0.195123 0.980779i \(-0.437489\pi\)
0.195123 + 0.980779i \(0.437489\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 17.5958 0.937860
\(353\) 13.9534 0.742665 0.371333 0.928500i \(-0.378901\pi\)
0.371333 + 0.928500i \(0.378901\pi\)
\(354\) −6.20982 −0.330048
\(355\) 0 0
\(356\) −19.0685 −1.01063
\(357\) 4.99181 0.264195
\(358\) −20.2972 −1.07274
\(359\) 16.2637 0.858366 0.429183 0.903218i \(-0.358802\pi\)
0.429183 + 0.903218i \(0.358802\pi\)
\(360\) 0 0
\(361\) −0.766527 −0.0403435
\(362\) 15.7276 0.826627
\(363\) −1.46087 −0.0766759
\(364\) 0 0
\(365\) 0 0
\(366\) 11.1557 0.583115
\(367\) −34.4480 −1.79817 −0.899085 0.437774i \(-0.855767\pi\)
−0.899085 + 0.437774i \(0.855767\pi\)
\(368\) −0.936712 −0.0488295
\(369\) −4.09475 −0.213164
\(370\) 0 0
\(371\) −4.40574 −0.228735
\(372\) −6.41280 −0.332488
\(373\) −23.2179 −1.20218 −0.601088 0.799183i \(-0.705266\pi\)
−0.601088 + 0.799183i \(0.705266\pi\)
\(374\) 4.80442 0.248430
\(375\) 0 0
\(376\) 18.6717 0.962918
\(377\) 0 0
\(378\) 11.2831 0.580338
\(379\) 12.2666 0.630094 0.315047 0.949076i \(-0.397980\pi\)
0.315047 + 0.949076i \(0.397980\pi\)
\(380\) 0 0
\(381\) 3.07422 0.157497
\(382\) −8.64361 −0.442246
\(383\) 1.88332 0.0962329 0.0481165 0.998842i \(-0.484678\pi\)
0.0481165 + 0.998842i \(0.484678\pi\)
\(384\) 8.37712 0.427493
\(385\) 0 0
\(386\) −8.87959 −0.451959
\(387\) 0.213648 0.0108603
\(388\) −14.6389 −0.743176
\(389\) −20.0438 −1.01626 −0.508131 0.861280i \(-0.669663\pi\)
−0.508131 + 0.861280i \(0.669663\pi\)
\(390\) 0 0
\(391\) 14.8874 0.752889
\(392\) −5.12078 −0.258638
\(393\) −6.35356 −0.320494
\(394\) 5.32725 0.268383
\(395\) 0 0
\(396\) −5.28357 −0.265509
\(397\) 20.6134 1.03456 0.517279 0.855817i \(-0.326945\pi\)
0.517279 + 0.855817i \(0.326945\pi\)
\(398\) −5.16108 −0.258702
\(399\) −12.3623 −0.618887
\(400\) 0 0
\(401\) −35.8148 −1.78851 −0.894254 0.447560i \(-0.852293\pi\)
−0.894254 + 0.447560i \(0.852293\pi\)
\(402\) 7.27362 0.362775
\(403\) 0 0
\(404\) −4.59346 −0.228533
\(405\) 0 0
\(406\) 16.0875 0.798407
\(407\) −27.6307 −1.36960
\(408\) 6.23971 0.308912
\(409\) −0.221949 −0.0109747 −0.00548733 0.999985i \(-0.501747\pi\)
−0.00548733 + 0.999985i \(0.501747\pi\)
\(410\) 0 0
\(411\) −16.2636 −0.802226
\(412\) 17.7218 0.873091
\(413\) 12.5725 0.618650
\(414\) 10.6518 0.523509
\(415\) 0 0
\(416\) 0 0
\(417\) −19.7072 −0.965065
\(418\) −11.8982 −0.581958
\(419\) 0.680369 0.0332382 0.0166191 0.999862i \(-0.494710\pi\)
0.0166191 + 0.999862i \(0.494710\pi\)
\(420\) 0 0
\(421\) −2.01932 −0.0984155 −0.0492078 0.998789i \(-0.515670\pi\)
−0.0492078 + 0.998789i \(0.515670\pi\)
\(422\) −7.73572 −0.376569
\(423\) −9.09803 −0.442361
\(424\) −5.50712 −0.267450
\(425\) 0 0
\(426\) 5.34578 0.259004
\(427\) −22.5858 −1.09300
\(428\) −5.07814 −0.245461
\(429\) 0 0
\(430\) 0 0
\(431\) 6.85397 0.330144 0.165072 0.986281i \(-0.447214\pi\)
0.165072 + 0.986281i \(0.447214\pi\)
\(432\) 0.604336 0.0290761
\(433\) 0.520934 0.0250345 0.0125172 0.999922i \(-0.496016\pi\)
0.0125172 + 0.999922i \(0.496016\pi\)
\(434\) −8.44708 −0.405473
\(435\) 0 0
\(436\) −19.5637 −0.936931
\(437\) −36.8688 −1.76367
\(438\) −14.8612 −0.710094
\(439\) −27.5889 −1.31675 −0.658374 0.752691i \(-0.728756\pi\)
−0.658374 + 0.752691i \(0.728756\pi\)
\(440\) 0 0
\(441\) 2.49517 0.118818
\(442\) 0 0
\(443\) 7.20684 0.342408 0.171204 0.985236i \(-0.445234\pi\)
0.171204 + 0.985236i \(0.445234\pi\)
\(444\) −13.5385 −0.642508
\(445\) 0 0
\(446\) −0.0403291 −0.00190964
\(447\) −0.0525156 −0.00248390
\(448\) 11.8515 0.559933
\(449\) 0.135634 0.00640098 0.00320049 0.999995i \(-0.498981\pi\)
0.00320049 + 0.999995i \(0.498981\pi\)
\(450\) 0 0
\(451\) −9.24853 −0.435496
\(452\) −4.26431 −0.200576
\(453\) −7.63117 −0.358544
\(454\) 5.70245 0.267629
\(455\) 0 0
\(456\) −15.4527 −0.723638
\(457\) −0.308011 −0.0144081 −0.00720406 0.999974i \(-0.502293\pi\)
−0.00720406 + 0.999974i \(0.502293\pi\)
\(458\) 6.46349 0.302019
\(459\) −9.60488 −0.448317
\(460\) 0 0
\(461\) 28.6721 1.33539 0.667696 0.744434i \(-0.267281\pi\)
0.667696 + 0.744434i \(0.267281\pi\)
\(462\) 8.06693 0.375308
\(463\) 16.1023 0.748339 0.374169 0.927360i \(-0.377928\pi\)
0.374169 + 0.927360i \(0.377928\pi\)
\(464\) 0.861666 0.0400018
\(465\) 0 0
\(466\) −4.04967 −0.187597
\(467\) −3.47589 −0.160845 −0.0804224 0.996761i \(-0.525627\pi\)
−0.0804224 + 0.996761i \(0.525627\pi\)
\(468\) 0 0
\(469\) −14.7262 −0.679994
\(470\) 0 0
\(471\) 28.9152 1.33234
\(472\) 15.7154 0.723361
\(473\) 0.482551 0.0221877
\(474\) −15.1562 −0.696148
\(475\) 0 0
\(476\) −4.76606 −0.218452
\(477\) 2.68342 0.122865
\(478\) −15.0352 −0.687692
\(479\) −14.4576 −0.660587 −0.330293 0.943878i \(-0.607148\pi\)
−0.330293 + 0.943878i \(0.607148\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −5.44320 −0.247931
\(483\) 24.9970 1.13740
\(484\) 1.39481 0.0634003
\(485\) 0 0
\(486\) −11.5691 −0.524783
\(487\) −2.91278 −0.131991 −0.0659954 0.997820i \(-0.521022\pi\)
−0.0659954 + 0.997820i \(0.521022\pi\)
\(488\) −28.2320 −1.27800
\(489\) −1.93058 −0.0873040
\(490\) 0 0
\(491\) −7.60764 −0.343328 −0.171664 0.985156i \(-0.554914\pi\)
−0.171664 + 0.985156i \(0.554914\pi\)
\(492\) −4.53160 −0.204300
\(493\) −13.6947 −0.616778
\(494\) 0 0
\(495\) 0 0
\(496\) −0.452437 −0.0203150
\(497\) −10.8231 −0.485483
\(498\) −7.12698 −0.319368
\(499\) −4.07246 −0.182309 −0.0911543 0.995837i \(-0.529056\pi\)
−0.0911543 + 0.995837i \(0.529056\pi\)
\(500\) 0 0
\(501\) −0.0624358 −0.00278943
\(502\) −10.2854 −0.459059
\(503\) 34.0821 1.51965 0.759823 0.650130i \(-0.225286\pi\)
0.759823 + 0.650130i \(0.225286\pi\)
\(504\) −9.03879 −0.402620
\(505\) 0 0
\(506\) 24.0586 1.06953
\(507\) 0 0
\(508\) −2.93519 −0.130228
\(509\) 1.30664 0.0579159 0.0289579 0.999581i \(-0.490781\pi\)
0.0289579 + 0.999581i \(0.490781\pi\)
\(510\) 0 0
\(511\) 30.0880 1.33102
\(512\) 1.22700 0.0542260
\(513\) 23.7865 1.05020
\(514\) −11.0691 −0.488236
\(515\) 0 0
\(516\) 0.236441 0.0104087
\(517\) −20.5491 −0.903747
\(518\) −17.8332 −0.783545
\(519\) −11.4275 −0.501612
\(520\) 0 0
\(521\) −0.550102 −0.0241004 −0.0120502 0.999927i \(-0.503836\pi\)
−0.0120502 + 0.999927i \(0.503836\pi\)
\(522\) −9.79845 −0.428866
\(523\) −17.0531 −0.745679 −0.372840 0.927896i \(-0.621616\pi\)
−0.372840 + 0.927896i \(0.621616\pi\)
\(524\) 6.06622 0.265004
\(525\) 0 0
\(526\) −25.1525 −1.09670
\(527\) 7.19071 0.313232
\(528\) 0.432076 0.0188037
\(529\) 51.5501 2.24131
\(530\) 0 0
\(531\) −7.65755 −0.332309
\(532\) 11.8032 0.511733
\(533\) 0 0
\(534\) −17.7324 −0.767357
\(535\) 0 0
\(536\) −18.4076 −0.795088
\(537\) 29.0114 1.25193
\(538\) 10.8220 0.466569
\(539\) 5.63566 0.242745
\(540\) 0 0
\(541\) 30.1330 1.29552 0.647759 0.761845i \(-0.275706\pi\)
0.647759 + 0.761845i \(0.275706\pi\)
\(542\) −15.6752 −0.673307
\(543\) −22.4800 −0.964709
\(544\) −9.66744 −0.414488
\(545\) 0 0
\(546\) 0 0
\(547\) 5.36791 0.229515 0.114758 0.993394i \(-0.463391\pi\)
0.114758 + 0.993394i \(0.463391\pi\)
\(548\) 15.5281 0.663329
\(549\) 13.7564 0.587110
\(550\) 0 0
\(551\) 33.9150 1.44483
\(552\) 31.2459 1.32991
\(553\) 30.6854 1.30487
\(554\) −10.4104 −0.442294
\(555\) 0 0
\(556\) 18.8160 0.797974
\(557\) −7.05530 −0.298943 −0.149471 0.988766i \(-0.547757\pi\)
−0.149471 + 0.988766i \(0.547757\pi\)
\(558\) 5.14490 0.217801
\(559\) 0 0
\(560\) 0 0
\(561\) −6.86710 −0.289929
\(562\) −17.9921 −0.758950
\(563\) 31.6656 1.33455 0.667273 0.744814i \(-0.267462\pi\)
0.667273 + 0.744814i \(0.267462\pi\)
\(564\) −10.0686 −0.423966
\(565\) 0 0
\(566\) −7.31903 −0.307642
\(567\) −6.61795 −0.277928
\(568\) −13.5288 −0.567655
\(569\) 13.5818 0.569380 0.284690 0.958620i \(-0.408109\pi\)
0.284690 + 0.958620i \(0.408109\pi\)
\(570\) 0 0
\(571\) −34.7338 −1.45356 −0.726782 0.686868i \(-0.758985\pi\)
−0.726782 + 0.686868i \(0.758985\pi\)
\(572\) 0 0
\(573\) 12.3546 0.516120
\(574\) −5.96912 −0.249146
\(575\) 0 0
\(576\) −7.21846 −0.300769
\(577\) 43.8511 1.82555 0.912773 0.408467i \(-0.133937\pi\)
0.912773 + 0.408467i \(0.133937\pi\)
\(578\) 12.4543 0.518029
\(579\) 12.6919 0.527456
\(580\) 0 0
\(581\) 14.4293 0.598630
\(582\) −13.6131 −0.564283
\(583\) 6.06085 0.251015
\(584\) 37.6097 1.55630
\(585\) 0 0
\(586\) −18.9308 −0.782026
\(587\) −4.11991 −0.170047 −0.0850235 0.996379i \(-0.527097\pi\)
−0.0850235 + 0.996379i \(0.527097\pi\)
\(588\) 2.76136 0.113877
\(589\) −17.8078 −0.733759
\(590\) 0 0
\(591\) −7.61440 −0.313215
\(592\) −0.955169 −0.0392572
\(593\) 2.16800 0.0890292 0.0445146 0.999009i \(-0.485826\pi\)
0.0445146 + 0.999009i \(0.485826\pi\)
\(594\) −15.5218 −0.636867
\(595\) 0 0
\(596\) 0.0501407 0.00205384
\(597\) 7.37689 0.301916
\(598\) 0 0
\(599\) −37.1445 −1.51768 −0.758841 0.651276i \(-0.774234\pi\)
−0.758841 + 0.651276i \(0.774234\pi\)
\(600\) 0 0
\(601\) −1.11320 −0.0454085 −0.0227043 0.999742i \(-0.507228\pi\)
−0.0227043 + 0.999742i \(0.507228\pi\)
\(602\) 0.311445 0.0126935
\(603\) 8.96936 0.365261
\(604\) 7.28606 0.296466
\(605\) 0 0
\(606\) −4.27160 −0.173522
\(607\) −8.21780 −0.333550 −0.166775 0.985995i \(-0.553335\pi\)
−0.166775 + 0.985995i \(0.553335\pi\)
\(608\) 23.9415 0.970955
\(609\) −22.9943 −0.931776
\(610\) 0 0
\(611\) 0 0
\(612\) 2.90289 0.117342
\(613\) −28.6108 −1.15558 −0.577790 0.816185i \(-0.696085\pi\)
−0.577790 + 0.816185i \(0.696085\pi\)
\(614\) 7.44537 0.300471
\(615\) 0 0
\(616\) −20.4153 −0.822555
\(617\) 0.844622 0.0340032 0.0170016 0.999855i \(-0.494588\pi\)
0.0170016 + 0.999855i \(0.494588\pi\)
\(618\) 16.4801 0.662925
\(619\) −9.06143 −0.364210 −0.182105 0.983279i \(-0.558291\pi\)
−0.182105 + 0.983279i \(0.558291\pi\)
\(620\) 0 0
\(621\) −48.0973 −1.93008
\(622\) 2.50655 0.100503
\(623\) 35.9012 1.43835
\(624\) 0 0
\(625\) 0 0
\(626\) −17.0441 −0.681219
\(627\) 17.0064 0.679171
\(628\) −27.6076 −1.10166
\(629\) 15.1808 0.605297
\(630\) 0 0
\(631\) 14.1174 0.562003 0.281002 0.959707i \(-0.409333\pi\)
0.281002 + 0.959707i \(0.409333\pi\)
\(632\) 38.3564 1.52573
\(633\) 11.0569 0.439472
\(634\) 5.11819 0.203269
\(635\) 0 0
\(636\) 2.96970 0.117756
\(637\) 0 0
\(638\) −22.1311 −0.876177
\(639\) 6.59208 0.260778
\(640\) 0 0
\(641\) −9.19011 −0.362988 −0.181494 0.983392i \(-0.558093\pi\)
−0.181494 + 0.983392i \(0.558093\pi\)
\(642\) −4.72232 −0.186375
\(643\) −4.14150 −0.163325 −0.0816624 0.996660i \(-0.526023\pi\)
−0.0816624 + 0.996660i \(0.526023\pi\)
\(644\) −23.8665 −0.940472
\(645\) 0 0
\(646\) 6.53706 0.257197
\(647\) −4.86077 −0.191097 −0.0955483 0.995425i \(-0.530460\pi\)
−0.0955483 + 0.995425i \(0.530460\pi\)
\(648\) −8.27236 −0.324969
\(649\) −17.2956 −0.678911
\(650\) 0 0
\(651\) 12.0737 0.473204
\(652\) 1.84328 0.0721883
\(653\) −42.8456 −1.67668 −0.838340 0.545148i \(-0.816473\pi\)
−0.838340 + 0.545148i \(0.816473\pi\)
\(654\) −18.1929 −0.711398
\(655\) 0 0
\(656\) −0.319714 −0.0124827
\(657\) −18.3258 −0.714958
\(658\) −13.2626 −0.517031
\(659\) 0.355635 0.0138536 0.00692678 0.999976i \(-0.497795\pi\)
0.00692678 + 0.999976i \(0.497795\pi\)
\(660\) 0 0
\(661\) −12.9399 −0.503303 −0.251651 0.967818i \(-0.580974\pi\)
−0.251651 + 0.967818i \(0.580974\pi\)
\(662\) 3.60485 0.140107
\(663\) 0 0
\(664\) 18.0365 0.699952
\(665\) 0 0
\(666\) 10.8617 0.420883
\(667\) −68.5774 −2.65533
\(668\) 0.0596123 0.00230647
\(669\) 0.0576436 0.00222863
\(670\) 0 0
\(671\) 31.0707 1.19947
\(672\) −16.2323 −0.626174
\(673\) 27.5011 1.06009 0.530045 0.847970i \(-0.322175\pi\)
0.530045 + 0.847970i \(0.322175\pi\)
\(674\) −22.0494 −0.849312
\(675\) 0 0
\(676\) 0 0
\(677\) 12.6270 0.485297 0.242648 0.970114i \(-0.421984\pi\)
0.242648 + 0.970114i \(0.421984\pi\)
\(678\) −3.96551 −0.152295
\(679\) 27.5613 1.05770
\(680\) 0 0
\(681\) −8.15069 −0.312335
\(682\) 11.6204 0.444969
\(683\) −29.0442 −1.11135 −0.555673 0.831401i \(-0.687539\pi\)
−0.555673 + 0.831401i \(0.687539\pi\)
\(684\) −7.18901 −0.274879
\(685\) 0 0
\(686\) 17.8158 0.680209
\(687\) −9.23846 −0.352469
\(688\) 0.0166814 0.000635972 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.54360 0.210889 0.105444 0.994425i \(-0.466374\pi\)
0.105444 + 0.994425i \(0.466374\pi\)
\(692\) 10.9107 0.414763
\(693\) 9.94762 0.377879
\(694\) −25.8904 −0.982785
\(695\) 0 0
\(696\) −28.7426 −1.08949
\(697\) 5.08130 0.192468
\(698\) −6.47297 −0.245006
\(699\) 5.78831 0.218934
\(700\) 0 0
\(701\) −7.14386 −0.269820 −0.134910 0.990858i \(-0.543075\pi\)
−0.134910 + 0.990858i \(0.543075\pi\)
\(702\) 0 0
\(703\) −37.5953 −1.41793
\(704\) −16.3038 −0.614474
\(705\) 0 0
\(706\) −12.3889 −0.466262
\(707\) 8.64831 0.325253
\(708\) −8.47449 −0.318491
\(709\) −33.2696 −1.24947 −0.624733 0.780838i \(-0.714792\pi\)
−0.624733 + 0.780838i \(0.714792\pi\)
\(710\) 0 0
\(711\) −18.6897 −0.700917
\(712\) 44.8761 1.68180
\(713\) 36.0081 1.34851
\(714\) −4.43211 −0.165868
\(715\) 0 0
\(716\) −27.6994 −1.03517
\(717\) 21.4902 0.802567
\(718\) −14.4402 −0.538902
\(719\) 2.93123 0.109317 0.0546583 0.998505i \(-0.482593\pi\)
0.0546583 + 0.998505i \(0.482593\pi\)
\(720\) 0 0
\(721\) −33.3656 −1.24260
\(722\) 0.680581 0.0253286
\(723\) 7.78013 0.289346
\(724\) 21.4634 0.797680
\(725\) 0 0
\(726\) 1.29707 0.0481389
\(727\) −14.9385 −0.554039 −0.277019 0.960864i \(-0.589347\pi\)
−0.277019 + 0.960864i \(0.589347\pi\)
\(728\) 0 0
\(729\) 25.2390 0.934777
\(730\) 0 0
\(731\) −0.265122 −0.00980589
\(732\) 15.2240 0.562696
\(733\) −9.64485 −0.356241 −0.178120 0.984009i \(-0.557002\pi\)
−0.178120 + 0.984009i \(0.557002\pi\)
\(734\) 30.5855 1.12893
\(735\) 0 0
\(736\) −48.4106 −1.78444
\(737\) 20.2585 0.746230
\(738\) 3.63563 0.133830
\(739\) −38.6006 −1.41995 −0.709973 0.704229i \(-0.751293\pi\)
−0.709973 + 0.704229i \(0.751293\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 3.91175 0.143605
\(743\) −43.3909 −1.59186 −0.795928 0.605391i \(-0.793017\pi\)
−0.795928 + 0.605391i \(0.793017\pi\)
\(744\) 15.0919 0.553298
\(745\) 0 0
\(746\) 20.6146 0.754754
\(747\) −8.78853 −0.321555
\(748\) 6.55654 0.239731
\(749\) 9.56084 0.349345
\(750\) 0 0
\(751\) −34.8770 −1.27268 −0.636341 0.771408i \(-0.719553\pi\)
−0.636341 + 0.771408i \(0.719553\pi\)
\(752\) −0.710364 −0.0259043
\(753\) 14.7012 0.535742
\(754\) 0 0
\(755\) 0 0
\(756\) 15.3979 0.560016
\(757\) 11.6518 0.423493 0.211746 0.977325i \(-0.432085\pi\)
0.211746 + 0.977325i \(0.432085\pi\)
\(758\) −10.8912 −0.395588
\(759\) −34.3876 −1.24819
\(760\) 0 0
\(761\) 49.0684 1.77873 0.889364 0.457200i \(-0.151148\pi\)
0.889364 + 0.457200i \(0.151148\pi\)
\(762\) −2.72952 −0.0988803
\(763\) 36.8334 1.33346
\(764\) −11.7959 −0.426759
\(765\) 0 0
\(766\) −1.67215 −0.0604172
\(767\) 0 0
\(768\) −20.6238 −0.744197
\(769\) −40.1202 −1.44677 −0.723386 0.690444i \(-0.757415\pi\)
−0.723386 + 0.690444i \(0.757415\pi\)
\(770\) 0 0
\(771\) 15.8214 0.569792
\(772\) −12.1179 −0.436133
\(773\) −11.6461 −0.418883 −0.209441 0.977821i \(-0.567165\pi\)
−0.209441 + 0.977821i \(0.567165\pi\)
\(774\) −0.189693 −0.00681836
\(775\) 0 0
\(776\) 34.4512 1.23673
\(777\) 25.4895 0.914431
\(778\) 17.7964 0.638032
\(779\) −12.5839 −0.450864
\(780\) 0 0
\(781\) 14.8891 0.532772
\(782\) −13.2182 −0.472681
\(783\) 44.2439 1.58115
\(784\) 0.194820 0.00695786
\(785\) 0 0
\(786\) 5.64117 0.201214
\(787\) −25.5641 −0.911262 −0.455631 0.890169i \(-0.650586\pi\)
−0.455631 + 0.890169i \(0.650586\pi\)
\(788\) 7.27005 0.258985
\(789\) 35.9512 1.27990
\(790\) 0 0
\(791\) 8.02860 0.285464
\(792\) 12.4344 0.441837
\(793\) 0 0
\(794\) −18.3022 −0.649519
\(795\) 0 0
\(796\) −7.04328 −0.249642
\(797\) 45.7347 1.62001 0.810003 0.586425i \(-0.199465\pi\)
0.810003 + 0.586425i \(0.199465\pi\)
\(798\) 10.9761 0.388551
\(799\) 11.2900 0.399412
\(800\) 0 0
\(801\) −21.8665 −0.772614
\(802\) 31.7991 1.12287
\(803\) −41.3912 −1.46067
\(804\) 9.92625 0.350072
\(805\) 0 0
\(806\) 0 0
\(807\) −15.4682 −0.544506
\(808\) 10.8103 0.380305
\(809\) 31.4562 1.10594 0.552970 0.833201i \(-0.313494\pi\)
0.552970 + 0.833201i \(0.313494\pi\)
\(810\) 0 0
\(811\) −38.0128 −1.33481 −0.667406 0.744694i \(-0.732595\pi\)
−0.667406 + 0.744694i \(0.732595\pi\)
\(812\) 21.9544 0.770449
\(813\) 22.4050 0.785779
\(814\) 24.5326 0.859868
\(815\) 0 0
\(816\) −0.237390 −0.00831031
\(817\) 0.656576 0.0229707
\(818\) 0.197063 0.00689015
\(819\) 0 0
\(820\) 0 0
\(821\) −55.7593 −1.94601 −0.973006 0.230778i \(-0.925873\pi\)
−0.973006 + 0.230778i \(0.925873\pi\)
\(822\) 14.4401 0.503656
\(823\) −30.7203 −1.07084 −0.535420 0.844586i \(-0.679847\pi\)
−0.535420 + 0.844586i \(0.679847\pi\)
\(824\) −41.7067 −1.45292
\(825\) 0 0
\(826\) −11.1628 −0.388403
\(827\) 37.7024 1.31104 0.655520 0.755177i \(-0.272449\pi\)
0.655520 + 0.755177i \(0.272449\pi\)
\(828\) 14.5365 0.505177
\(829\) −13.8208 −0.480015 −0.240008 0.970771i \(-0.577150\pi\)
−0.240008 + 0.970771i \(0.577150\pi\)
\(830\) 0 0
\(831\) 14.8799 0.516177
\(832\) 0 0
\(833\) −3.09633 −0.107281
\(834\) 17.4975 0.605890
\(835\) 0 0
\(836\) −16.2373 −0.561579
\(837\) −23.2313 −0.802990
\(838\) −0.604083 −0.0208677
\(839\) 16.0902 0.555495 0.277747 0.960654i \(-0.410412\pi\)
0.277747 + 0.960654i \(0.410412\pi\)
\(840\) 0 0
\(841\) 34.0833 1.17528
\(842\) 1.79290 0.0617875
\(843\) 25.7166 0.885727
\(844\) −10.5569 −0.363382
\(845\) 0 0
\(846\) 8.07792 0.277725
\(847\) −2.62607 −0.0902327
\(848\) 0.209519 0.00719490
\(849\) 10.4613 0.359031
\(850\) 0 0
\(851\) 76.0191 2.60590
\(852\) 7.29534 0.249934
\(853\) 48.9861 1.67725 0.838625 0.544709i \(-0.183360\pi\)
0.838625 + 0.544709i \(0.183360\pi\)
\(854\) 20.0534 0.686213
\(855\) 0 0
\(856\) 11.9509 0.408475
\(857\) −8.57696 −0.292983 −0.146492 0.989212i \(-0.546798\pi\)
−0.146492 + 0.989212i \(0.546798\pi\)
\(858\) 0 0
\(859\) −17.9983 −0.614095 −0.307048 0.951694i \(-0.599341\pi\)
−0.307048 + 0.951694i \(0.599341\pi\)
\(860\) 0 0
\(861\) 8.53184 0.290764
\(862\) −6.08548 −0.207272
\(863\) 2.18400 0.0743444 0.0371722 0.999309i \(-0.488165\pi\)
0.0371722 + 0.999309i \(0.488165\pi\)
\(864\) 31.2329 1.06257
\(865\) 0 0
\(866\) −0.462525 −0.0157172
\(867\) −17.8013 −0.604562
\(868\) −11.5277 −0.391274
\(869\) −42.2130 −1.43198
\(870\) 0 0
\(871\) 0 0
\(872\) 46.0414 1.55916
\(873\) −16.7868 −0.568148
\(874\) 32.7349 1.10727
\(875\) 0 0
\(876\) −20.2809 −0.685228
\(877\) −27.9605 −0.944158 −0.472079 0.881556i \(-0.656496\pi\)
−0.472079 + 0.881556i \(0.656496\pi\)
\(878\) 24.4956 0.826685
\(879\) 27.0584 0.912658
\(880\) 0 0
\(881\) −3.38544 −0.114058 −0.0570292 0.998373i \(-0.518163\pi\)
−0.0570292 + 0.998373i \(0.518163\pi\)
\(882\) −2.21540 −0.0745964
\(883\) −9.67005 −0.325423 −0.162712 0.986674i \(-0.552024\pi\)
−0.162712 + 0.986674i \(0.552024\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.39878 −0.214971
\(887\) −10.1393 −0.340445 −0.170223 0.985406i \(-0.554449\pi\)
−0.170223 + 0.985406i \(0.554449\pi\)
\(888\) 31.8616 1.06920
\(889\) 5.52622 0.185343
\(890\) 0 0
\(891\) 9.10413 0.305000
\(892\) −0.0550368 −0.00184277
\(893\) −27.9598 −0.935639
\(894\) 0.0466273 0.00155945
\(895\) 0 0
\(896\) 15.0587 0.503076
\(897\) 0 0
\(898\) −0.120427 −0.00401869
\(899\) −33.1233 −1.10472
\(900\) 0 0
\(901\) −3.32994 −0.110936
\(902\) 8.21155 0.273415
\(903\) −0.445157 −0.0148139
\(904\) 10.0357 0.333781
\(905\) 0 0
\(906\) 6.77553 0.225102
\(907\) 48.7631 1.61915 0.809577 0.587014i \(-0.199697\pi\)
0.809577 + 0.587014i \(0.199697\pi\)
\(908\) 7.78208 0.258258
\(909\) −5.26746 −0.174711
\(910\) 0 0
\(911\) −53.5943 −1.77566 −0.887829 0.460174i \(-0.847787\pi\)
−0.887829 + 0.460174i \(0.847787\pi\)
\(912\) 0.587897 0.0194672
\(913\) −19.8500 −0.656940
\(914\) 0.273475 0.00904575
\(915\) 0 0
\(916\) 8.82066 0.291443
\(917\) −11.4212 −0.377160
\(918\) 8.52794 0.281464
\(919\) −28.2142 −0.930701 −0.465350 0.885127i \(-0.654072\pi\)
−0.465350 + 0.885127i \(0.654072\pi\)
\(920\) 0 0
\(921\) −10.6419 −0.350662
\(922\) −25.4572 −0.838390
\(923\) 0 0
\(924\) 11.0089 0.362165
\(925\) 0 0
\(926\) −14.2969 −0.469824
\(927\) 20.3221 0.667466
\(928\) 44.5321 1.46184
\(929\) −2.90575 −0.0953346 −0.0476673 0.998863i \(-0.515179\pi\)
−0.0476673 + 0.998863i \(0.515179\pi\)
\(930\) 0 0
\(931\) 7.66808 0.251311
\(932\) −5.52654 −0.181028
\(933\) −3.58269 −0.117292
\(934\) 3.08616 0.100982
\(935\) 0 0
\(936\) 0 0
\(937\) −44.6821 −1.45970 −0.729850 0.683607i \(-0.760410\pi\)
−0.729850 + 0.683607i \(0.760410\pi\)
\(938\) 13.0751 0.426916
\(939\) 24.3616 0.795012
\(940\) 0 0
\(941\) 5.09938 0.166235 0.0831175 0.996540i \(-0.473512\pi\)
0.0831175 + 0.996540i \(0.473512\pi\)
\(942\) −25.6731 −0.836476
\(943\) 25.4451 0.828606
\(944\) −0.597894 −0.0194598
\(945\) 0 0
\(946\) −0.428446 −0.0139300
\(947\) −6.85210 −0.222663 −0.111332 0.993783i \(-0.535512\pi\)
−0.111332 + 0.993783i \(0.535512\pi\)
\(948\) −20.6835 −0.671770
\(949\) 0 0
\(950\) 0 0
\(951\) −7.31558 −0.237224
\(952\) 11.2165 0.363529
\(953\) 31.9155 1.03385 0.516923 0.856032i \(-0.327077\pi\)
0.516923 + 0.856032i \(0.327077\pi\)
\(954\) −2.38254 −0.0771377
\(955\) 0 0
\(956\) −20.5183 −0.663611
\(957\) 31.6326 1.02254
\(958\) 12.8366 0.414732
\(959\) −29.2355 −0.944064
\(960\) 0 0
\(961\) −13.6079 −0.438964
\(962\) 0 0
\(963\) −5.82325 −0.187652
\(964\) −7.42829 −0.239249
\(965\) 0 0
\(966\) −22.1942 −0.714087
\(967\) −15.8568 −0.509920 −0.254960 0.966952i \(-0.582062\pi\)
−0.254960 + 0.966952i \(0.582062\pi\)
\(968\) −3.28255 −0.105505
\(969\) −9.34361 −0.300160
\(970\) 0 0
\(971\) 18.3168 0.587813 0.293907 0.955834i \(-0.405045\pi\)
0.293907 + 0.955834i \(0.405045\pi\)
\(972\) −15.7882 −0.506407
\(973\) −35.4256 −1.13569
\(974\) 2.58619 0.0828669
\(975\) 0 0
\(976\) 1.07409 0.0343807
\(977\) 13.5382 0.433127 0.216563 0.976269i \(-0.430515\pi\)
0.216563 + 0.976269i \(0.430515\pi\)
\(978\) 1.71412 0.0548115
\(979\) −49.3883 −1.57846
\(980\) 0 0
\(981\) −22.4343 −0.716271
\(982\) 6.75464 0.215549
\(983\) −34.5313 −1.10138 −0.550688 0.834711i \(-0.685635\pi\)
−0.550688 + 0.834711i \(0.685635\pi\)
\(984\) 10.6647 0.339978
\(985\) 0 0
\(986\) 12.1592 0.387227
\(987\) 18.9567 0.603398
\(988\) 0 0
\(989\) −1.32762 −0.0422159
\(990\) 0 0
\(991\) 43.5272 1.38269 0.691343 0.722526i \(-0.257019\pi\)
0.691343 + 0.722526i \(0.257019\pi\)
\(992\) −23.3826 −0.742398
\(993\) −5.15253 −0.163510
\(994\) 9.60958 0.304797
\(995\) 0 0
\(996\) −9.72612 −0.308184
\(997\) −45.3802 −1.43720 −0.718602 0.695422i \(-0.755218\pi\)
−0.718602 + 0.695422i \(0.755218\pi\)
\(998\) 3.61584 0.114457
\(999\) −49.0450 −1.55172
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.cb.1.7 18
5.2 odd 4 845.2.b.h.339.7 yes 18
5.3 odd 4 845.2.b.h.339.12 yes 18
5.4 even 2 inner 4225.2.a.cb.1.12 18
13.12 even 2 4225.2.a.ca.1.12 18
65.2 even 12 845.2.l.g.654.24 72
65.3 odd 12 845.2.n.h.529.7 36
65.7 even 12 845.2.l.g.699.13 72
65.8 even 4 845.2.d.e.844.14 36
65.12 odd 4 845.2.b.g.339.12 yes 18
65.17 odd 12 845.2.n.i.484.12 36
65.18 even 4 845.2.d.e.844.24 36
65.22 odd 12 845.2.n.h.484.7 36
65.23 odd 12 845.2.n.i.529.12 36
65.28 even 12 845.2.l.g.654.13 72
65.32 even 12 845.2.l.g.699.23 72
65.33 even 12 845.2.l.g.699.24 72
65.37 even 12 845.2.l.g.654.14 72
65.38 odd 4 845.2.b.g.339.7 18
65.42 odd 12 845.2.n.h.529.12 36
65.43 odd 12 845.2.n.i.484.7 36
65.47 even 4 845.2.d.e.844.23 36
65.48 odd 12 845.2.n.h.484.12 36
65.57 even 4 845.2.d.e.844.13 36
65.58 even 12 845.2.l.g.699.14 72
65.62 odd 12 845.2.n.i.529.7 36
65.63 even 12 845.2.l.g.654.23 72
65.64 even 2 4225.2.a.ca.1.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.b.g.339.7 18 65.38 odd 4
845.2.b.g.339.12 yes 18 65.12 odd 4
845.2.b.h.339.7 yes 18 5.2 odd 4
845.2.b.h.339.12 yes 18 5.3 odd 4
845.2.d.e.844.13 36 65.57 even 4
845.2.d.e.844.14 36 65.8 even 4
845.2.d.e.844.23 36 65.47 even 4
845.2.d.e.844.24 36 65.18 even 4
845.2.l.g.654.13 72 65.28 even 12
845.2.l.g.654.14 72 65.37 even 12
845.2.l.g.654.23 72 65.63 even 12
845.2.l.g.654.24 72 65.2 even 12
845.2.l.g.699.13 72 65.7 even 12
845.2.l.g.699.14 72 65.58 even 12
845.2.l.g.699.23 72 65.32 even 12
845.2.l.g.699.24 72 65.33 even 12
845.2.n.h.484.7 36 65.22 odd 12
845.2.n.h.484.12 36 65.48 odd 12
845.2.n.h.529.7 36 65.3 odd 12
845.2.n.h.529.12 36 65.42 odd 12
845.2.n.i.484.7 36 65.43 odd 12
845.2.n.i.484.12 36 65.17 odd 12
845.2.n.i.529.7 36 65.62 odd 12
845.2.n.i.529.12 36 65.23 odd 12
4225.2.a.ca.1.7 18 65.64 even 2
4225.2.a.ca.1.12 18 13.12 even 2
4225.2.a.cb.1.7 18 1.1 even 1 trivial
4225.2.a.cb.1.12 18 5.4 even 2 inner