Properties

Label 4225.2.a.bt.1.7
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4225,2,Mod(1,4225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,3,-7,17,0,2,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 17x^{7} - 9x^{6} + 59x^{5} + 32x^{4} - 44x^{3} - 23x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 845)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.76052\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20556 q^{2} +0.0130567 q^{3} +2.86449 q^{4} +0.0287972 q^{6} +4.60897 q^{7} +1.90669 q^{8} -2.99983 q^{9} -2.93232 q^{11} +0.0374007 q^{12} +10.1654 q^{14} -1.52367 q^{16} +3.35206 q^{17} -6.61630 q^{18} +2.46021 q^{19} +0.0601778 q^{21} -6.46741 q^{22} +1.58329 q^{23} +0.0248950 q^{24} -0.0783378 q^{27} +13.2024 q^{28} +8.26322 q^{29} +9.77959 q^{31} -7.17392 q^{32} -0.0382863 q^{33} +7.39317 q^{34} -8.59299 q^{36} +4.12917 q^{37} +5.42613 q^{38} -7.26508 q^{41} +0.132726 q^{42} +0.705329 q^{43} -8.39961 q^{44} +3.49204 q^{46} +8.57322 q^{47} -0.0198940 q^{48} +14.2426 q^{49} +0.0437667 q^{51} +12.4639 q^{53} -0.172779 q^{54} +8.78787 q^{56} +0.0321221 q^{57} +18.2250 q^{58} +5.33445 q^{59} +1.92092 q^{61} +21.5695 q^{62} -13.8261 q^{63} -12.7752 q^{64} -0.0844427 q^{66} -7.29793 q^{67} +9.60195 q^{68} +0.0206725 q^{69} +6.68083 q^{71} -5.71974 q^{72} -12.4541 q^{73} +9.10713 q^{74} +7.04724 q^{76} -13.5150 q^{77} +0.984840 q^{79} +8.99847 q^{81} -16.0236 q^{82} -7.84405 q^{83} +0.172379 q^{84} +1.55565 q^{86} +0.107890 q^{87} -5.59102 q^{88} +0.412834 q^{89} +4.53532 q^{92} +0.127689 q^{93} +18.9087 q^{94} -0.0936675 q^{96} -3.38416 q^{97} +31.4129 q^{98} +8.79646 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 3 q^{2} - 7 q^{3} + 17 q^{4} + 2 q^{6} + 7 q^{7} + 12 q^{8} + 16 q^{9} + 9 q^{11} - 12 q^{12} - 2 q^{14} + 37 q^{16} + q^{17} - 10 q^{18} + 4 q^{19} + q^{21} - 12 q^{22} - 14 q^{23} + 35 q^{24}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20556 1.55957 0.779783 0.626050i \(-0.215329\pi\)
0.779783 + 0.626050i \(0.215329\pi\)
\(3\) 0.0130567 0.00753827 0.00376913 0.999993i \(-0.498800\pi\)
0.00376913 + 0.999993i \(0.498800\pi\)
\(4\) 2.86449 1.43225
\(5\) 0 0
\(6\) 0.0287972 0.0117564
\(7\) 4.60897 1.74203 0.871013 0.491259i \(-0.163463\pi\)
0.871013 + 0.491259i \(0.163463\pi\)
\(8\) 1.90669 0.674116
\(9\) −2.99983 −0.999943
\(10\) 0 0
\(11\) −2.93232 −0.884128 −0.442064 0.896984i \(-0.645754\pi\)
−0.442064 + 0.896984i \(0.645754\pi\)
\(12\) 0.0374007 0.0107967
\(13\) 0 0
\(14\) 10.1654 2.71681
\(15\) 0 0
\(16\) −1.52367 −0.380917
\(17\) 3.35206 0.812994 0.406497 0.913652i \(-0.366750\pi\)
0.406497 + 0.913652i \(0.366750\pi\)
\(18\) −6.61630 −1.55948
\(19\) 2.46021 0.564410 0.282205 0.959354i \(-0.408934\pi\)
0.282205 + 0.959354i \(0.408934\pi\)
\(20\) 0 0
\(21\) 0.0601778 0.0131319
\(22\) −6.46741 −1.37886
\(23\) 1.58329 0.330139 0.165069 0.986282i \(-0.447215\pi\)
0.165069 + 0.986282i \(0.447215\pi\)
\(24\) 0.0248950 0.00508167
\(25\) 0 0
\(26\) 0 0
\(27\) −0.0783378 −0.0150761
\(28\) 13.2024 2.49501
\(29\) 8.26322 1.53444 0.767221 0.641383i \(-0.221639\pi\)
0.767221 + 0.641383i \(0.221639\pi\)
\(30\) 0 0
\(31\) 9.77959 1.75647 0.878233 0.478233i \(-0.158723\pi\)
0.878233 + 0.478233i \(0.158723\pi\)
\(32\) −7.17392 −1.26818
\(33\) −0.0382863 −0.00666479
\(34\) 7.39317 1.26792
\(35\) 0 0
\(36\) −8.59299 −1.43216
\(37\) 4.12917 0.678831 0.339416 0.940637i \(-0.389771\pi\)
0.339416 + 0.940637i \(0.389771\pi\)
\(38\) 5.42613 0.880235
\(39\) 0 0
\(40\) 0 0
\(41\) −7.26508 −1.13462 −0.567308 0.823506i \(-0.692015\pi\)
−0.567308 + 0.823506i \(0.692015\pi\)
\(42\) 0.132726 0.0204800
\(43\) 0.705329 0.107562 0.0537809 0.998553i \(-0.482873\pi\)
0.0537809 + 0.998553i \(0.482873\pi\)
\(44\) −8.39961 −1.26629
\(45\) 0 0
\(46\) 3.49204 0.514873
\(47\) 8.57322 1.25053 0.625266 0.780411i \(-0.284990\pi\)
0.625266 + 0.780411i \(0.284990\pi\)
\(48\) −0.0198940 −0.00287146
\(49\) 14.2426 2.03466
\(50\) 0 0
\(51\) 0.0437667 0.00612857
\(52\) 0 0
\(53\) 12.4639 1.71204 0.856022 0.516940i \(-0.172929\pi\)
0.856022 + 0.516940i \(0.172929\pi\)
\(54\) −0.172779 −0.0235122
\(55\) 0 0
\(56\) 8.78787 1.17433
\(57\) 0.0321221 0.00425467
\(58\) 18.2250 2.39306
\(59\) 5.33445 0.694487 0.347243 0.937775i \(-0.387118\pi\)
0.347243 + 0.937775i \(0.387118\pi\)
\(60\) 0 0
\(61\) 1.92092 0.245949 0.122974 0.992410i \(-0.460757\pi\)
0.122974 + 0.992410i \(0.460757\pi\)
\(62\) 21.5695 2.73932
\(63\) −13.8261 −1.74193
\(64\) −12.7752 −1.59690
\(65\) 0 0
\(66\) −0.0844427 −0.0103942
\(67\) −7.29793 −0.891584 −0.445792 0.895137i \(-0.647078\pi\)
−0.445792 + 0.895137i \(0.647078\pi\)
\(68\) 9.60195 1.16441
\(69\) 0.0206725 0.00248867
\(70\) 0 0
\(71\) 6.68083 0.792868 0.396434 0.918063i \(-0.370248\pi\)
0.396434 + 0.918063i \(0.370248\pi\)
\(72\) −5.71974 −0.674078
\(73\) −12.4541 −1.45765 −0.728824 0.684702i \(-0.759933\pi\)
−0.728824 + 0.684702i \(0.759933\pi\)
\(74\) 9.10713 1.05868
\(75\) 0 0
\(76\) 7.04724 0.808374
\(77\) −13.5150 −1.54017
\(78\) 0 0
\(79\) 0.984840 0.110803 0.0554016 0.998464i \(-0.482356\pi\)
0.0554016 + 0.998464i \(0.482356\pi\)
\(80\) 0 0
\(81\) 8.99847 0.999830
\(82\) −16.0236 −1.76951
\(83\) −7.84405 −0.860997 −0.430498 0.902591i \(-0.641662\pi\)
−0.430498 + 0.902591i \(0.641662\pi\)
\(84\) 0.172379 0.0188081
\(85\) 0 0
\(86\) 1.55565 0.167750
\(87\) 0.107890 0.0115670
\(88\) −5.59102 −0.596005
\(89\) 0.412834 0.0437604 0.0218802 0.999761i \(-0.493035\pi\)
0.0218802 + 0.999761i \(0.493035\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.53532 0.472840
\(93\) 0.127689 0.0132407
\(94\) 18.9087 1.95029
\(95\) 0 0
\(96\) −0.0936675 −0.00955989
\(97\) −3.38416 −0.343609 −0.171805 0.985131i \(-0.554960\pi\)
−0.171805 + 0.985131i \(0.554960\pi\)
\(98\) 31.4129 3.17318
\(99\) 8.79646 0.884077
\(100\) 0 0
\(101\) −10.5432 −1.04909 −0.524545 0.851383i \(-0.675765\pi\)
−0.524545 + 0.851383i \(0.675765\pi\)
\(102\) 0.0965301 0.00955790
\(103\) −14.1152 −1.39081 −0.695404 0.718619i \(-0.744774\pi\)
−0.695404 + 0.718619i \(0.744774\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 27.4898 2.67004
\(107\) 3.97165 0.383954 0.191977 0.981399i \(-0.438510\pi\)
0.191977 + 0.981399i \(0.438510\pi\)
\(108\) −0.224398 −0.0215927
\(109\) −10.1737 −0.974460 −0.487230 0.873274i \(-0.661993\pi\)
−0.487230 + 0.873274i \(0.661993\pi\)
\(110\) 0 0
\(111\) 0.0539132 0.00511721
\(112\) −7.02254 −0.663568
\(113\) 2.59984 0.244572 0.122286 0.992495i \(-0.460977\pi\)
0.122286 + 0.992495i \(0.460977\pi\)
\(114\) 0.0708472 0.00663545
\(115\) 0 0
\(116\) 23.6699 2.19770
\(117\) 0 0
\(118\) 11.7655 1.08310
\(119\) 15.4495 1.41626
\(120\) 0 0
\(121\) −2.40150 −0.218318
\(122\) 4.23670 0.383573
\(123\) −0.0948578 −0.00855304
\(124\) 28.0135 2.51569
\(125\) 0 0
\(126\) −30.4943 −2.71665
\(127\) −19.9719 −1.77222 −0.886109 0.463476i \(-0.846602\pi\)
−0.886109 + 0.463476i \(0.846602\pi\)
\(128\) −13.8286 −1.22228
\(129\) 0.00920925 0.000810829 0
\(130\) 0 0
\(131\) −11.4400 −0.999514 −0.499757 0.866166i \(-0.666577\pi\)
−0.499757 + 0.866166i \(0.666577\pi\)
\(132\) −0.109671 −0.00954562
\(133\) 11.3390 0.983217
\(134\) −16.0960 −1.39048
\(135\) 0 0
\(136\) 6.39133 0.548052
\(137\) 3.12520 0.267004 0.133502 0.991049i \(-0.457378\pi\)
0.133502 + 0.991049i \(0.457378\pi\)
\(138\) 0.0455944 0.00388125
\(139\) 6.09526 0.516993 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(140\) 0 0
\(141\) 0.111938 0.00942685
\(142\) 14.7350 1.23653
\(143\) 0 0
\(144\) 4.57075 0.380896
\(145\) 0 0
\(146\) −27.4684 −2.27330
\(147\) 0.185961 0.0153378
\(148\) 11.8280 0.972253
\(149\) 14.6196 1.19769 0.598844 0.800866i \(-0.295627\pi\)
0.598844 + 0.800866i \(0.295627\pi\)
\(150\) 0 0
\(151\) −12.2510 −0.996973 −0.498487 0.866897i \(-0.666111\pi\)
−0.498487 + 0.866897i \(0.666111\pi\)
\(152\) 4.69085 0.380478
\(153\) −10.0556 −0.812948
\(154\) −29.8081 −2.40200
\(155\) 0 0
\(156\) 0 0
\(157\) −7.13991 −0.569827 −0.284914 0.958553i \(-0.591965\pi\)
−0.284914 + 0.958553i \(0.591965\pi\)
\(158\) 2.17212 0.172805
\(159\) 0.162736 0.0129058
\(160\) 0 0
\(161\) 7.29733 0.575110
\(162\) 19.8467 1.55930
\(163\) 2.39002 0.187201 0.0936004 0.995610i \(-0.470162\pi\)
0.0936004 + 0.995610i \(0.470162\pi\)
\(164\) −20.8108 −1.62505
\(165\) 0 0
\(166\) −17.3005 −1.34278
\(167\) −7.43841 −0.575601 −0.287801 0.957690i \(-0.592924\pi\)
−0.287801 + 0.957690i \(0.592924\pi\)
\(168\) 0.114740 0.00885240
\(169\) 0 0
\(170\) 0 0
\(171\) −7.38020 −0.564378
\(172\) 2.02041 0.154055
\(173\) −2.54119 −0.193203 −0.0966015 0.995323i \(-0.530797\pi\)
−0.0966015 + 0.995323i \(0.530797\pi\)
\(174\) 0.237958 0.0180396
\(175\) 0 0
\(176\) 4.46788 0.336779
\(177\) 0.0696502 0.00523523
\(178\) 0.910531 0.0682472
\(179\) −10.6913 −0.799105 −0.399553 0.916710i \(-0.630835\pi\)
−0.399553 + 0.916710i \(0.630835\pi\)
\(180\) 0 0
\(181\) −11.7908 −0.876402 −0.438201 0.898877i \(-0.644384\pi\)
−0.438201 + 0.898877i \(0.644384\pi\)
\(182\) 0 0
\(183\) 0.0250808 0.00185403
\(184\) 3.01884 0.222552
\(185\) 0 0
\(186\) 0.281625 0.0206498
\(187\) −9.82931 −0.718790
\(188\) 24.5579 1.79107
\(189\) −0.361056 −0.0262630
\(190\) 0 0
\(191\) 13.4746 0.974990 0.487495 0.873126i \(-0.337911\pi\)
0.487495 + 0.873126i \(0.337911\pi\)
\(192\) −0.166801 −0.0120378
\(193\) 6.98737 0.502962 0.251481 0.967862i \(-0.419082\pi\)
0.251481 + 0.967862i \(0.419082\pi\)
\(194\) −7.46397 −0.535882
\(195\) 0 0
\(196\) 40.7978 2.91413
\(197\) 1.43795 0.102450 0.0512248 0.998687i \(-0.483687\pi\)
0.0512248 + 0.998687i \(0.483687\pi\)
\(198\) 19.4011 1.37878
\(199\) −2.42852 −0.172153 −0.0860765 0.996289i \(-0.527433\pi\)
−0.0860765 + 0.996289i \(0.527433\pi\)
\(200\) 0 0
\(201\) −0.0952866 −0.00672100
\(202\) −23.2537 −1.63613
\(203\) 38.0849 2.67304
\(204\) 0.125369 0.00877761
\(205\) 0 0
\(206\) −31.1318 −2.16906
\(207\) −4.74960 −0.330120
\(208\) 0 0
\(209\) −7.21411 −0.499011
\(210\) 0 0
\(211\) 18.2640 1.25735 0.628674 0.777669i \(-0.283598\pi\)
0.628674 + 0.777669i \(0.283598\pi\)
\(212\) 35.7026 2.45207
\(213\) 0.0872293 0.00597685
\(214\) 8.75970 0.598801
\(215\) 0 0
\(216\) −0.149366 −0.0101631
\(217\) 45.0738 3.05981
\(218\) −22.4386 −1.51973
\(219\) −0.162610 −0.0109881
\(220\) 0 0
\(221\) 0 0
\(222\) 0.118909 0.00798063
\(223\) 15.5841 1.04359 0.521793 0.853072i \(-0.325263\pi\)
0.521793 + 0.853072i \(0.325263\pi\)
\(224\) −33.0644 −2.20921
\(225\) 0 0
\(226\) 5.73409 0.381426
\(227\) −4.03380 −0.267733 −0.133866 0.990999i \(-0.542739\pi\)
−0.133866 + 0.990999i \(0.542739\pi\)
\(228\) 0.0920135 0.00609374
\(229\) −22.5147 −1.48781 −0.743906 0.668284i \(-0.767029\pi\)
−0.743906 + 0.668284i \(0.767029\pi\)
\(230\) 0 0
\(231\) −0.176460 −0.0116102
\(232\) 15.7554 1.03439
\(233\) 7.69759 0.504286 0.252143 0.967690i \(-0.418865\pi\)
0.252143 + 0.967690i \(0.418865\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 15.2805 0.994676
\(237\) 0.0128587 0.000835264 0
\(238\) 34.0749 2.20875
\(239\) −18.7203 −1.21092 −0.605459 0.795877i \(-0.707010\pi\)
−0.605459 + 0.795877i \(0.707010\pi\)
\(240\) 0 0
\(241\) 22.6183 1.45697 0.728486 0.685061i \(-0.240225\pi\)
0.728486 + 0.685061i \(0.240225\pi\)
\(242\) −5.29665 −0.340482
\(243\) 0.352503 0.0226131
\(244\) 5.50246 0.352259
\(245\) 0 0
\(246\) −0.209214 −0.0133390
\(247\) 0 0
\(248\) 18.6466 1.18406
\(249\) −0.102417 −0.00649042
\(250\) 0 0
\(251\) 1.78412 0.112612 0.0563062 0.998414i \(-0.482068\pi\)
0.0563062 + 0.998414i \(0.482068\pi\)
\(252\) −39.6048 −2.49487
\(253\) −4.64271 −0.291885
\(254\) −44.0492 −2.76389
\(255\) 0 0
\(256\) −4.94936 −0.309335
\(257\) 4.59847 0.286845 0.143422 0.989662i \(-0.454189\pi\)
0.143422 + 0.989662i \(0.454189\pi\)
\(258\) 0.0203115 0.00126454
\(259\) 19.0312 1.18254
\(260\) 0 0
\(261\) −24.7883 −1.53435
\(262\) −25.2315 −1.55881
\(263\) −18.8127 −1.16004 −0.580022 0.814601i \(-0.696956\pi\)
−0.580022 + 0.814601i \(0.696956\pi\)
\(264\) −0.0730001 −0.00449284
\(265\) 0 0
\(266\) 25.0089 1.53339
\(267\) 0.00539024 0.000329877 0
\(268\) −20.9049 −1.27697
\(269\) 1.85412 0.113048 0.0565238 0.998401i \(-0.481998\pi\)
0.0565238 + 0.998401i \(0.481998\pi\)
\(270\) 0 0
\(271\) −0.149698 −0.00909352 −0.00454676 0.999990i \(-0.501447\pi\)
−0.00454676 + 0.999990i \(0.501447\pi\)
\(272\) −5.10743 −0.309683
\(273\) 0 0
\(274\) 6.89281 0.416410
\(275\) 0 0
\(276\) 0.0592161 0.00356439
\(277\) −22.0184 −1.32296 −0.661478 0.749965i \(-0.730071\pi\)
−0.661478 + 0.749965i \(0.730071\pi\)
\(278\) 13.4435 0.806285
\(279\) −29.3371 −1.75637
\(280\) 0 0
\(281\) 0.438029 0.0261306 0.0130653 0.999915i \(-0.495841\pi\)
0.0130653 + 0.999915i \(0.495841\pi\)
\(282\) 0.246885 0.0147018
\(283\) −13.8290 −0.822049 −0.411025 0.911624i \(-0.634829\pi\)
−0.411025 + 0.911624i \(0.634829\pi\)
\(284\) 19.1372 1.13558
\(285\) 0 0
\(286\) 0 0
\(287\) −33.4845 −1.97653
\(288\) 21.5205 1.26811
\(289\) −5.76370 −0.339041
\(290\) 0 0
\(291\) −0.0441858 −0.00259022
\(292\) −35.6748 −2.08771
\(293\) 14.5656 0.850929 0.425464 0.904975i \(-0.360111\pi\)
0.425464 + 0.904975i \(0.360111\pi\)
\(294\) 0.410148 0.0239203
\(295\) 0 0
\(296\) 7.87304 0.457611
\(297\) 0.229711 0.0133292
\(298\) 32.2445 1.86787
\(299\) 0 0
\(300\) 0 0
\(301\) 3.25084 0.187375
\(302\) −27.0203 −1.55485
\(303\) −0.137659 −0.00790833
\(304\) −3.74854 −0.214994
\(305\) 0 0
\(306\) −22.1782 −1.26785
\(307\) −9.05062 −0.516546 −0.258273 0.966072i \(-0.583153\pi\)
−0.258273 + 0.966072i \(0.583153\pi\)
\(308\) −38.7135 −2.20591
\(309\) −0.184297 −0.0104843
\(310\) 0 0
\(311\) 7.28812 0.413272 0.206636 0.978418i \(-0.433748\pi\)
0.206636 + 0.978418i \(0.433748\pi\)
\(312\) 0 0
\(313\) −12.9725 −0.733250 −0.366625 0.930369i \(-0.619487\pi\)
−0.366625 + 0.930369i \(0.619487\pi\)
\(314\) −15.7475 −0.888683
\(315\) 0 0
\(316\) 2.82107 0.158697
\(317\) 15.5048 0.870838 0.435419 0.900228i \(-0.356600\pi\)
0.435419 + 0.900228i \(0.356600\pi\)
\(318\) 0.358925 0.0201275
\(319\) −24.2304 −1.35664
\(320\) 0 0
\(321\) 0.0518565 0.00289434
\(322\) 16.0947 0.896922
\(323\) 8.24676 0.458862
\(324\) 25.7760 1.43200
\(325\) 0 0
\(326\) 5.27133 0.291952
\(327\) −0.132834 −0.00734574
\(328\) −13.8523 −0.764863
\(329\) 39.5137 2.17846
\(330\) 0 0
\(331\) −26.0853 −1.43378 −0.716890 0.697186i \(-0.754435\pi\)
−0.716890 + 0.697186i \(0.754435\pi\)
\(332\) −22.4692 −1.23316
\(333\) −12.3868 −0.678793
\(334\) −16.4058 −0.897688
\(335\) 0 0
\(336\) −0.0916910 −0.00500215
\(337\) 14.4785 0.788697 0.394348 0.918961i \(-0.370970\pi\)
0.394348 + 0.918961i \(0.370970\pi\)
\(338\) 0 0
\(339\) 0.0339452 0.00184365
\(340\) 0 0
\(341\) −28.6769 −1.55294
\(342\) −16.2775 −0.880185
\(343\) 33.3809 1.80240
\(344\) 1.34484 0.0725091
\(345\) 0 0
\(346\) −5.60474 −0.301313
\(347\) −6.81412 −0.365801 −0.182901 0.983131i \(-0.558549\pi\)
−0.182901 + 0.983131i \(0.558549\pi\)
\(348\) 0.309050 0.0165668
\(349\) 33.7357 1.80583 0.902915 0.429818i \(-0.141422\pi\)
0.902915 + 0.429818i \(0.141422\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 21.0362 1.12123
\(353\) −18.7215 −0.996447 −0.498223 0.867049i \(-0.666014\pi\)
−0.498223 + 0.867049i \(0.666014\pi\)
\(354\) 0.153618 0.00816468
\(355\) 0 0
\(356\) 1.18256 0.0626756
\(357\) 0.201719 0.0106761
\(358\) −23.5803 −1.24626
\(359\) 27.9262 1.47389 0.736945 0.675952i \(-0.236268\pi\)
0.736945 + 0.675952i \(0.236268\pi\)
\(360\) 0 0
\(361\) −12.9474 −0.681441
\(362\) −26.0053 −1.36681
\(363\) −0.0313556 −0.00164574
\(364\) 0 0
\(365\) 0 0
\(366\) 0.0553172 0.00289148
\(367\) −2.50988 −0.131015 −0.0655074 0.997852i \(-0.520867\pi\)
−0.0655074 + 0.997852i \(0.520867\pi\)
\(368\) −2.41241 −0.125755
\(369\) 21.7940 1.13455
\(370\) 0 0
\(371\) 57.4456 2.98243
\(372\) 0.365763 0.0189640
\(373\) −22.1779 −1.14833 −0.574165 0.818739i \(-0.694673\pi\)
−0.574165 + 0.818739i \(0.694673\pi\)
\(374\) −21.6791 −1.12100
\(375\) 0 0
\(376\) 16.3465 0.843005
\(377\) 0 0
\(378\) −0.796331 −0.0409589
\(379\) 1.42116 0.0730001 0.0365001 0.999334i \(-0.488379\pi\)
0.0365001 + 0.999334i \(0.488379\pi\)
\(380\) 0 0
\(381\) −0.260766 −0.0133595
\(382\) 29.7191 1.52056
\(383\) 21.0733 1.07679 0.538397 0.842691i \(-0.319030\pi\)
0.538397 + 0.842691i \(0.319030\pi\)
\(384\) −0.180555 −0.00921390
\(385\) 0 0
\(386\) 15.4111 0.784402
\(387\) −2.11587 −0.107556
\(388\) −9.69390 −0.492133
\(389\) 13.4713 0.683021 0.341511 0.939878i \(-0.389061\pi\)
0.341511 + 0.939878i \(0.389061\pi\)
\(390\) 0 0
\(391\) 5.30728 0.268401
\(392\) 27.1562 1.37160
\(393\) −0.149368 −0.00753461
\(394\) 3.17148 0.159777
\(395\) 0 0
\(396\) 25.1974 1.26622
\(397\) 27.1859 1.36442 0.682210 0.731156i \(-0.261019\pi\)
0.682210 + 0.731156i \(0.261019\pi\)
\(398\) −5.35624 −0.268484
\(399\) 0.148050 0.00741176
\(400\) 0 0
\(401\) 3.27520 0.163556 0.0817779 0.996651i \(-0.473940\pi\)
0.0817779 + 0.996651i \(0.473940\pi\)
\(402\) −0.210160 −0.0104818
\(403\) 0 0
\(404\) −30.2010 −1.50256
\(405\) 0 0
\(406\) 83.9986 4.16878
\(407\) −12.1080 −0.600173
\(408\) 0.0834495 0.00413137
\(409\) 19.1677 0.947782 0.473891 0.880583i \(-0.342849\pi\)
0.473891 + 0.880583i \(0.342849\pi\)
\(410\) 0 0
\(411\) 0.0408047 0.00201275
\(412\) −40.4327 −1.99198
\(413\) 24.5863 1.20981
\(414\) −10.4755 −0.514844
\(415\) 0 0
\(416\) 0 0
\(417\) 0.0795837 0.00389723
\(418\) −15.9112 −0.778240
\(419\) 0.392463 0.0191731 0.00958653 0.999954i \(-0.496948\pi\)
0.00958653 + 0.999954i \(0.496948\pi\)
\(420\) 0 0
\(421\) −35.1816 −1.71465 −0.857323 0.514779i \(-0.827874\pi\)
−0.857323 + 0.514779i \(0.827874\pi\)
\(422\) 40.2824 1.96092
\(423\) −25.7182 −1.25046
\(424\) 23.7647 1.15412
\(425\) 0 0
\(426\) 0.192389 0.00932130
\(427\) 8.85346 0.428449
\(428\) 11.3768 0.549916
\(429\) 0 0
\(430\) 0 0
\(431\) −2.27454 −0.109561 −0.0547803 0.998498i \(-0.517446\pi\)
−0.0547803 + 0.998498i \(0.517446\pi\)
\(432\) 0.119361 0.00574275
\(433\) −11.8827 −0.571048 −0.285524 0.958372i \(-0.592168\pi\)
−0.285524 + 0.958372i \(0.592168\pi\)
\(434\) 99.4130 4.77197
\(435\) 0 0
\(436\) −29.1424 −1.39567
\(437\) 3.89522 0.186334
\(438\) −0.358645 −0.0171367
\(439\) −35.7273 −1.70517 −0.852585 0.522588i \(-0.824967\pi\)
−0.852585 + 0.522588i \(0.824967\pi\)
\(440\) 0 0
\(441\) −42.7254 −2.03454
\(442\) 0 0
\(443\) −4.98904 −0.237036 −0.118518 0.992952i \(-0.537814\pi\)
−0.118518 + 0.992952i \(0.537814\pi\)
\(444\) 0.154434 0.00732911
\(445\) 0 0
\(446\) 34.3716 1.62754
\(447\) 0.190884 0.00902849
\(448\) −58.8804 −2.78184
\(449\) 23.4886 1.10850 0.554248 0.832352i \(-0.313006\pi\)
0.554248 + 0.832352i \(0.313006\pi\)
\(450\) 0 0
\(451\) 21.3035 1.00314
\(452\) 7.44721 0.350287
\(453\) −0.159957 −0.00751545
\(454\) −8.89679 −0.417547
\(455\) 0 0
\(456\) 0.0612468 0.00286815
\(457\) 40.2510 1.88286 0.941430 0.337208i \(-0.109482\pi\)
0.941430 + 0.337208i \(0.109482\pi\)
\(458\) −49.6575 −2.32034
\(459\) −0.262593 −0.0122568
\(460\) 0 0
\(461\) 31.2140 1.45378 0.726890 0.686754i \(-0.240965\pi\)
0.726890 + 0.686754i \(0.240965\pi\)
\(462\) −0.389194 −0.0181069
\(463\) −17.7491 −0.824872 −0.412436 0.910987i \(-0.635322\pi\)
−0.412436 + 0.910987i \(0.635322\pi\)
\(464\) −12.5904 −0.584495
\(465\) 0 0
\(466\) 16.9775 0.786467
\(467\) −26.6645 −1.23389 −0.616944 0.787007i \(-0.711630\pi\)
−0.616944 + 0.787007i \(0.711630\pi\)
\(468\) 0 0
\(469\) −33.6359 −1.55316
\(470\) 0 0
\(471\) −0.0932234 −0.00429551
\(472\) 10.1711 0.468165
\(473\) −2.06825 −0.0950983
\(474\) 0.0283607 0.00130265
\(475\) 0 0
\(476\) 44.2551 2.02843
\(477\) −37.3895 −1.71195
\(478\) −41.2888 −1.88851
\(479\) 20.4630 0.934980 0.467490 0.883998i \(-0.345158\pi\)
0.467490 + 0.883998i \(0.345158\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 49.8860 2.27224
\(483\) 0.0952788 0.00433534
\(484\) −6.87908 −0.312686
\(485\) 0 0
\(486\) 0.777467 0.0352666
\(487\) −8.11789 −0.367857 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(488\) 3.66260 0.165798
\(489\) 0.0312057 0.00141117
\(490\) 0 0
\(491\) 3.26996 0.147571 0.0737857 0.997274i \(-0.476492\pi\)
0.0737857 + 0.997274i \(0.476492\pi\)
\(492\) −0.271719 −0.0122501
\(493\) 27.6988 1.24749
\(494\) 0 0
\(495\) 0 0
\(496\) −14.9008 −0.669068
\(497\) 30.7917 1.38120
\(498\) −0.225887 −0.0101222
\(499\) 8.89340 0.398123 0.199062 0.979987i \(-0.436211\pi\)
0.199062 + 0.979987i \(0.436211\pi\)
\(500\) 0 0
\(501\) −0.0971208 −0.00433904
\(502\) 3.93498 0.175627
\(503\) 23.7974 1.06107 0.530537 0.847662i \(-0.321990\pi\)
0.530537 + 0.847662i \(0.321990\pi\)
\(504\) −26.3621 −1.17426
\(505\) 0 0
\(506\) −10.2398 −0.455213
\(507\) 0 0
\(508\) −57.2093 −2.53825
\(509\) −1.26770 −0.0561898 −0.0280949 0.999605i \(-0.508944\pi\)
−0.0280949 + 0.999605i \(0.508944\pi\)
\(510\) 0 0
\(511\) −57.4008 −2.53926
\(512\) 16.7410 0.739855
\(513\) −0.192727 −0.00850911
\(514\) 10.1422 0.447354
\(515\) 0 0
\(516\) 0.0263798 0.00116131
\(517\) −25.1394 −1.10563
\(518\) 41.9745 1.84425
\(519\) −0.0331794 −0.00145642
\(520\) 0 0
\(521\) 14.3916 0.630506 0.315253 0.949008i \(-0.397911\pi\)
0.315253 + 0.949008i \(0.397911\pi\)
\(522\) −54.6720 −2.39293
\(523\) −19.0185 −0.831622 −0.415811 0.909451i \(-0.636502\pi\)
−0.415811 + 0.909451i \(0.636502\pi\)
\(524\) −32.7697 −1.43155
\(525\) 0 0
\(526\) −41.4926 −1.80916
\(527\) 32.7818 1.42800
\(528\) 0.0583357 0.00253873
\(529\) −20.4932 −0.891008
\(530\) 0 0
\(531\) −16.0024 −0.694447
\(532\) 32.4805 1.40821
\(533\) 0 0
\(534\) 0.0118885 0.000514465 0
\(535\) 0 0
\(536\) −13.9149 −0.601031
\(537\) −0.139593 −0.00602387
\(538\) 4.08937 0.176305
\(539\) −41.7638 −1.79890
\(540\) 0 0
\(541\) −13.8969 −0.597475 −0.298738 0.954335i \(-0.596566\pi\)
−0.298738 + 0.954335i \(0.596566\pi\)
\(542\) −0.330168 −0.0141819
\(543\) −0.153948 −0.00660656
\(544\) −24.0474 −1.03102
\(545\) 0 0
\(546\) 0 0
\(547\) −37.0840 −1.58560 −0.792798 0.609484i \(-0.791377\pi\)
−0.792798 + 0.609484i \(0.791377\pi\)
\(548\) 8.95211 0.382415
\(549\) −5.76243 −0.245935
\(550\) 0 0
\(551\) 20.3292 0.866054
\(552\) 0.0394160 0.00167766
\(553\) 4.53910 0.193022
\(554\) −48.5628 −2.06324
\(555\) 0 0
\(556\) 17.4598 0.740461
\(557\) 31.8065 1.34768 0.673842 0.738875i \(-0.264643\pi\)
0.673842 + 0.738875i \(0.264643\pi\)
\(558\) −64.7047 −2.73917
\(559\) 0 0
\(560\) 0 0
\(561\) −0.128338 −0.00541843
\(562\) 0.966100 0.0407525
\(563\) −26.3595 −1.11092 −0.555461 0.831543i \(-0.687458\pi\)
−0.555461 + 0.831543i \(0.687458\pi\)
\(564\) 0.320645 0.0135016
\(565\) 0 0
\(566\) −30.5007 −1.28204
\(567\) 41.4736 1.74173
\(568\) 12.7383 0.534485
\(569\) 17.7846 0.745569 0.372785 0.927918i \(-0.378403\pi\)
0.372785 + 0.927918i \(0.378403\pi\)
\(570\) 0 0
\(571\) 19.6399 0.821903 0.410952 0.911657i \(-0.365196\pi\)
0.410952 + 0.911657i \(0.365196\pi\)
\(572\) 0 0
\(573\) 0.175934 0.00734974
\(574\) −73.8522 −3.08253
\(575\) 0 0
\(576\) 38.3233 1.59681
\(577\) 18.1454 0.755403 0.377701 0.925927i \(-0.376715\pi\)
0.377701 + 0.925927i \(0.376715\pi\)
\(578\) −12.7122 −0.528757
\(579\) 0.0912317 0.00379146
\(580\) 0 0
\(581\) −36.1530 −1.49988
\(582\) −0.0974545 −0.00403962
\(583\) −36.5480 −1.51366
\(584\) −23.7462 −0.982624
\(585\) 0 0
\(586\) 32.1252 1.32708
\(587\) −0.423843 −0.0174939 −0.00874694 0.999962i \(-0.502784\pi\)
−0.00874694 + 0.999962i \(0.502784\pi\)
\(588\) 0.532683 0.0219675
\(589\) 24.0598 0.991367
\(590\) 0 0
\(591\) 0.0187748 0.000772293 0
\(592\) −6.29149 −0.258578
\(593\) −47.5064 −1.95085 −0.975426 0.220327i \(-0.929288\pi\)
−0.975426 + 0.220327i \(0.929288\pi\)
\(594\) 0.506642 0.0207878
\(595\) 0 0
\(596\) 41.8778 1.71538
\(597\) −0.0317083 −0.00129774
\(598\) 0 0
\(599\) 25.7871 1.05363 0.526816 0.849979i \(-0.323386\pi\)
0.526816 + 0.849979i \(0.323386\pi\)
\(600\) 0 0
\(601\) −12.6776 −0.517130 −0.258565 0.965994i \(-0.583250\pi\)
−0.258565 + 0.965994i \(0.583250\pi\)
\(602\) 7.16992 0.292224
\(603\) 21.8925 0.891533
\(604\) −35.0929 −1.42791
\(605\) 0 0
\(606\) −0.303616 −0.0123336
\(607\) 4.40448 0.178772 0.0893862 0.995997i \(-0.471509\pi\)
0.0893862 + 0.995997i \(0.471509\pi\)
\(608\) −17.6493 −0.715775
\(609\) 0.497262 0.0201501
\(610\) 0 0
\(611\) 0 0
\(612\) −28.8042 −1.16434
\(613\) −33.3599 −1.34739 −0.673696 0.739008i \(-0.735294\pi\)
−0.673696 + 0.739008i \(0.735294\pi\)
\(614\) −19.9617 −0.805588
\(615\) 0 0
\(616\) −25.7688 −1.03826
\(617\) −32.5535 −1.31055 −0.655277 0.755389i \(-0.727448\pi\)
−0.655277 + 0.755389i \(0.727448\pi\)
\(618\) −0.406477 −0.0163509
\(619\) 35.5813 1.43013 0.715067 0.699056i \(-0.246396\pi\)
0.715067 + 0.699056i \(0.246396\pi\)
\(620\) 0 0
\(621\) −0.124031 −0.00497721
\(622\) 16.0744 0.644524
\(623\) 1.90274 0.0762317
\(624\) 0 0
\(625\) 0 0
\(626\) −28.6116 −1.14355
\(627\) −0.0941922 −0.00376168
\(628\) −20.4522 −0.816133
\(629\) 13.8412 0.551886
\(630\) 0 0
\(631\) −25.4117 −1.01162 −0.505812 0.862644i \(-0.668807\pi\)
−0.505812 + 0.862644i \(0.668807\pi\)
\(632\) 1.87778 0.0746942
\(633\) 0.238467 0.00947822
\(634\) 34.1968 1.35813
\(635\) 0 0
\(636\) 0.466157 0.0184843
\(637\) 0 0
\(638\) −53.4416 −2.11577
\(639\) −20.0413 −0.792823
\(640\) 0 0
\(641\) −10.1479 −0.400817 −0.200408 0.979712i \(-0.564227\pi\)
−0.200408 + 0.979712i \(0.564227\pi\)
\(642\) 0.114372 0.00451392
\(643\) 1.85439 0.0731298 0.0365649 0.999331i \(-0.488358\pi\)
0.0365649 + 0.999331i \(0.488358\pi\)
\(644\) 20.9032 0.823700
\(645\) 0 0
\(646\) 18.1887 0.715626
\(647\) 29.6034 1.16383 0.581914 0.813250i \(-0.302304\pi\)
0.581914 + 0.813250i \(0.302304\pi\)
\(648\) 17.1573 0.674001
\(649\) −15.6423 −0.614015
\(650\) 0 0
\(651\) 0.588514 0.0230657
\(652\) 6.84619 0.268118
\(653\) −6.78882 −0.265667 −0.132834 0.991138i \(-0.542408\pi\)
−0.132834 + 0.991138i \(0.542408\pi\)
\(654\) −0.292973 −0.0114562
\(655\) 0 0
\(656\) 11.0696 0.432195
\(657\) 37.3603 1.45756
\(658\) 87.1498 3.39745
\(659\) 7.94959 0.309672 0.154836 0.987940i \(-0.450515\pi\)
0.154836 + 0.987940i \(0.450515\pi\)
\(660\) 0 0
\(661\) −40.3832 −1.57072 −0.785361 0.619038i \(-0.787523\pi\)
−0.785361 + 0.619038i \(0.787523\pi\)
\(662\) −57.5328 −2.23607
\(663\) 0 0
\(664\) −14.9562 −0.580412
\(665\) 0 0
\(666\) −27.3198 −1.05862
\(667\) 13.0831 0.506579
\(668\) −21.3073 −0.824402
\(669\) 0.203476 0.00786684
\(670\) 0 0
\(671\) −5.63275 −0.217450
\(672\) −0.431710 −0.0166536
\(673\) −9.63920 −0.371564 −0.185782 0.982591i \(-0.559482\pi\)
−0.185782 + 0.982591i \(0.559482\pi\)
\(674\) 31.9333 1.23002
\(675\) 0 0
\(676\) 0 0
\(677\) −51.1565 −1.96610 −0.983051 0.183330i \(-0.941312\pi\)
−0.983051 + 0.183330i \(0.941312\pi\)
\(678\) 0.0748681 0.00287529
\(679\) −15.5975 −0.598577
\(680\) 0 0
\(681\) −0.0526680 −0.00201824
\(682\) −63.2485 −2.42191
\(683\) −8.34502 −0.319313 −0.159657 0.987173i \(-0.551039\pi\)
−0.159657 + 0.987173i \(0.551039\pi\)
\(684\) −21.1405 −0.808328
\(685\) 0 0
\(686\) 73.6236 2.81096
\(687\) −0.293967 −0.0112155
\(688\) −1.07469 −0.0409721
\(689\) 0 0
\(690\) 0 0
\(691\) 36.1243 1.37423 0.687117 0.726547i \(-0.258876\pi\)
0.687117 + 0.726547i \(0.258876\pi\)
\(692\) −7.27921 −0.276714
\(693\) 40.5426 1.54009
\(694\) −15.0289 −0.570491
\(695\) 0 0
\(696\) 0.205713 0.00779753
\(697\) −24.3530 −0.922435
\(698\) 74.4061 2.81631
\(699\) 0.100505 0.00380144
\(700\) 0 0
\(701\) −45.9823 −1.73673 −0.868364 0.495928i \(-0.834828\pi\)
−0.868364 + 0.495928i \(0.834828\pi\)
\(702\) 0 0
\(703\) 10.1586 0.383139
\(704\) 37.4609 1.41186
\(705\) 0 0
\(706\) −41.2915 −1.55402
\(707\) −48.5934 −1.82754
\(708\) 0.199512 0.00749813
\(709\) −38.0949 −1.43069 −0.715343 0.698774i \(-0.753729\pi\)
−0.715343 + 0.698774i \(0.753729\pi\)
\(710\) 0 0
\(711\) −2.95435 −0.110797
\(712\) 0.787147 0.0294996
\(713\) 15.4839 0.579877
\(714\) 0.444904 0.0166501
\(715\) 0 0
\(716\) −30.6251 −1.14452
\(717\) −0.244425 −0.00912822
\(718\) 61.5930 2.29863
\(719\) −27.8672 −1.03927 −0.519635 0.854388i \(-0.673932\pi\)
−0.519635 + 0.854388i \(0.673932\pi\)
\(720\) 0 0
\(721\) −65.0563 −2.42282
\(722\) −28.5562 −1.06275
\(723\) 0.295319 0.0109830
\(724\) −33.7746 −1.25522
\(725\) 0 0
\(726\) −0.0691566 −0.00256664
\(727\) 13.7750 0.510885 0.255443 0.966824i \(-0.417779\pi\)
0.255443 + 0.966824i \(0.417779\pi\)
\(728\) 0 0
\(729\) −26.9908 −0.999659
\(730\) 0 0
\(731\) 2.36431 0.0874470
\(732\) 0.0718438 0.00265542
\(733\) −6.58392 −0.243183 −0.121591 0.992580i \(-0.538800\pi\)
−0.121591 + 0.992580i \(0.538800\pi\)
\(734\) −5.53570 −0.204326
\(735\) 0 0
\(736\) −11.3584 −0.418676
\(737\) 21.3999 0.788274
\(738\) 48.0680 1.76941
\(739\) −5.47501 −0.201401 −0.100701 0.994917i \(-0.532108\pi\)
−0.100701 + 0.994917i \(0.532108\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 126.700 4.65129
\(743\) −26.6714 −0.978479 −0.489239 0.872150i \(-0.662726\pi\)
−0.489239 + 0.872150i \(0.662726\pi\)
\(744\) 0.243463 0.00892578
\(745\) 0 0
\(746\) −48.9148 −1.79090
\(747\) 23.5308 0.860948
\(748\) −28.1560 −1.02948
\(749\) 18.3052 0.668857
\(750\) 0 0
\(751\) 21.8067 0.795740 0.397870 0.917442i \(-0.369750\pi\)
0.397870 + 0.917442i \(0.369750\pi\)
\(752\) −13.0627 −0.476349
\(753\) 0.0232946 0.000848903 0
\(754\) 0 0
\(755\) 0 0
\(756\) −1.03424 −0.0376151
\(757\) 8.33422 0.302912 0.151456 0.988464i \(-0.451604\pi\)
0.151456 + 0.988464i \(0.451604\pi\)
\(758\) 3.13446 0.113849
\(759\) −0.0606183 −0.00220031
\(760\) 0 0
\(761\) 7.33096 0.265747 0.132874 0.991133i \(-0.457580\pi\)
0.132874 + 0.991133i \(0.457580\pi\)
\(762\) −0.575135 −0.0208350
\(763\) −46.8901 −1.69753
\(764\) 38.5980 1.39643
\(765\) 0 0
\(766\) 46.4783 1.67933
\(767\) 0 0
\(768\) −0.0646221 −0.00233185
\(769\) 22.3346 0.805407 0.402703 0.915331i \(-0.368071\pi\)
0.402703 + 0.915331i \(0.368071\pi\)
\(770\) 0 0
\(771\) 0.0600407 0.00216231
\(772\) 20.0153 0.720365
\(773\) −27.1591 −0.976844 −0.488422 0.872608i \(-0.662427\pi\)
−0.488422 + 0.872608i \(0.662427\pi\)
\(774\) −4.66667 −0.167740
\(775\) 0 0
\(776\) −6.45254 −0.231633
\(777\) 0.248484 0.00891432
\(778\) 29.7117 1.06522
\(779\) −17.8736 −0.640388
\(780\) 0 0
\(781\) −19.5903 −0.700997
\(782\) 11.7055 0.418589
\(783\) −0.647322 −0.0231334
\(784\) −21.7010 −0.775036
\(785\) 0 0
\(786\) −0.329440 −0.0117507
\(787\) 11.5806 0.412805 0.206403 0.978467i \(-0.433824\pi\)
0.206403 + 0.978467i \(0.433824\pi\)
\(788\) 4.11899 0.146733
\(789\) −0.245632 −0.00874472
\(790\) 0 0
\(791\) 11.9826 0.426051
\(792\) 16.7721 0.595971
\(793\) 0 0
\(794\) 59.9601 2.12790
\(795\) 0 0
\(796\) −6.95647 −0.246566
\(797\) 47.7004 1.68963 0.844817 0.535055i \(-0.179709\pi\)
0.844817 + 0.535055i \(0.179709\pi\)
\(798\) 0.326532 0.0115591
\(799\) 28.7379 1.01668
\(800\) 0 0
\(801\) −1.23843 −0.0437579
\(802\) 7.22365 0.255076
\(803\) 36.5195 1.28875
\(804\) −0.272948 −0.00962612
\(805\) 0 0
\(806\) 0 0
\(807\) 0.0242086 0.000852184 0
\(808\) −20.1027 −0.707209
\(809\) 36.3910 1.27944 0.639720 0.768608i \(-0.279050\pi\)
0.639720 + 0.768608i \(0.279050\pi\)
\(810\) 0 0
\(811\) 36.8088 1.29253 0.646266 0.763112i \(-0.276330\pi\)
0.646266 + 0.763112i \(0.276330\pi\)
\(812\) 109.094 3.82845
\(813\) −0.00195456 −6.85494e−5 0
\(814\) −26.7050 −0.936010
\(815\) 0 0
\(816\) −0.0666860 −0.00233448
\(817\) 1.73526 0.0607089
\(818\) 42.2755 1.47813
\(819\) 0 0
\(820\) 0 0
\(821\) −33.6668 −1.17498 −0.587491 0.809231i \(-0.699884\pi\)
−0.587491 + 0.809231i \(0.699884\pi\)
\(822\) 0.0899971 0.00313901
\(823\) −31.8809 −1.11130 −0.555649 0.831417i \(-0.687530\pi\)
−0.555649 + 0.831417i \(0.687530\pi\)
\(824\) −26.9132 −0.937566
\(825\) 0 0
\(826\) 54.2266 1.88678
\(827\) −18.4625 −0.642003 −0.321002 0.947079i \(-0.604019\pi\)
−0.321002 + 0.947079i \(0.604019\pi\)
\(828\) −13.6052 −0.472813
\(829\) −34.9663 −1.21443 −0.607214 0.794538i \(-0.707713\pi\)
−0.607214 + 0.794538i \(0.707713\pi\)
\(830\) 0 0
\(831\) −0.287487 −0.00997280
\(832\) 0 0
\(833\) 47.7420 1.65416
\(834\) 0.175527 0.00607799
\(835\) 0 0
\(836\) −20.6648 −0.714706
\(837\) −0.766111 −0.0264807
\(838\) 0.865600 0.0299017
\(839\) 28.7234 0.991641 0.495820 0.868425i \(-0.334867\pi\)
0.495820 + 0.868425i \(0.334867\pi\)
\(840\) 0 0
\(841\) 39.2808 1.35451
\(842\) −77.5951 −2.67410
\(843\) 0.00571920 0.000196980 0
\(844\) 52.3172 1.80083
\(845\) 0 0
\(846\) −56.7230 −1.95018
\(847\) −11.0684 −0.380316
\(848\) −18.9908 −0.652147
\(849\) −0.180561 −0.00619683
\(850\) 0 0
\(851\) 6.53767 0.224108
\(852\) 0.249868 0.00856032
\(853\) −13.7453 −0.470629 −0.235315 0.971919i \(-0.575612\pi\)
−0.235315 + 0.971919i \(0.575612\pi\)
\(854\) 19.5268 0.668195
\(855\) 0 0
\(856\) 7.57269 0.258829
\(857\) 12.6495 0.432099 0.216049 0.976382i \(-0.430683\pi\)
0.216049 + 0.976382i \(0.430683\pi\)
\(858\) 0 0
\(859\) −11.0929 −0.378485 −0.189243 0.981930i \(-0.560603\pi\)
−0.189243 + 0.981930i \(0.560603\pi\)
\(860\) 0 0
\(861\) −0.437196 −0.0148996
\(862\) −5.01663 −0.170867
\(863\) −33.0295 −1.12434 −0.562169 0.827022i \(-0.690033\pi\)
−0.562169 + 0.827022i \(0.690033\pi\)
\(864\) 0.561989 0.0191192
\(865\) 0 0
\(866\) −26.2081 −0.890587
\(867\) −0.0752546 −0.00255578
\(868\) 129.114 4.38240
\(869\) −2.88787 −0.0979641
\(870\) 0 0
\(871\) 0 0
\(872\) −19.3980 −0.656899
\(873\) 10.1519 0.343590
\(874\) 8.59114 0.290600
\(875\) 0 0
\(876\) −0.465794 −0.0157377
\(877\) 15.4397 0.521362 0.260681 0.965425i \(-0.416053\pi\)
0.260681 + 0.965425i \(0.416053\pi\)
\(878\) −78.7987 −2.65933
\(879\) 0.190178 0.00641453
\(880\) 0 0
\(881\) −16.6260 −0.560143 −0.280072 0.959979i \(-0.590358\pi\)
−0.280072 + 0.959979i \(0.590358\pi\)
\(882\) −94.2333 −3.17300
\(883\) −57.2845 −1.92778 −0.963888 0.266309i \(-0.914196\pi\)
−0.963888 + 0.266309i \(0.914196\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −11.0036 −0.369674
\(887\) −18.4657 −0.620018 −0.310009 0.950734i \(-0.600332\pi\)
−0.310009 + 0.950734i \(0.600332\pi\)
\(888\) 0.102796 0.00344960
\(889\) −92.0498 −3.08725
\(890\) 0 0
\(891\) −26.3864 −0.883977
\(892\) 44.6405 1.49467
\(893\) 21.0919 0.705813
\(894\) 0.421005 0.0140805
\(895\) 0 0
\(896\) −63.7354 −2.12925
\(897\) 0 0
\(898\) 51.8055 1.72877
\(899\) 80.8109 2.69519
\(900\) 0 0
\(901\) 41.7796 1.39188
\(902\) 46.9862 1.56447
\(903\) 0.0424451 0.00141249
\(904\) 4.95708 0.164870
\(905\) 0 0
\(906\) −0.352795 −0.0117208
\(907\) −44.9489 −1.49250 −0.746251 0.665664i \(-0.768148\pi\)
−0.746251 + 0.665664i \(0.768148\pi\)
\(908\) −11.5548 −0.383459
\(909\) 31.6279 1.04903
\(910\) 0 0
\(911\) −44.3728 −1.47014 −0.735069 0.677992i \(-0.762850\pi\)
−0.735069 + 0.677992i \(0.762850\pi\)
\(912\) −0.0489434 −0.00162068
\(913\) 23.0013 0.761231
\(914\) 88.7759 2.93645
\(915\) 0 0
\(916\) −64.4931 −2.13091
\(917\) −52.7264 −1.74118
\(918\) −0.579164 −0.0191153
\(919\) 25.1680 0.830217 0.415108 0.909772i \(-0.363744\pi\)
0.415108 + 0.909772i \(0.363744\pi\)
\(920\) 0 0
\(921\) −0.118171 −0.00389386
\(922\) 68.8443 2.26726
\(923\) 0 0
\(924\) −0.505469 −0.0166287
\(925\) 0 0
\(926\) −39.1468 −1.28644
\(927\) 42.3430 1.39073
\(928\) −59.2797 −1.94595
\(929\) 37.5601 1.23231 0.616153 0.787626i \(-0.288690\pi\)
0.616153 + 0.787626i \(0.288690\pi\)
\(930\) 0 0
\(931\) 35.0397 1.14838
\(932\) 22.0497 0.722262
\(933\) 0.0951586 0.00311535
\(934\) −58.8102 −1.92433
\(935\) 0 0
\(936\) 0 0
\(937\) 17.1212 0.559326 0.279663 0.960098i \(-0.409777\pi\)
0.279663 + 0.960098i \(0.409777\pi\)
\(938\) −74.1860 −2.42226
\(939\) −0.169378 −0.00552743
\(940\) 0 0
\(941\) −0.208568 −0.00679913 −0.00339956 0.999994i \(-0.501082\pi\)
−0.00339956 + 0.999994i \(0.501082\pi\)
\(942\) −0.205610 −0.00669913
\(943\) −11.5027 −0.374580
\(944\) −8.12794 −0.264542
\(945\) 0 0
\(946\) −4.56165 −0.148312
\(947\) −0.414059 −0.0134551 −0.00672755 0.999977i \(-0.502141\pi\)
−0.00672755 + 0.999977i \(0.502141\pi\)
\(948\) 0.0368337 0.00119630
\(949\) 0 0
\(950\) 0 0
\(951\) 0.202441 0.00656461
\(952\) 29.4575 0.954722
\(953\) 33.8593 1.09681 0.548404 0.836213i \(-0.315235\pi\)
0.548404 + 0.836213i \(0.315235\pi\)
\(954\) −82.4647 −2.66989
\(955\) 0 0
\(956\) −53.6243 −1.73433
\(957\) −0.316368 −0.0102267
\(958\) 45.1324 1.45816
\(959\) 14.4039 0.465128
\(960\) 0 0
\(961\) 64.6403 2.08517
\(962\) 0 0
\(963\) −11.9143 −0.383932
\(964\) 64.7899 2.08674
\(965\) 0 0
\(966\) 0.210143 0.00676124
\(967\) −13.2125 −0.424885 −0.212442 0.977174i \(-0.568142\pi\)
−0.212442 + 0.977174i \(0.568142\pi\)
\(968\) −4.57892 −0.147172
\(969\) 0.107675 0.00345902
\(970\) 0 0
\(971\) −17.6019 −0.564872 −0.282436 0.959286i \(-0.591142\pi\)
−0.282436 + 0.959286i \(0.591142\pi\)
\(972\) 1.00974 0.0323875
\(973\) 28.0929 0.900616
\(974\) −17.9045 −0.573697
\(975\) 0 0
\(976\) −2.92685 −0.0936861
\(977\) 11.7812 0.376913 0.188457 0.982082i \(-0.439652\pi\)
0.188457 + 0.982082i \(0.439652\pi\)
\(978\) 0.0688260 0.00220081
\(979\) −1.21056 −0.0386897
\(980\) 0 0
\(981\) 30.5192 0.974404
\(982\) 7.21210 0.230147
\(983\) 45.4985 1.45118 0.725589 0.688128i \(-0.241567\pi\)
0.725589 + 0.688128i \(0.241567\pi\)
\(984\) −0.180864 −0.00576574
\(985\) 0 0
\(986\) 61.0914 1.94555
\(987\) 0.515917 0.0164218
\(988\) 0 0
\(989\) 1.11674 0.0355103
\(990\) 0 0
\(991\) 33.2685 1.05681 0.528405 0.848993i \(-0.322790\pi\)
0.528405 + 0.848993i \(0.322790\pi\)
\(992\) −70.1580 −2.22752
\(993\) −0.340588 −0.0108082
\(994\) 67.9130 2.15407
\(995\) 0 0
\(996\) −0.293373 −0.00929589
\(997\) 39.7870 1.26007 0.630033 0.776568i \(-0.283041\pi\)
0.630033 + 0.776568i \(0.283041\pi\)
\(998\) 19.6149 0.620899
\(999\) −0.323470 −0.0102341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.bt.1.7 9
5.4 even 2 845.2.a.n.1.3 9
13.12 even 2 4225.2.a.bs.1.3 9
15.14 odd 2 7605.2.a.cs.1.7 9
65.4 even 6 845.2.e.o.146.3 18
65.9 even 6 845.2.e.p.146.7 18
65.19 odd 12 845.2.m.j.361.14 36
65.24 odd 12 845.2.m.j.316.14 36
65.29 even 6 845.2.e.p.191.7 18
65.34 odd 4 845.2.c.h.506.5 18
65.44 odd 4 845.2.c.h.506.14 18
65.49 even 6 845.2.e.o.191.3 18
65.54 odd 12 845.2.m.j.316.5 36
65.59 odd 12 845.2.m.j.361.5 36
65.64 even 2 845.2.a.o.1.7 yes 9
195.194 odd 2 7605.2.a.cp.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.3 9 5.4 even 2
845.2.a.o.1.7 yes 9 65.64 even 2
845.2.c.h.506.5 18 65.34 odd 4
845.2.c.h.506.14 18 65.44 odd 4
845.2.e.o.146.3 18 65.4 even 6
845.2.e.o.191.3 18 65.49 even 6
845.2.e.p.146.7 18 65.9 even 6
845.2.e.p.191.7 18 65.29 even 6
845.2.m.j.316.5 36 65.54 odd 12
845.2.m.j.316.14 36 65.24 odd 12
845.2.m.j.361.5 36 65.59 odd 12
845.2.m.j.361.14 36 65.19 odd 12
4225.2.a.bs.1.3 9 13.12 even 2
4225.2.a.bt.1.7 9 1.1 even 1 trivial
7605.2.a.cp.1.3 9 195.194 odd 2
7605.2.a.cs.1.7 9 15.14 odd 2