Properties

Label 845.2.c.h.506.14
Level $845$
Weight $2$
Character 845.506
Analytic conductor $6.747$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Error: table mf_hecke_newspace_traces does not exist

Error: table mf_hecke_newspace_traces does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(506,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.506"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,14,-34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 34x^{16} + 407x^{14} + 2175x^{12} + 5555x^{10} + 6664x^{8} + 3544x^{6} + 681x^{4} + 47x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 506.14
Root \(-1.76052i\) of defining polynomial
Character \(\chi\) \(=\) 845.506
Dual form 845.2.c.h.506.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.20556i q^{2} -0.0130567 q^{3} -2.86449 q^{4} +1.00000i q^{5} -0.0287972i q^{6} -4.60897i q^{7} -1.90669i q^{8} -2.99983 q^{9} -2.20556 q^{10} -2.93232i q^{11} +0.0374007 q^{12} +10.1654 q^{14} -0.0130567i q^{15} -1.52367 q^{16} +3.35206 q^{17} -6.61630i q^{18} -2.46021i q^{19} -2.86449i q^{20} +0.0601778i q^{21} +6.46741 q^{22} +1.58329 q^{23} +0.0248950i q^{24} -1.00000 q^{25} +0.0783378 q^{27} +13.2024i q^{28} +8.26322 q^{29} +0.0287972 q^{30} -9.77959i q^{31} -7.17392i q^{32} +0.0382863i q^{33} +7.39317i q^{34} +4.60897 q^{35} +8.59299 q^{36} -4.12917i q^{37} +5.42613 q^{38} +1.90669 q^{40} +7.26508i q^{41} -0.132726 q^{42} +0.705329 q^{43} +8.39961i q^{44} -2.99983i q^{45} +3.49204i q^{46} -8.57322i q^{47} +0.0198940 q^{48} -14.2426 q^{49} -2.20556i q^{50} -0.0437667 q^{51} -12.4639 q^{53} +0.172779i q^{54} +2.93232 q^{55} -8.78787 q^{56} +0.0321221i q^{57} +18.2250i q^{58} +5.33445i q^{59} +0.0374007i q^{60} +1.92092 q^{61} +21.5695 q^{62} +13.8261i q^{63} +12.7752 q^{64} -0.0844427 q^{66} -7.29793i q^{67} -9.60195 q^{68} -0.0206725 q^{69} +10.1654i q^{70} -6.68083i q^{71} +5.71974i q^{72} +12.4541i q^{73} +9.10713 q^{74} +0.0130567 q^{75} +7.04724i q^{76} -13.5150 q^{77} +0.984840 q^{79} -1.52367i q^{80} +8.99847 q^{81} -16.0236 q^{82} -7.84405i q^{83} -0.172379i q^{84} +3.35206i q^{85} +1.55565i q^{86} -0.107890 q^{87} -5.59102 q^{88} +0.412834i q^{89} +6.61630 q^{90} -4.53532 q^{92} +0.127689i q^{93} +18.9087 q^{94} +2.46021 q^{95} +0.0936675i q^{96} -3.38416i q^{97} -31.4129i q^{98} +8.79646i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 14 q^{3} - 34 q^{4} + 32 q^{9} - 6 q^{10} - 24 q^{12} - 4 q^{14} + 74 q^{16} + 2 q^{17} + 24 q^{22} - 28 q^{23} - 18 q^{25} + 44 q^{27} + 24 q^{29} + 4 q^{30} + 14 q^{35} - 6 q^{36} + 94 q^{38} + 24 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.20556i 1.55957i 0.626050 + 0.779783i \(0.284671\pi\)
−0.626050 + 0.779783i \(0.715329\pi\)
\(3\) −0.0130567 −0.00753827 −0.00376913 0.999993i \(-0.501200\pi\)
−0.00376913 + 0.999993i \(0.501200\pi\)
\(4\) −2.86449 −1.43225
\(5\) 1.00000i 0.447214i
\(6\) − 0.0287972i − 0.0117564i
\(7\) − 4.60897i − 1.74203i −0.491259 0.871013i \(-0.663463\pi\)
0.491259 0.871013i \(-0.336537\pi\)
\(8\) − 1.90669i − 0.674116i
\(9\) −2.99983 −0.999943
\(10\) −2.20556 −0.697459
\(11\) − 2.93232i − 0.884128i −0.896984 0.442064i \(-0.854246\pi\)
0.896984 0.442064i \(-0.145754\pi\)
\(12\) 0.0374007 0.0107967
\(13\) 0 0
\(14\) 10.1654 2.71681
\(15\) − 0.0130567i − 0.00337122i
\(16\) −1.52367 −0.380917
\(17\) 3.35206 0.812994 0.406497 0.913652i \(-0.366750\pi\)
0.406497 + 0.913652i \(0.366750\pi\)
\(18\) − 6.61630i − 1.55948i
\(19\) − 2.46021i − 0.564410i −0.959354 0.282205i \(-0.908934\pi\)
0.959354 0.282205i \(-0.0910659\pi\)
\(20\) − 2.86449i − 0.640520i
\(21\) 0.0601778i 0.0131319i
\(22\) 6.46741 1.37886
\(23\) 1.58329 0.330139 0.165069 0.986282i \(-0.447215\pi\)
0.165069 + 0.986282i \(0.447215\pi\)
\(24\) 0.0248950i 0.00508167i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0.0783378 0.0150761
\(28\) 13.2024i 2.49501i
\(29\) 8.26322 1.53444 0.767221 0.641383i \(-0.221639\pi\)
0.767221 + 0.641383i \(0.221639\pi\)
\(30\) 0.0287972 0.00525763
\(31\) − 9.77959i − 1.75647i −0.478233 0.878233i \(-0.658723\pi\)
0.478233 0.878233i \(-0.341277\pi\)
\(32\) − 7.17392i − 1.26818i
\(33\) 0.0382863i 0.00666479i
\(34\) 7.39317i 1.26792i
\(35\) 4.60897 0.779058
\(36\) 8.59299 1.43216
\(37\) − 4.12917i − 0.678831i −0.940637 0.339416i \(-0.889771\pi\)
0.940637 0.339416i \(-0.110229\pi\)
\(38\) 5.42613 0.880235
\(39\) 0 0
\(40\) 1.90669 0.301474
\(41\) 7.26508i 1.13462i 0.823506 + 0.567308i \(0.192015\pi\)
−0.823506 + 0.567308i \(0.807985\pi\)
\(42\) −0.132726 −0.0204800
\(43\) 0.705329 0.107562 0.0537809 0.998553i \(-0.482873\pi\)
0.0537809 + 0.998553i \(0.482873\pi\)
\(44\) 8.39961i 1.26629i
\(45\) − 2.99983i − 0.447188i
\(46\) 3.49204i 0.514873i
\(47\) − 8.57322i − 1.25053i −0.780411 0.625266i \(-0.784990\pi\)
0.780411 0.625266i \(-0.215010\pi\)
\(48\) 0.0198940 0.00287146
\(49\) −14.2426 −2.03466
\(50\) − 2.20556i − 0.311913i
\(51\) −0.0437667 −0.00612857
\(52\) 0 0
\(53\) −12.4639 −1.71204 −0.856022 0.516940i \(-0.827071\pi\)
−0.856022 + 0.516940i \(0.827071\pi\)
\(54\) 0.172779i 0.0235122i
\(55\) 2.93232 0.395394
\(56\) −8.78787 −1.17433
\(57\) 0.0321221i 0.00425467i
\(58\) 18.2250i 2.39306i
\(59\) 5.33445i 0.694487i 0.937775 + 0.347243i \(0.112882\pi\)
−0.937775 + 0.347243i \(0.887118\pi\)
\(60\) 0.0374007i 0.00482841i
\(61\) 1.92092 0.245949 0.122974 0.992410i \(-0.460757\pi\)
0.122974 + 0.992410i \(0.460757\pi\)
\(62\) 21.5695 2.73932
\(63\) 13.8261i 1.74193i
\(64\) 12.7752 1.59690
\(65\) 0 0
\(66\) −0.0844427 −0.0103942
\(67\) − 7.29793i − 0.891584i −0.895137 0.445792i \(-0.852922\pi\)
0.895137 0.445792i \(-0.147078\pi\)
\(68\) −9.60195 −1.16441
\(69\) −0.0206725 −0.00248867
\(70\) 10.1654i 1.21499i
\(71\) − 6.68083i − 0.792868i −0.918063 0.396434i \(-0.870248\pi\)
0.918063 0.396434i \(-0.129752\pi\)
\(72\) 5.71974i 0.674078i
\(73\) 12.4541i 1.45765i 0.684702 + 0.728824i \(0.259933\pi\)
−0.684702 + 0.728824i \(0.740067\pi\)
\(74\) 9.10713 1.05868
\(75\) 0.0130567 0.00150765
\(76\) 7.04724i 0.808374i
\(77\) −13.5150 −1.54017
\(78\) 0 0
\(79\) 0.984840 0.110803 0.0554016 0.998464i \(-0.482356\pi\)
0.0554016 + 0.998464i \(0.482356\pi\)
\(80\) − 1.52367i − 0.170351i
\(81\) 8.99847 0.999830
\(82\) −16.0236 −1.76951
\(83\) − 7.84405i − 0.860997i −0.902591 0.430498i \(-0.858338\pi\)
0.902591 0.430498i \(-0.141662\pi\)
\(84\) − 0.172379i − 0.0188081i
\(85\) 3.35206i 0.363582i
\(86\) 1.55565i 0.167750i
\(87\) −0.107890 −0.0115670
\(88\) −5.59102 −0.596005
\(89\) 0.412834i 0.0437604i 0.999761 + 0.0218802i \(0.00696523\pi\)
−0.999761 + 0.0218802i \(0.993035\pi\)
\(90\) 6.61630 0.697419
\(91\) 0 0
\(92\) −4.53532 −0.472840
\(93\) 0.127689i 0.0132407i
\(94\) 18.9087 1.95029
\(95\) 2.46021 0.252412
\(96\) 0.0936675i 0.00955989i
\(97\) − 3.38416i − 0.343609i −0.985131 0.171805i \(-0.945040\pi\)
0.985131 0.171805i \(-0.0549598\pi\)
\(98\) − 31.4129i − 3.17318i
\(99\) 8.79646i 0.884077i
\(100\) 2.86449 0.286449
\(101\) 10.5432 1.04909 0.524545 0.851383i \(-0.324235\pi\)
0.524545 + 0.851383i \(0.324235\pi\)
\(102\) − 0.0965301i − 0.00955790i
\(103\) −14.1152 −1.39081 −0.695404 0.718619i \(-0.744774\pi\)
−0.695404 + 0.718619i \(0.744774\pi\)
\(104\) 0 0
\(105\) −0.0601778 −0.00587275
\(106\) − 27.4898i − 2.67004i
\(107\) −3.97165 −0.383954 −0.191977 0.981399i \(-0.561490\pi\)
−0.191977 + 0.981399i \(0.561490\pi\)
\(108\) −0.224398 −0.0215927
\(109\) 10.1737i 0.974460i 0.873274 + 0.487230i \(0.161993\pi\)
−0.873274 + 0.487230i \(0.838007\pi\)
\(110\) 6.46741i 0.616643i
\(111\) 0.0539132i 0.00511721i
\(112\) 7.02254i 0.663568i
\(113\) −2.59984 −0.244572 −0.122286 0.992495i \(-0.539023\pi\)
−0.122286 + 0.992495i \(0.539023\pi\)
\(114\) −0.0708472 −0.00663545
\(115\) 1.58329i 0.147642i
\(116\) −23.6699 −2.19770
\(117\) 0 0
\(118\) −11.7655 −1.08310
\(119\) − 15.4495i − 1.41626i
\(120\) −0.0248950 −0.00227259
\(121\) 2.40150 0.218318
\(122\) 4.23670i 0.383573i
\(123\) − 0.0948578i − 0.00855304i
\(124\) 28.0135i 2.51569i
\(125\) − 1.00000i − 0.0894427i
\(126\) −30.4943 −2.71665
\(127\) −19.9719 −1.77222 −0.886109 0.463476i \(-0.846602\pi\)
−0.886109 + 0.463476i \(0.846602\pi\)
\(128\) 13.8286i 1.22228i
\(129\) −0.00920925 −0.000810829 0
\(130\) 0 0
\(131\) −11.4400 −0.999514 −0.499757 0.866166i \(-0.666577\pi\)
−0.499757 + 0.866166i \(0.666577\pi\)
\(132\) − 0.109671i − 0.00954562i
\(133\) −11.3390 −0.983217
\(134\) 16.0960 1.39048
\(135\) 0.0783378i 0.00674224i
\(136\) − 6.39133i − 0.548052i
\(137\) − 3.12520i − 0.267004i −0.991049 0.133502i \(-0.957378\pi\)
0.991049 0.133502i \(-0.0426222\pi\)
\(138\) − 0.0455944i − 0.00388125i
\(139\) 6.09526 0.516993 0.258497 0.966012i \(-0.416773\pi\)
0.258497 + 0.966012i \(0.416773\pi\)
\(140\) −13.2024 −1.11580
\(141\) 0.111938i 0.00942685i
\(142\) 14.7350 1.23653
\(143\) 0 0
\(144\) 4.57075 0.380896
\(145\) 8.26322i 0.686223i
\(146\) −27.4684 −2.27330
\(147\) 0.185961 0.0153378
\(148\) 11.8280i 0.972253i
\(149\) − 14.6196i − 1.19769i −0.800866 0.598844i \(-0.795627\pi\)
0.800866 0.598844i \(-0.204373\pi\)
\(150\) 0.0287972i 0.00235129i
\(151\) − 12.2510i − 0.996973i −0.866897 0.498487i \(-0.833889\pi\)
0.866897 0.498487i \(-0.166111\pi\)
\(152\) −4.69085 −0.380478
\(153\) −10.0556 −0.812948
\(154\) − 29.8081i − 2.40200i
\(155\) 9.77959 0.785515
\(156\) 0 0
\(157\) 7.13991 0.569827 0.284914 0.958553i \(-0.408035\pi\)
0.284914 + 0.958553i \(0.408035\pi\)
\(158\) 2.17212i 0.172805i
\(159\) 0.162736 0.0129058
\(160\) 7.17392 0.567148
\(161\) − 7.29733i − 0.575110i
\(162\) 19.8467i 1.55930i
\(163\) − 2.39002i − 0.187201i −0.995610 0.0936004i \(-0.970162\pi\)
0.995610 0.0936004i \(-0.0298376\pi\)
\(164\) − 20.8108i − 1.62505i
\(165\) −0.0382863 −0.00298059
\(166\) 17.3005 1.34278
\(167\) 7.43841i 0.575601i 0.957690 + 0.287801i \(0.0929240\pi\)
−0.957690 + 0.287801i \(0.907076\pi\)
\(168\) 0.114740 0.00885240
\(169\) 0 0
\(170\) −7.39317 −0.567030
\(171\) 7.38020i 0.564378i
\(172\) −2.02041 −0.154055
\(173\) −2.54119 −0.193203 −0.0966015 0.995323i \(-0.530797\pi\)
−0.0966015 + 0.995323i \(0.530797\pi\)
\(174\) − 0.237958i − 0.0180396i
\(175\) 4.60897i 0.348405i
\(176\) 4.46788i 0.336779i
\(177\) − 0.0696502i − 0.00523523i
\(178\) −0.910531 −0.0682472
\(179\) 10.6913 0.799105 0.399553 0.916710i \(-0.369165\pi\)
0.399553 + 0.916710i \(0.369165\pi\)
\(180\) 8.59299i 0.640484i
\(181\) 11.7908 0.876402 0.438201 0.898877i \(-0.355616\pi\)
0.438201 + 0.898877i \(0.355616\pi\)
\(182\) 0 0
\(183\) −0.0250808 −0.00185403
\(184\) − 3.01884i − 0.222552i
\(185\) 4.12917 0.303583
\(186\) −0.281625 −0.0206498
\(187\) − 9.82931i − 0.718790i
\(188\) 24.5579i 1.79107i
\(189\) − 0.361056i − 0.0262630i
\(190\) 5.42613i 0.393653i
\(191\) 13.4746 0.974990 0.487495 0.873126i \(-0.337911\pi\)
0.487495 + 0.873126i \(0.337911\pi\)
\(192\) −0.166801 −0.0120378
\(193\) − 6.98737i − 0.502962i −0.967862 0.251481i \(-0.919082\pi\)
0.967862 0.251481i \(-0.0809176\pi\)
\(194\) 7.46397 0.535882
\(195\) 0 0
\(196\) 40.7978 2.91413
\(197\) 1.43795i 0.102450i 0.998687 + 0.0512248i \(0.0163125\pi\)
−0.998687 + 0.0512248i \(0.983687\pi\)
\(198\) −19.4011 −1.37878
\(199\) 2.42852 0.172153 0.0860765 0.996289i \(-0.472567\pi\)
0.0860765 + 0.996289i \(0.472567\pi\)
\(200\) 1.90669i 0.134823i
\(201\) 0.0952866i 0.00672100i
\(202\) 23.2537i 1.63613i
\(203\) − 38.0849i − 2.67304i
\(204\) 0.125369 0.00877761
\(205\) −7.26508 −0.507415
\(206\) − 31.1318i − 2.16906i
\(207\) −4.74960 −0.330120
\(208\) 0 0
\(209\) −7.21411 −0.499011
\(210\) − 0.132726i − 0.00915894i
\(211\) 18.2640 1.25735 0.628674 0.777669i \(-0.283598\pi\)
0.628674 + 0.777669i \(0.283598\pi\)
\(212\) 35.7026 2.45207
\(213\) 0.0872293i 0.00597685i
\(214\) − 8.75970i − 0.598801i
\(215\) 0.705329i 0.0481031i
\(216\) − 0.149366i − 0.0101631i
\(217\) −45.0738 −3.05981
\(218\) −22.4386 −1.51973
\(219\) − 0.162610i − 0.0109881i
\(220\) −8.39961 −0.566301
\(221\) 0 0
\(222\) −0.118909 −0.00798063
\(223\) 15.5841i 1.04359i 0.853072 + 0.521793i \(0.174737\pi\)
−0.853072 + 0.521793i \(0.825263\pi\)
\(224\) −33.0644 −2.20921
\(225\) 2.99983 0.199989
\(226\) − 5.73409i − 0.381426i
\(227\) − 4.03380i − 0.267733i −0.990999 0.133866i \(-0.957261\pi\)
0.990999 0.133866i \(-0.0427393\pi\)
\(228\) − 0.0920135i − 0.00609374i
\(229\) − 22.5147i − 1.48781i −0.668284 0.743906i \(-0.732971\pi\)
0.668284 0.743906i \(-0.267029\pi\)
\(230\) −3.49204 −0.230258
\(231\) 0.176460 0.0116102
\(232\) − 15.7554i − 1.03439i
\(233\) 7.69759 0.504286 0.252143 0.967690i \(-0.418865\pi\)
0.252143 + 0.967690i \(0.418865\pi\)
\(234\) 0 0
\(235\) 8.57322 0.559255
\(236\) − 15.2805i − 0.994676i
\(237\) −0.0128587 −0.000835264 0
\(238\) 34.0749 2.20875
\(239\) 18.7203i 1.21092i 0.795877 + 0.605459i \(0.207010\pi\)
−0.795877 + 0.605459i \(0.792990\pi\)
\(240\) 0.0198940i 0.00128415i
\(241\) 22.6183i 1.45697i 0.685061 + 0.728486i \(0.259775\pi\)
−0.685061 + 0.728486i \(0.740225\pi\)
\(242\) 5.29665i 0.340482i
\(243\) −0.352503 −0.0226131
\(244\) −5.50246 −0.352259
\(245\) − 14.2426i − 0.909926i
\(246\) 0.209214 0.0133390
\(247\) 0 0
\(248\) −18.6466 −1.18406
\(249\) 0.102417i 0.00649042i
\(250\) 2.20556 0.139492
\(251\) −1.78412 −0.112612 −0.0563062 0.998414i \(-0.517932\pi\)
−0.0563062 + 0.998414i \(0.517932\pi\)
\(252\) − 39.6048i − 2.49487i
\(253\) − 4.64271i − 0.291885i
\(254\) − 44.0492i − 2.76389i
\(255\) − 0.0437667i − 0.00274078i
\(256\) −4.94936 −0.309335
\(257\) 4.59847 0.286845 0.143422 0.989662i \(-0.454189\pi\)
0.143422 + 0.989662i \(0.454189\pi\)
\(258\) − 0.0203115i − 0.00126454i
\(259\) −19.0312 −1.18254
\(260\) 0 0
\(261\) −24.7883 −1.53435
\(262\) − 25.2315i − 1.55881i
\(263\) 18.8127 1.16004 0.580022 0.814601i \(-0.303044\pi\)
0.580022 + 0.814601i \(0.303044\pi\)
\(264\) 0.0730001 0.00449284
\(265\) − 12.4639i − 0.765649i
\(266\) − 25.0089i − 1.53339i
\(267\) − 0.00539024i 0 0.000329877i
\(268\) 20.9049i 1.27697i
\(269\) 1.85412 0.113048 0.0565238 0.998401i \(-0.481998\pi\)
0.0565238 + 0.998401i \(0.481998\pi\)
\(270\) −0.172779 −0.0105150
\(271\) − 0.149698i − 0.00909352i −0.999990 0.00454676i \(-0.998553\pi\)
0.999990 0.00454676i \(-0.00144728\pi\)
\(272\) −5.10743 −0.309683
\(273\) 0 0
\(274\) 6.89281 0.416410
\(275\) 2.93232i 0.176826i
\(276\) 0.0592161 0.00356439
\(277\) −22.0184 −1.32296 −0.661478 0.749965i \(-0.730071\pi\)
−0.661478 + 0.749965i \(0.730071\pi\)
\(278\) 13.4435i 0.806285i
\(279\) 29.3371i 1.75637i
\(280\) − 8.78787i − 0.525176i
\(281\) 0.438029i 0.0261306i 0.999915 + 0.0130653i \(0.00415894\pi\)
−0.999915 + 0.0130653i \(0.995841\pi\)
\(282\) −0.246885 −0.0147018
\(283\) −13.8290 −0.822049 −0.411025 0.911624i \(-0.634829\pi\)
−0.411025 + 0.911624i \(0.634829\pi\)
\(284\) 19.1372i 1.13558i
\(285\) −0.0321221 −0.00190275
\(286\) 0 0
\(287\) 33.4845 1.97653
\(288\) 21.5205i 1.26811i
\(289\) −5.76370 −0.339041
\(290\) −18.2250 −1.07021
\(291\) 0.0441858i 0.00259022i
\(292\) − 35.6748i − 2.08771i
\(293\) − 14.5656i − 0.850929i −0.904975 0.425464i \(-0.860111\pi\)
0.904975 0.425464i \(-0.139889\pi\)
\(294\) 0.410148i 0.0239203i
\(295\) −5.33445 −0.310584
\(296\) −7.87304 −0.457611
\(297\) − 0.229711i − 0.0133292i
\(298\) 32.2445 1.86787
\(299\) 0 0
\(300\) −0.0374007 −0.00215933
\(301\) − 3.25084i − 0.187375i
\(302\) 27.0203 1.55485
\(303\) −0.137659 −0.00790833
\(304\) 3.74854i 0.214994i
\(305\) 1.92092i 0.109992i
\(306\) − 22.1782i − 1.26785i
\(307\) 9.05062i 0.516546i 0.966072 + 0.258273i \(0.0831535\pi\)
−0.966072 + 0.258273i \(0.916847\pi\)
\(308\) 38.7135 2.20591
\(309\) 0.184297 0.0104843
\(310\) 21.5695i 1.22506i
\(311\) −7.28812 −0.413272 −0.206636 0.978418i \(-0.566252\pi\)
−0.206636 + 0.978418i \(0.566252\pi\)
\(312\) 0 0
\(313\) 12.9725 0.733250 0.366625 0.930369i \(-0.380513\pi\)
0.366625 + 0.930369i \(0.380513\pi\)
\(314\) 15.7475i 0.888683i
\(315\) −13.8261 −0.779014
\(316\) −2.82107 −0.158697
\(317\) 15.5048i 0.870838i 0.900228 + 0.435419i \(0.143400\pi\)
−0.900228 + 0.435419i \(0.856600\pi\)
\(318\) 0.358925i 0.0201275i
\(319\) − 24.2304i − 1.35664i
\(320\) 12.7752i 0.714154i
\(321\) 0.0518565 0.00289434
\(322\) 16.0947 0.896922
\(323\) − 8.24676i − 0.458862i
\(324\) −25.7760 −1.43200
\(325\) 0 0
\(326\) 5.27133 0.291952
\(327\) − 0.132834i − 0.00734574i
\(328\) 13.8523 0.764863
\(329\) −39.5137 −2.17846
\(330\) − 0.0844427i − 0.00464842i
\(331\) 26.0853i 1.43378i 0.697186 + 0.716890i \(0.254435\pi\)
−0.697186 + 0.716890i \(0.745565\pi\)
\(332\) 22.4692i 1.23316i
\(333\) 12.3868i 0.678793i
\(334\) −16.4058 −0.897688
\(335\) 7.29793 0.398728
\(336\) − 0.0916910i − 0.00500215i
\(337\) 14.4785 0.788697 0.394348 0.918961i \(-0.370970\pi\)
0.394348 + 0.918961i \(0.370970\pi\)
\(338\) 0 0
\(339\) 0.0339452 0.00184365
\(340\) − 9.60195i − 0.520739i
\(341\) −28.6769 −1.55294
\(342\) −16.2775 −0.880185
\(343\) 33.3809i 1.80240i
\(344\) − 1.34484i − 0.0725091i
\(345\) − 0.0206725i − 0.00111297i
\(346\) − 5.60474i − 0.301313i
\(347\) 6.81412 0.365801 0.182901 0.983131i \(-0.441451\pi\)
0.182901 + 0.983131i \(0.441451\pi\)
\(348\) 0.309050 0.0165668
\(349\) 33.7357i 1.80583i 0.429818 + 0.902915i \(0.358578\pi\)
−0.429818 + 0.902915i \(0.641422\pi\)
\(350\) −10.1654 −0.543361
\(351\) 0 0
\(352\) −21.0362 −1.12123
\(353\) − 18.7215i − 0.996447i −0.867049 0.498223i \(-0.833986\pi\)
0.867049 0.498223i \(-0.166014\pi\)
\(354\) 0.153618 0.00816468
\(355\) 6.68083 0.354581
\(356\) − 1.18256i − 0.0626756i
\(357\) 0.201719i 0.0106761i
\(358\) 23.5803i 1.24626i
\(359\) 27.9262i 1.47389i 0.675952 + 0.736945i \(0.263732\pi\)
−0.675952 + 0.736945i \(0.736268\pi\)
\(360\) −5.71974 −0.301457
\(361\) 12.9474 0.681441
\(362\) 26.0053i 1.36681i
\(363\) −0.0313556 −0.00164574
\(364\) 0 0
\(365\) −12.4541 −0.651880
\(366\) − 0.0553172i − 0.00289148i
\(367\) 2.50988 0.131015 0.0655074 0.997852i \(-0.479133\pi\)
0.0655074 + 0.997852i \(0.479133\pi\)
\(368\) −2.41241 −0.125755
\(369\) − 21.7940i − 1.13455i
\(370\) 9.10713i 0.473457i
\(371\) 57.4456i 2.98243i
\(372\) − 0.365763i − 0.0189640i
\(373\) 22.1779 1.14833 0.574165 0.818739i \(-0.305327\pi\)
0.574165 + 0.818739i \(0.305327\pi\)
\(374\) 21.6791 1.12100
\(375\) 0.0130567i 0 0.000674243i
\(376\) −16.3465 −0.843005
\(377\) 0 0
\(378\) 0.796331 0.0409589
\(379\) − 1.42116i − 0.0730001i −0.999334 0.0365001i \(-0.988379\pi\)
0.999334 0.0365001i \(-0.0116209\pi\)
\(380\) −7.04724 −0.361516
\(381\) 0.260766 0.0133595
\(382\) 29.7191i 1.52056i
\(383\) 21.0733i 1.07679i 0.842691 + 0.538397i \(0.180970\pi\)
−0.842691 + 0.538397i \(0.819030\pi\)
\(384\) − 0.180555i − 0.00921390i
\(385\) − 13.5150i − 0.688787i
\(386\) 15.4111 0.784402
\(387\) −2.11587 −0.107556
\(388\) 9.69390i 0.492133i
\(389\) −13.4713 −0.683021 −0.341511 0.939878i \(-0.610939\pi\)
−0.341511 + 0.939878i \(0.610939\pi\)
\(390\) 0 0
\(391\) 5.30728 0.268401
\(392\) 27.1562i 1.37160i
\(393\) 0.149368 0.00753461
\(394\) −3.17148 −0.159777
\(395\) 0.984840i 0.0495527i
\(396\) − 25.1974i − 1.26622i
\(397\) − 27.1859i − 1.36442i −0.731156 0.682210i \(-0.761019\pi\)
0.731156 0.682210i \(-0.238981\pi\)
\(398\) 5.35624i 0.268484i
\(399\) 0.148050 0.00741176
\(400\) 1.52367 0.0761834
\(401\) 3.27520i 0.163556i 0.996651 + 0.0817779i \(0.0260598\pi\)
−0.996651 + 0.0817779i \(0.973940\pi\)
\(402\) −0.210160 −0.0104818
\(403\) 0 0
\(404\) −30.2010 −1.50256
\(405\) 8.99847i 0.447137i
\(406\) 83.9986 4.16878
\(407\) −12.1080 −0.600173
\(408\) 0.0834495i 0.00413137i
\(409\) − 19.1677i − 0.947782i −0.880583 0.473891i \(-0.842849\pi\)
0.880583 0.473891i \(-0.157151\pi\)
\(410\) − 16.0236i − 0.791348i
\(411\) 0.0408047i 0.00201275i
\(412\) 40.4327 1.99198
\(413\) 24.5863 1.20981
\(414\) − 10.4755i − 0.514844i
\(415\) 7.84405 0.385049
\(416\) 0 0
\(417\) −0.0795837 −0.00389723
\(418\) − 15.9112i − 0.778240i
\(419\) 0.392463 0.0191731 0.00958653 0.999954i \(-0.496948\pi\)
0.00958653 + 0.999954i \(0.496948\pi\)
\(420\) 0.172379 0.00841122
\(421\) 35.1816i 1.71465i 0.514779 + 0.857323i \(0.327874\pi\)
−0.514779 + 0.857323i \(0.672126\pi\)
\(422\) 40.2824i 1.96092i
\(423\) 25.7182i 1.25046i
\(424\) 23.7647i 1.15412i
\(425\) −3.35206 −0.162599
\(426\) −0.192389 −0.00932130
\(427\) − 8.85346i − 0.428449i
\(428\) 11.3768 0.549916
\(429\) 0 0
\(430\) −1.55565 −0.0750199
\(431\) 2.27454i 0.109561i 0.998498 + 0.0547803i \(0.0174459\pi\)
−0.998498 + 0.0547803i \(0.982554\pi\)
\(432\) −0.119361 −0.00574275
\(433\) −11.8827 −0.571048 −0.285524 0.958372i \(-0.592168\pi\)
−0.285524 + 0.958372i \(0.592168\pi\)
\(434\) − 99.4130i − 4.77197i
\(435\) − 0.107890i − 0.00517293i
\(436\) − 29.1424i − 1.39567i
\(437\) − 3.89522i − 0.186334i
\(438\) 0.358645 0.0171367
\(439\) 35.7273 1.70517 0.852585 0.522588i \(-0.175033\pi\)
0.852585 + 0.522588i \(0.175033\pi\)
\(440\) − 5.59102i − 0.266541i
\(441\) 42.7254 2.03454
\(442\) 0 0
\(443\) 4.98904 0.237036 0.118518 0.992952i \(-0.462186\pi\)
0.118518 + 0.992952i \(0.462186\pi\)
\(444\) − 0.154434i − 0.00732911i
\(445\) −0.412834 −0.0195702
\(446\) −34.3716 −1.62754
\(447\) 0.190884i 0.00902849i
\(448\) − 58.8804i − 2.78184i
\(449\) 23.4886i 1.10850i 0.832352 + 0.554248i \(0.186994\pi\)
−0.832352 + 0.554248i \(0.813006\pi\)
\(450\) 6.61630i 0.311895i
\(451\) 21.3035 1.00314
\(452\) 7.44721 0.350287
\(453\) 0.159957i 0.00751545i
\(454\) 8.89679 0.417547
\(455\) 0 0
\(456\) 0.0612468 0.00286815
\(457\) 40.2510i 1.88286i 0.337208 + 0.941430i \(0.390518\pi\)
−0.337208 + 0.941430i \(0.609482\pi\)
\(458\) 49.6575 2.32034
\(459\) 0.262593 0.0122568
\(460\) − 4.53532i − 0.211460i
\(461\) − 31.2140i − 1.45378i −0.686754 0.726890i \(-0.740965\pi\)
0.686754 0.726890i \(-0.259035\pi\)
\(462\) 0.389194i 0.0181069i
\(463\) 17.7491i 0.824872i 0.910987 + 0.412436i \(0.135322\pi\)
−0.910987 + 0.412436i \(0.864678\pi\)
\(464\) −12.5904 −0.584495
\(465\) −0.127689 −0.00592142
\(466\) 16.9775i 0.786467i
\(467\) −26.6645 −1.23389 −0.616944 0.787007i \(-0.711630\pi\)
−0.616944 + 0.787007i \(0.711630\pi\)
\(468\) 0 0
\(469\) −33.6359 −1.55316
\(470\) 18.9087i 0.872196i
\(471\) −0.0932234 −0.00429551
\(472\) 10.1711 0.468165
\(473\) − 2.06825i − 0.0950983i
\(474\) − 0.0283607i − 0.00130265i
\(475\) 2.46021i 0.112882i
\(476\) 44.2551i 2.02843i
\(477\) 37.3895 1.71195
\(478\) −41.2888 −1.88851
\(479\) 20.4630i 0.934980i 0.883998 + 0.467490i \(0.154842\pi\)
−0.883998 + 0.467490i \(0.845158\pi\)
\(480\) −0.0936675 −0.00427531
\(481\) 0 0
\(482\) −49.8860 −2.27224
\(483\) 0.0952788i 0.00433534i
\(484\) −6.87908 −0.312686
\(485\) 3.38416 0.153667
\(486\) − 0.777467i − 0.0352666i
\(487\) − 8.11789i − 0.367857i −0.982940 0.183928i \(-0.941119\pi\)
0.982940 0.183928i \(-0.0588815\pi\)
\(488\) − 3.66260i − 0.165798i
\(489\) 0.0312057i 0.00141117i
\(490\) 31.4129 1.41909
\(491\) −3.26996 −0.147571 −0.0737857 0.997274i \(-0.523508\pi\)
−0.0737857 + 0.997274i \(0.523508\pi\)
\(492\) 0.271719i 0.0122501i
\(493\) 27.6988 1.24749
\(494\) 0 0
\(495\) −8.79646 −0.395371
\(496\) 14.9008i 0.669068i
\(497\) −30.7917 −1.38120
\(498\) −0.225887 −0.0101222
\(499\) − 8.89340i − 0.398123i −0.979987 0.199062i \(-0.936211\pi\)
0.979987 0.199062i \(-0.0637894\pi\)
\(500\) 2.86449i 0.128104i
\(501\) − 0.0971208i − 0.00433904i
\(502\) − 3.93498i − 0.175627i
\(503\) −23.7974 −1.06107 −0.530537 0.847662i \(-0.678010\pi\)
−0.530537 + 0.847662i \(0.678010\pi\)
\(504\) 26.3621 1.17426
\(505\) 10.5432i 0.469168i
\(506\) 10.2398 0.455213
\(507\) 0 0
\(508\) 57.2093 2.53825
\(509\) 1.26770i 0.0561898i 0.999605 + 0.0280949i \(0.00894406\pi\)
−0.999605 + 0.0280949i \(0.991056\pi\)
\(510\) 0.0965301 0.00427442
\(511\) 57.4008 2.53926
\(512\) 16.7410i 0.739855i
\(513\) − 0.192727i − 0.00850911i
\(514\) 10.1422i 0.447354i
\(515\) − 14.1152i − 0.621988i
\(516\) 0.0263798 0.00116131
\(517\) −25.1394 −1.10563
\(518\) − 41.9745i − 1.84425i
\(519\) 0.0331794 0.00145642
\(520\) 0 0
\(521\) 14.3916 0.630506 0.315253 0.949008i \(-0.397911\pi\)
0.315253 + 0.949008i \(0.397911\pi\)
\(522\) − 54.6720i − 2.39293i
\(523\) 19.0185 0.831622 0.415811 0.909451i \(-0.363498\pi\)
0.415811 + 0.909451i \(0.363498\pi\)
\(524\) 32.7697 1.43155
\(525\) − 0.0601778i − 0.00262637i
\(526\) 41.4926i 1.80916i
\(527\) − 32.7818i − 1.42800i
\(528\) − 0.0583357i − 0.00253873i
\(529\) −20.4932 −0.891008
\(530\) 27.4898 1.19408
\(531\) − 16.0024i − 0.694447i
\(532\) 32.4805 1.40821
\(533\) 0 0
\(534\) 0.0118885 0.000514465 0
\(535\) − 3.97165i − 0.171709i
\(536\) −13.9149 −0.601031
\(537\) −0.139593 −0.00602387
\(538\) 4.08937i 0.176305i
\(539\) 41.7638i 1.79890i
\(540\) − 0.224398i − 0.00965655i
\(541\) − 13.8969i − 0.597475i −0.954335 0.298738i \(-0.903434\pi\)
0.954335 0.298738i \(-0.0965656\pi\)
\(542\) 0.330168 0.0141819
\(543\) −0.153948 −0.00660656
\(544\) − 24.0474i − 1.03102i
\(545\) −10.1737 −0.435792
\(546\) 0 0
\(547\) 37.0840 1.58560 0.792798 0.609484i \(-0.208623\pi\)
0.792798 + 0.609484i \(0.208623\pi\)
\(548\) 8.95211i 0.382415i
\(549\) −5.76243 −0.245935
\(550\) −6.46741 −0.275771
\(551\) − 20.3292i − 0.866054i
\(552\) 0.0394160i 0.00167766i
\(553\) − 4.53910i − 0.193022i
\(554\) − 48.5628i − 2.06324i
\(555\) −0.0539132 −0.00228849
\(556\) −17.4598 −0.740461
\(557\) − 31.8065i − 1.34768i −0.738875 0.673842i \(-0.764643\pi\)
0.738875 0.673842i \(-0.235357\pi\)
\(558\) −64.7047 −2.73917
\(559\) 0 0
\(560\) −7.02254 −0.296757
\(561\) 0.128338i 0.00541843i
\(562\) −0.966100 −0.0407525
\(563\) −26.3595 −1.11092 −0.555461 0.831543i \(-0.687458\pi\)
−0.555461 + 0.831543i \(0.687458\pi\)
\(564\) − 0.320645i − 0.0135016i
\(565\) − 2.59984i − 0.109376i
\(566\) − 30.5007i − 1.28204i
\(567\) − 41.4736i − 1.74173i
\(568\) −12.7383 −0.534485
\(569\) −17.7846 −0.745569 −0.372785 0.927918i \(-0.621597\pi\)
−0.372785 + 0.927918i \(0.621597\pi\)
\(570\) − 0.0708472i − 0.00296746i
\(571\) −19.6399 −0.821903 −0.410952 0.911657i \(-0.634804\pi\)
−0.410952 + 0.911657i \(0.634804\pi\)
\(572\) 0 0
\(573\) −0.175934 −0.00734974
\(574\) 73.8522i 3.08253i
\(575\) −1.58329 −0.0660277
\(576\) −38.3233 −1.59681
\(577\) 18.1454i 0.755403i 0.925927 + 0.377701i \(0.123285\pi\)
−0.925927 + 0.377701i \(0.876715\pi\)
\(578\) − 12.7122i − 0.528757i
\(579\) 0.0912317i 0.00379146i
\(580\) − 23.6699i − 0.982840i
\(581\) −36.1530 −1.49988
\(582\) −0.0974545 −0.00403962
\(583\) 36.5480i 1.51366i
\(584\) 23.7462 0.982624
\(585\) 0 0
\(586\) 32.1252 1.32708
\(587\) − 0.423843i − 0.0174939i −0.999962 0.00874694i \(-0.997216\pi\)
0.999962 0.00874694i \(-0.00278427\pi\)
\(588\) −0.532683 −0.0219675
\(589\) −24.0598 −0.991367
\(590\) − 11.7655i − 0.484376i
\(591\) − 0.0187748i 0 0.000772293i
\(592\) 6.29149i 0.258578i
\(593\) 47.5064i 1.95085i 0.220327 + 0.975426i \(0.429288\pi\)
−0.220327 + 0.975426i \(0.570712\pi\)
\(594\) 0.506642 0.0207878
\(595\) 15.4495 0.633369
\(596\) 41.8778i 1.71538i
\(597\) −0.0317083 −0.00129774
\(598\) 0 0
\(599\) 25.7871 1.05363 0.526816 0.849979i \(-0.323386\pi\)
0.526816 + 0.849979i \(0.323386\pi\)
\(600\) − 0.0248950i − 0.00101633i
\(601\) −12.6776 −0.517130 −0.258565 0.965994i \(-0.583250\pi\)
−0.258565 + 0.965994i \(0.583250\pi\)
\(602\) 7.16992 0.292224
\(603\) 21.8925i 0.891533i
\(604\) 35.0929i 1.42791i
\(605\) 2.40150i 0.0976349i
\(606\) − 0.303616i − 0.0123336i
\(607\) −4.40448 −0.178772 −0.0893862 0.995997i \(-0.528491\pi\)
−0.0893862 + 0.995997i \(0.528491\pi\)
\(608\) −17.6493 −0.715775
\(609\) 0.497262i 0.0201501i
\(610\) −4.23670 −0.171539
\(611\) 0 0
\(612\) 28.8042 1.16434
\(613\) − 33.3599i − 1.34739i −0.739008 0.673696i \(-0.764706\pi\)
0.739008 0.673696i \(-0.235294\pi\)
\(614\) −19.9617 −0.805588
\(615\) 0.0948578 0.00382503
\(616\) 25.7688i 1.03826i
\(617\) − 32.5535i − 1.31055i −0.755389 0.655277i \(-0.772552\pi\)
0.755389 0.655277i \(-0.227448\pi\)
\(618\) 0.406477i 0.0163509i
\(619\) 35.5813i 1.43013i 0.699056 + 0.715067i \(0.253604\pi\)
−0.699056 + 0.715067i \(0.746396\pi\)
\(620\) −28.0135 −1.12505
\(621\) 0.124031 0.00497721
\(622\) − 16.0744i − 0.644524i
\(623\) 1.90274 0.0762317
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 28.6116i 1.14355i
\(627\) 0.0941922 0.00376168
\(628\) −20.4522 −0.816133
\(629\) − 13.8412i − 0.551886i
\(630\) − 30.4943i − 1.21492i
\(631\) − 25.4117i − 1.01162i −0.862644 0.505812i \(-0.831193\pi\)
0.862644 0.505812i \(-0.168807\pi\)
\(632\) − 1.87778i − 0.0746942i
\(633\) −0.238467 −0.00947822
\(634\) −34.1968 −1.35813
\(635\) − 19.9719i − 0.792560i
\(636\) −0.466157 −0.0184843
\(637\) 0 0
\(638\) 53.4416 2.11577
\(639\) 20.0413i 0.792823i
\(640\) −13.8286 −0.546622
\(641\) 10.1479 0.400817 0.200408 0.979712i \(-0.435773\pi\)
0.200408 + 0.979712i \(0.435773\pi\)
\(642\) 0.114372i 0.00451392i
\(643\) 1.85439i 0.0731298i 0.999331 + 0.0365649i \(0.0116416\pi\)
−0.999331 + 0.0365649i \(0.988358\pi\)
\(644\) 20.9032i 0.823700i
\(645\) − 0.00920925i 0 0.000362614i
\(646\) 18.1887 0.715626
\(647\) 29.6034 1.16383 0.581914 0.813250i \(-0.302304\pi\)
0.581914 + 0.813250i \(0.302304\pi\)
\(648\) − 17.1573i − 0.674001i
\(649\) 15.6423 0.614015
\(650\) 0 0
\(651\) 0.588514 0.0230657
\(652\) 6.84619i 0.268118i
\(653\) 6.78882 0.265667 0.132834 0.991138i \(-0.457592\pi\)
0.132834 + 0.991138i \(0.457592\pi\)
\(654\) 0.292973 0.0114562
\(655\) − 11.4400i − 0.446996i
\(656\) − 11.0696i − 0.432195i
\(657\) − 37.3603i − 1.45756i
\(658\) − 87.1498i − 3.39745i
\(659\) 7.94959 0.309672 0.154836 0.987940i \(-0.450515\pi\)
0.154836 + 0.987940i \(0.450515\pi\)
\(660\) 0.109671 0.00426893
\(661\) − 40.3832i − 1.57072i −0.619038 0.785361i \(-0.712477\pi\)
0.619038 0.785361i \(-0.287523\pi\)
\(662\) −57.5328 −2.23607
\(663\) 0 0
\(664\) −14.9562 −0.580412
\(665\) − 11.3390i − 0.439708i
\(666\) −27.3198 −1.05862
\(667\) 13.0831 0.506579
\(668\) − 21.3073i − 0.824402i
\(669\) − 0.203476i − 0.00786684i
\(670\) 16.0960i 0.621843i
\(671\) − 5.63275i − 0.217450i
\(672\) 0.431710 0.0166536
\(673\) −9.63920 −0.371564 −0.185782 0.982591i \(-0.559482\pi\)
−0.185782 + 0.982591i \(0.559482\pi\)
\(674\) 31.9333i 1.23002i
\(675\) −0.0783378 −0.00301522
\(676\) 0 0
\(677\) 51.1565 1.96610 0.983051 0.183330i \(-0.0586878\pi\)
0.983051 + 0.183330i \(0.0586878\pi\)
\(678\) 0.0748681i 0.00287529i
\(679\) −15.5975 −0.598577
\(680\) 6.39133 0.245097
\(681\) 0.0526680i 0.00201824i
\(682\) − 63.2485i − 2.42191i
\(683\) 8.34502i 0.319313i 0.987173 + 0.159657i \(0.0510387\pi\)
−0.987173 + 0.159657i \(0.948961\pi\)
\(684\) − 21.1405i − 0.808328i
\(685\) 3.12520 0.119408
\(686\) −73.6236 −2.81096
\(687\) 0.293967i 0.0112155i
\(688\) −1.07469 −0.0409721
\(689\) 0 0
\(690\) 0.0455944 0.00173575
\(691\) − 36.1243i − 1.37423i −0.726547 0.687117i \(-0.758876\pi\)
0.726547 0.687117i \(-0.241124\pi\)
\(692\) 7.27921 0.276714
\(693\) 40.5426 1.54009
\(694\) 15.0289i 0.570491i
\(695\) 6.09526i 0.231206i
\(696\) 0.205713i 0.00779753i
\(697\) 24.3530i 0.922435i
\(698\) −74.4061 −2.81631
\(699\) −0.100505 −0.00380144
\(700\) − 13.2024i − 0.499002i
\(701\) 45.9823 1.73673 0.868364 0.495928i \(-0.165172\pi\)
0.868364 + 0.495928i \(0.165172\pi\)
\(702\) 0 0
\(703\) −10.1586 −0.383139
\(704\) − 37.4609i − 1.41186i
\(705\) −0.111938 −0.00421582
\(706\) 41.2915 1.55402
\(707\) − 48.5934i − 1.82754i
\(708\) 0.199512i 0.00749813i
\(709\) − 38.0949i − 1.43069i −0.698774 0.715343i \(-0.746271\pi\)
0.698774 0.715343i \(-0.253729\pi\)
\(710\) 14.7350i 0.552993i
\(711\) −2.95435 −0.110797
\(712\) 0.787147 0.0294996
\(713\) − 15.4839i − 0.579877i
\(714\) −0.444904 −0.0166501
\(715\) 0 0
\(716\) −30.6251 −1.14452
\(717\) − 0.244425i − 0.00912822i
\(718\) −61.5930 −2.29863
\(719\) 27.8672 1.03927 0.519635 0.854388i \(-0.326068\pi\)
0.519635 + 0.854388i \(0.326068\pi\)
\(720\) 4.57075i 0.170342i
\(721\) 65.0563i 2.42282i
\(722\) 28.5562i 1.06275i
\(723\) − 0.295319i − 0.0109830i
\(724\) −33.7746 −1.25522
\(725\) −8.26322 −0.306888
\(726\) − 0.0691566i − 0.00256664i
\(727\) 13.7750 0.510885 0.255443 0.966824i \(-0.417779\pi\)
0.255443 + 0.966824i \(0.417779\pi\)
\(728\) 0 0
\(729\) −26.9908 −0.999659
\(730\) − 27.4684i − 1.01665i
\(731\) 2.36431 0.0874470
\(732\) 0.0718438 0.00265542
\(733\) − 6.58392i − 0.243183i −0.992580 0.121591i \(-0.961200\pi\)
0.992580 0.121591i \(-0.0387997\pi\)
\(734\) 5.53570i 0.204326i
\(735\) 0.185961i 0.00685927i
\(736\) − 11.3584i − 0.418676i
\(737\) −21.3999 −0.788274
\(738\) 48.0680 1.76941
\(739\) − 5.47501i − 0.201401i −0.994917 0.100701i \(-0.967892\pi\)
0.994917 0.100701i \(-0.0321085\pi\)
\(740\) −11.8280 −0.434805
\(741\) 0 0
\(742\) −126.700 −4.65129
\(743\) − 26.6714i − 0.978479i −0.872150 0.489239i \(-0.837274\pi\)
0.872150 0.489239i \(-0.162726\pi\)
\(744\) 0.243463 0.00892578
\(745\) 14.6196 0.535622
\(746\) 48.9148i 1.79090i
\(747\) 23.5308i 0.860948i
\(748\) 28.1560i 1.02948i
\(749\) 18.3052i 0.668857i
\(750\) −0.0287972 −0.00105153
\(751\) −21.8067 −0.795740 −0.397870 0.917442i \(-0.630250\pi\)
−0.397870 + 0.917442i \(0.630250\pi\)
\(752\) 13.0627i 0.476349i
\(753\) 0.0232946 0.000848903 0
\(754\) 0 0
\(755\) 12.2510 0.445860
\(756\) 1.03424i 0.0376151i
\(757\) −8.33422 −0.302912 −0.151456 0.988464i \(-0.548396\pi\)
−0.151456 + 0.988464i \(0.548396\pi\)
\(758\) 3.13446 0.113849
\(759\) 0.0606183i 0.00220031i
\(760\) − 4.69085i − 0.170155i
\(761\) 7.33096i 0.265747i 0.991133 + 0.132874i \(0.0424204\pi\)
−0.991133 + 0.132874i \(0.957580\pi\)
\(762\) 0.575135i 0.0208350i
\(763\) 46.8901 1.69753
\(764\) −38.5980 −1.39643
\(765\) − 10.0556i − 0.363561i
\(766\) −46.4783 −1.67933
\(767\) 0 0
\(768\) 0.0646221 0.00233185
\(769\) − 22.3346i − 0.805407i −0.915331 0.402703i \(-0.868071\pi\)
0.915331 0.402703i \(-0.131929\pi\)
\(770\) 29.8081 1.07421
\(771\) −0.0600407 −0.00216231
\(772\) 20.0153i 0.720365i
\(773\) − 27.1591i − 0.976844i −0.872608 0.488422i \(-0.837573\pi\)
0.872608 0.488422i \(-0.162427\pi\)
\(774\) − 4.66667i − 0.167740i
\(775\) 9.77959i 0.351293i
\(776\) −6.45254 −0.231633
\(777\) 0.248484 0.00891432
\(778\) − 29.7117i − 1.06522i
\(779\) 17.8736 0.640388
\(780\) 0 0
\(781\) −19.5903 −0.700997
\(782\) 11.7055i 0.418589i
\(783\) 0.647322 0.0231334
\(784\) 21.7010 0.775036
\(785\) 7.13991i 0.254834i
\(786\) 0.329440i 0.0117507i
\(787\) − 11.5806i − 0.412805i −0.978467 0.206403i \(-0.933824\pi\)
0.978467 0.206403i \(-0.0661756\pi\)
\(788\) − 4.11899i − 0.146733i
\(789\) −0.245632 −0.00874472
\(790\) −2.17212 −0.0772807
\(791\) 11.9826i 0.426051i
\(792\) 16.7721 0.595971
\(793\) 0 0
\(794\) 59.9601 2.12790
\(795\) 0.162736i 0.00577167i
\(796\) −6.95647 −0.246566
\(797\) 47.7004 1.68963 0.844817 0.535055i \(-0.179709\pi\)
0.844817 + 0.535055i \(0.179709\pi\)
\(798\) 0.326532i 0.0115591i
\(799\) − 28.7379i − 1.01668i
\(800\) 7.17392i 0.253636i
\(801\) − 1.23843i − 0.0437579i
\(802\) −7.22365 −0.255076
\(803\) 36.5195 1.28875
\(804\) − 0.272948i − 0.00962612i
\(805\) 7.29733 0.257197
\(806\) 0 0
\(807\) −0.0242086 −0.000852184 0
\(808\) − 20.1027i − 0.707209i
\(809\) 36.3910 1.27944 0.639720 0.768608i \(-0.279050\pi\)
0.639720 + 0.768608i \(0.279050\pi\)
\(810\) −19.8467 −0.697340
\(811\) − 36.8088i − 1.29253i −0.763112 0.646266i \(-0.776330\pi\)
0.763112 0.646266i \(-0.223670\pi\)
\(812\) 109.094i 3.82845i
\(813\) 0.00195456i 0 6.85494e-5i
\(814\) − 26.7050i − 0.936010i
\(815\) 2.39002 0.0837188
\(816\) 0.0666860 0.00233448
\(817\) − 1.73526i − 0.0607089i
\(818\) 42.2755 1.47813
\(819\) 0 0
\(820\) 20.8108 0.726744
\(821\) 33.6668i 1.17498i 0.809231 + 0.587491i \(0.199884\pi\)
−0.809231 + 0.587491i \(0.800116\pi\)
\(822\) −0.0899971 −0.00313901
\(823\) −31.8809 −1.11130 −0.555649 0.831417i \(-0.687530\pi\)
−0.555649 + 0.831417i \(0.687530\pi\)
\(824\) 26.9132i 0.937566i
\(825\) − 0.0382863i − 0.00133296i
\(826\) 54.2266i 1.88678i
\(827\) 18.4625i 0.642003i 0.947079 + 0.321002i \(0.104019\pi\)
−0.947079 + 0.321002i \(0.895981\pi\)
\(828\) 13.6052 0.472813
\(829\) 34.9663 1.21443 0.607214 0.794538i \(-0.292287\pi\)
0.607214 + 0.794538i \(0.292287\pi\)
\(830\) 17.3005i 0.600510i
\(831\) 0.287487 0.00997280
\(832\) 0 0
\(833\) −47.7420 −1.65416
\(834\) − 0.175527i − 0.00607799i
\(835\) −7.43841 −0.257417
\(836\) 20.6648 0.714706
\(837\) − 0.766111i − 0.0264807i
\(838\) 0.865600i 0.0299017i
\(839\) 28.7234i 0.991641i 0.868425 + 0.495820i \(0.165133\pi\)
−0.868425 + 0.495820i \(0.834867\pi\)
\(840\) 0.114740i 0.00395892i
\(841\) 39.2808 1.35451
\(842\) −77.5951 −2.67410
\(843\) − 0.00571920i 0 0.000196980i
\(844\) −52.3172 −1.80083
\(845\) 0 0
\(846\) −56.7230 −1.95018
\(847\) − 11.0684i − 0.380316i
\(848\) 18.9908 0.652147
\(849\) 0.180561 0.00619683
\(850\) − 7.39317i − 0.253584i
\(851\) − 6.53767i − 0.224108i
\(852\) − 0.249868i − 0.00856032i
\(853\) 13.7453i 0.470629i 0.971919 + 0.235315i \(0.0756121\pi\)
−0.971919 + 0.235315i \(0.924388\pi\)
\(854\) 19.5268 0.668195
\(855\) −7.38020 −0.252398
\(856\) 7.57269i 0.258829i
\(857\) 12.6495 0.432099 0.216049 0.976382i \(-0.430683\pi\)
0.216049 + 0.976382i \(0.430683\pi\)
\(858\) 0 0
\(859\) −11.0929 −0.378485 −0.189243 0.981930i \(-0.560603\pi\)
−0.189243 + 0.981930i \(0.560603\pi\)
\(860\) − 2.02041i − 0.0688954i
\(861\) −0.437196 −0.0148996
\(862\) −5.01663 −0.170867
\(863\) − 33.0295i − 1.12434i −0.827022 0.562169i \(-0.809967\pi\)
0.827022 0.562169i \(-0.190033\pi\)
\(864\) − 0.561989i − 0.0191192i
\(865\) − 2.54119i − 0.0864030i
\(866\) − 26.2081i − 0.890587i
\(867\) 0.0752546 0.00255578
\(868\) 129.114 4.38240
\(869\) − 2.88787i − 0.0979641i
\(870\) 0.237958 0.00806753
\(871\) 0 0
\(872\) 19.3980 0.656899
\(873\) 10.1519i 0.343590i
\(874\) 8.59114 0.290600
\(875\) −4.60897 −0.155812
\(876\) 0.465794i 0.0157377i
\(877\) 15.4397i 0.521362i 0.965425 + 0.260681i \(0.0839471\pi\)
−0.965425 + 0.260681i \(0.916053\pi\)
\(878\) 78.7987i 2.65933i
\(879\) 0.190178i 0.00641453i
\(880\) −4.46788 −0.150612
\(881\) 16.6260 0.560143 0.280072 0.959979i \(-0.409642\pi\)
0.280072 + 0.959979i \(0.409642\pi\)
\(882\) 94.2333i 3.17300i
\(883\) −57.2845 −1.92778 −0.963888 0.266309i \(-0.914196\pi\)
−0.963888 + 0.266309i \(0.914196\pi\)
\(884\) 0 0
\(885\) 0.0696502 0.00234126
\(886\) 11.0036i 0.369674i
\(887\) 18.4657 0.620018 0.310009 0.950734i \(-0.399668\pi\)
0.310009 + 0.950734i \(0.399668\pi\)
\(888\) 0.102796 0.00344960
\(889\) 92.0498i 3.08725i
\(890\) − 0.910531i − 0.0305211i
\(891\) − 26.3864i − 0.883977i
\(892\) − 44.6405i − 1.49467i
\(893\) −21.0919 −0.705813
\(894\) −0.421005 −0.0140805
\(895\) 10.6913i 0.357371i
\(896\) 63.7354 2.12925
\(897\) 0 0
\(898\) −51.8055 −1.72877
\(899\) − 80.8109i − 2.69519i
\(900\) −8.59299 −0.286433
\(901\) −41.7796 −1.39188
\(902\) 46.9862i 1.56447i
\(903\) 0.0424451i 0.00141249i
\(904\) 4.95708i 0.164870i
\(905\) 11.7908i 0.391939i
\(906\) −0.352795 −0.0117208
\(907\) −44.9489 −1.49250 −0.746251 0.665664i \(-0.768148\pi\)
−0.746251 + 0.665664i \(0.768148\pi\)
\(908\) 11.5548i 0.383459i
\(909\) −31.6279 −1.04903
\(910\) 0 0
\(911\) −44.3728 −1.47014 −0.735069 0.677992i \(-0.762850\pi\)
−0.735069 + 0.677992i \(0.762850\pi\)
\(912\) − 0.0489434i − 0.00162068i
\(913\) −23.0013 −0.761231
\(914\) −88.7759 −2.93645
\(915\) − 0.0250808i 0 0.000829146i
\(916\) 64.4931i 2.13091i
\(917\) 52.7264i 1.74118i
\(918\) 0.579164i 0.0191153i
\(919\) 25.1680 0.830217 0.415108 0.909772i \(-0.363744\pi\)
0.415108 + 0.909772i \(0.363744\pi\)
\(920\) 3.01884 0.0995282
\(921\) − 0.118171i − 0.00389386i
\(922\) 68.8443 2.26726
\(923\) 0 0
\(924\) −0.505469 −0.0166287
\(925\) 4.12917i 0.135766i
\(926\) −39.1468 −1.28644
\(927\) 42.3430 1.39073
\(928\) − 59.2797i − 1.94595i
\(929\) − 37.5601i − 1.23231i −0.787626 0.616153i \(-0.788690\pi\)
0.787626 0.616153i \(-0.211310\pi\)
\(930\) − 0.281625i − 0.00923485i
\(931\) 35.0397i 1.14838i
\(932\) −22.0497 −0.722262
\(933\) 0.0951586 0.00311535
\(934\) − 58.8102i − 1.92433i
\(935\) 9.82931 0.321453
\(936\) 0 0
\(937\) −17.1212 −0.559326 −0.279663 0.960098i \(-0.590223\pi\)
−0.279663 + 0.960098i \(0.590223\pi\)
\(938\) − 74.1860i − 2.42226i
\(939\) −0.169378 −0.00552743
\(940\) −24.5579 −0.800991
\(941\) 0.208568i 0.00679913i 0.999994 + 0.00339956i \(0.00108212\pi\)
−0.999994 + 0.00339956i \(0.998918\pi\)
\(942\) − 0.205610i − 0.00669913i
\(943\) 11.5027i 0.374580i
\(944\) − 8.12794i − 0.264542i
\(945\) 0.361056 0.0117452
\(946\) 4.56165 0.148312
\(947\) 0.414059i 0.0134551i 0.999977 + 0.00672755i \(0.00214146\pi\)
−0.999977 + 0.00672755i \(0.997859\pi\)
\(948\) 0.0368337 0.00119630
\(949\) 0 0
\(950\) −5.42613 −0.176047
\(951\) − 0.202441i − 0.00656461i
\(952\) −29.4575 −0.954722
\(953\) 33.8593 1.09681 0.548404 0.836213i \(-0.315235\pi\)
0.548404 + 0.836213i \(0.315235\pi\)
\(954\) 82.4647i 2.66989i
\(955\) 13.4746i 0.436029i
\(956\) − 53.6243i − 1.73433i
\(957\) 0.316368i 0.0102267i
\(958\) −45.1324 −1.45816
\(959\) −14.4039 −0.465128
\(960\) − 0.166801i − 0.00538348i
\(961\) −64.6403 −2.08517
\(962\) 0 0
\(963\) 11.9143 0.383932
\(964\) − 64.7899i − 2.08674i
\(965\) 6.98737 0.224931
\(966\) −0.210143 −0.00676124
\(967\) − 13.2125i − 0.424885i −0.977174 0.212442i \(-0.931858\pi\)
0.977174 0.212442i \(-0.0681417\pi\)
\(968\) − 4.57892i − 0.147172i
\(969\) 0.107675i 0.00345902i
\(970\) 7.46397i 0.239654i
\(971\) −17.6019 −0.564872 −0.282436 0.959286i \(-0.591142\pi\)
−0.282436 + 0.959286i \(0.591142\pi\)
\(972\) 1.00974 0.0323875
\(973\) − 28.0929i − 0.900616i
\(974\) 17.9045 0.573697
\(975\) 0 0
\(976\) −2.92685 −0.0936861
\(977\) 11.7812i 0.376913i 0.982082 + 0.188457i \(0.0603485\pi\)
−0.982082 + 0.188457i \(0.939652\pi\)
\(978\) −0.0688260 −0.00220081
\(979\) 1.21056 0.0386897
\(980\) 40.7978i 1.30324i
\(981\) − 30.5192i − 0.974404i
\(982\) − 7.21210i − 0.230147i
\(983\) − 45.4985i − 1.45118i −0.688128 0.725589i \(-0.741567\pi\)
0.688128 0.725589i \(-0.258433\pi\)
\(984\) −0.180864 −0.00576574
\(985\) −1.43795 −0.0458169
\(986\) 61.0914i 1.94555i
\(987\) 0.515917 0.0164218
\(988\) 0 0
\(989\) 1.11674 0.0355103
\(990\) − 19.4011i − 0.616608i
\(991\) 33.2685 1.05681 0.528405 0.848993i \(-0.322790\pi\)
0.528405 + 0.848993i \(0.322790\pi\)
\(992\) −70.1580 −2.22752
\(993\) − 0.340588i − 0.0108082i
\(994\) − 67.9130i − 2.15407i
\(995\) 2.42852i 0.0769892i
\(996\) − 0.293373i − 0.00929589i
\(997\) −39.7870 −1.26007 −0.630033 0.776568i \(-0.716959\pi\)
−0.630033 + 0.776568i \(0.716959\pi\)
\(998\) 19.6149 0.620899
\(999\) − 0.323470i − 0.0102341i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.c.h.506.14 18
13.2 odd 12 845.2.e.o.191.3 18
13.3 even 3 845.2.m.j.316.5 36
13.4 even 6 845.2.m.j.361.5 36
13.5 odd 4 845.2.a.o.1.7 yes 9
13.6 odd 12 845.2.e.o.146.3 18
13.7 odd 12 845.2.e.p.146.7 18
13.8 odd 4 845.2.a.n.1.3 9
13.9 even 3 845.2.m.j.361.14 36
13.10 even 6 845.2.m.j.316.14 36
13.11 odd 12 845.2.e.p.191.7 18
13.12 even 2 inner 845.2.c.h.506.5 18
39.5 even 4 7605.2.a.cp.1.3 9
39.8 even 4 7605.2.a.cs.1.7 9
65.34 odd 4 4225.2.a.bt.1.7 9
65.44 odd 4 4225.2.a.bs.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
845.2.a.n.1.3 9 13.8 odd 4
845.2.a.o.1.7 yes 9 13.5 odd 4
845.2.c.h.506.5 18 13.12 even 2 inner
845.2.c.h.506.14 18 1.1 even 1 trivial
845.2.e.o.146.3 18 13.6 odd 12
845.2.e.o.191.3 18 13.2 odd 12
845.2.e.p.146.7 18 13.7 odd 12
845.2.e.p.191.7 18 13.11 odd 12
845.2.m.j.316.5 36 13.3 even 3
845.2.m.j.316.14 36 13.10 even 6
845.2.m.j.361.5 36 13.4 even 6
845.2.m.j.361.14 36 13.9 even 3
4225.2.a.bs.1.3 9 65.44 odd 4
4225.2.a.bt.1.7 9 65.34 odd 4
7605.2.a.cp.1.3 9 39.5 even 4
7605.2.a.cs.1.7 9 39.8 even 4