Properties

Label 4212.2.i.o.2809.1
Level $4212$
Weight $2$
Character 4212.2809
Analytic conductor $33.633$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1405,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1405"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-1,0,3,0,0,0,-1,0,-2,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2809.1
Root \(1.15139 + 1.99426i\) of defining polynomial
Character \(\chi\) \(=\) 4212.2809
Dual form 4212.2.i.o.1405.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15139 - 1.99426i) q^{5} +(1.65139 - 2.86029i) q^{7} +(-1.15139 + 1.99426i) q^{11} +(-0.500000 - 0.866025i) q^{13} -7.60555 q^{17} +3.60555 q^{19} +(1.95416 + 3.38471i) q^{23} +(-0.151388 + 0.262211i) q^{25} +(0.454163 - 0.786634i) q^{29} +(-1.45416 - 2.51868i) q^{31} -7.60555 q^{35} -9.30278 q^{37} +(-1.15139 - 1.99426i) q^{41} +(2.10555 - 3.64692i) q^{43} +(0.802776 - 1.39045i) q^{47} +(-1.95416 - 3.38471i) q^{49} -4.60555 q^{53} +5.30278 q^{55} +(2.19722 + 3.80570i) q^{59} +(-2.25694 + 3.90913i) q^{61} +(-1.15139 + 1.99426i) q^{65} +(-4.45416 - 7.71484i) q^{67} -4.39445 q^{71} -14.8167 q^{73} +(3.80278 + 6.58660i) q^{77} +(0.500000 - 0.866025i) q^{79} +(-4.50000 + 7.79423i) q^{83} +(8.75694 + 15.1675i) q^{85} +13.1194 q^{89} -3.30278 q^{91} +(-4.15139 - 7.19041i) q^{95} +(6.60555 - 11.4412i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} + 3 q^{7} - q^{11} - 2 q^{13} - 16 q^{17} - 3 q^{23} + 3 q^{25} - 9 q^{29} + 5 q^{31} - 16 q^{35} - 30 q^{37} - q^{41} - 6 q^{43} - 4 q^{47} + 3 q^{49} - 4 q^{53} + 14 q^{55} + 16 q^{59}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4212\mathbb{Z}\right)^\times\).

\(n\) \(2107\) \(3485\) \(3889\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.15139 1.99426i −0.514916 0.891861i −0.999850 0.0173104i \(-0.994490\pi\)
0.484934 0.874551i \(-0.338844\pi\)
\(6\) 0 0
\(7\) 1.65139 2.86029i 0.624166 1.08109i −0.364536 0.931189i \(-0.618772\pi\)
0.988702 0.149898i \(-0.0478944\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.15139 + 1.99426i −0.347156 + 0.601293i −0.985743 0.168257i \(-0.946186\pi\)
0.638587 + 0.769550i \(0.279519\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.60555 −1.84462 −0.922309 0.386454i \(-0.873700\pi\)
−0.922309 + 0.386454i \(0.873700\pi\)
\(18\) 0 0
\(19\) 3.60555 0.827170 0.413585 0.910465i \(-0.364276\pi\)
0.413585 + 0.910465i \(0.364276\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.95416 + 3.38471i 0.407471 + 0.705761i 0.994606 0.103729i \(-0.0330773\pi\)
−0.587134 + 0.809489i \(0.699744\pi\)
\(24\) 0 0
\(25\) −0.151388 + 0.262211i −0.0302776 + 0.0524423i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.454163 0.786634i 0.0843360 0.146074i −0.820772 0.571256i \(-0.806456\pi\)
0.905108 + 0.425182i \(0.139790\pi\)
\(30\) 0 0
\(31\) −1.45416 2.51868i −0.261175 0.452369i 0.705379 0.708830i \(-0.250777\pi\)
−0.966555 + 0.256461i \(0.917443\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.60555 −1.28557
\(36\) 0 0
\(37\) −9.30278 −1.52937 −0.764683 0.644406i \(-0.777105\pi\)
−0.764683 + 0.644406i \(0.777105\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.15139 1.99426i −0.179817 0.311451i 0.762001 0.647576i \(-0.224217\pi\)
−0.941818 + 0.336124i \(0.890884\pi\)
\(42\) 0 0
\(43\) 2.10555 3.64692i 0.321094 0.556150i −0.659620 0.751599i \(-0.729283\pi\)
0.980714 + 0.195449i \(0.0626163\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.802776 1.39045i 0.117097 0.202818i −0.801519 0.597969i \(-0.795975\pi\)
0.918616 + 0.395151i \(0.129308\pi\)
\(48\) 0 0
\(49\) −1.95416 3.38471i −0.279166 0.483530i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.60555 −0.632621 −0.316311 0.948656i \(-0.602444\pi\)
−0.316311 + 0.948656i \(0.602444\pi\)
\(54\) 0 0
\(55\) 5.30278 0.715026
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.19722 + 3.80570i 0.286054 + 0.495460i 0.972864 0.231376i \(-0.0743229\pi\)
−0.686810 + 0.726837i \(0.740990\pi\)
\(60\) 0 0
\(61\) −2.25694 + 3.90913i −0.288971 + 0.500513i −0.973565 0.228412i \(-0.926647\pi\)
0.684593 + 0.728925i \(0.259980\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.15139 + 1.99426i −0.142812 + 0.247358i
\(66\) 0 0
\(67\) −4.45416 7.71484i −0.544163 0.942517i −0.998659 0.0517688i \(-0.983514\pi\)
0.454496 0.890749i \(-0.349819\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.39445 −0.521525 −0.260763 0.965403i \(-0.583974\pi\)
−0.260763 + 0.965403i \(0.583974\pi\)
\(72\) 0 0
\(73\) −14.8167 −1.73416 −0.867079 0.498171i \(-0.834005\pi\)
−0.867079 + 0.498171i \(0.834005\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.80278 + 6.58660i 0.433367 + 0.750613i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i \(-0.997777\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(84\) 0 0
\(85\) 8.75694 + 15.1675i 0.949823 + 1.64514i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.1194 1.39066 0.695328 0.718692i \(-0.255259\pi\)
0.695328 + 0.718692i \(0.255259\pi\)
\(90\) 0 0
\(91\) −3.30278 −0.346225
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.15139 7.19041i −0.425923 0.737721i
\(96\) 0 0
\(97\) 6.60555 11.4412i 0.670692 1.16167i −0.307016 0.951704i \(-0.599331\pi\)
0.977708 0.209968i \(-0.0673361\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.80278 + 11.7828i −0.676901 + 1.17243i 0.299008 + 0.954251i \(0.403344\pi\)
−0.975909 + 0.218177i \(0.929989\pi\)
\(102\) 0 0
\(103\) 8.55971 + 14.8259i 0.843414 + 1.46084i 0.886992 + 0.461785i \(0.152791\pi\)
−0.0435779 + 0.999050i \(0.513876\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.09167 −0.492231 −0.246115 0.969241i \(-0.579154\pi\)
−0.246115 + 0.969241i \(0.579154\pi\)
\(108\) 0 0
\(109\) −5.39445 −0.516694 −0.258347 0.966052i \(-0.583178\pi\)
−0.258347 + 0.966052i \(0.583178\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0 0
\(115\) 4.50000 7.79423i 0.419627 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.5597 + 21.7541i −1.15135 + 1.99419i
\(120\) 0 0
\(121\) 2.84861 + 4.93394i 0.258965 + 0.448540i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.8167 −0.967471
\(126\) 0 0
\(127\) −8.60555 −0.763619 −0.381810 0.924241i \(-0.624699\pi\)
−0.381810 + 0.924241i \(0.624699\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.0597 + 19.1560i 0.966292 + 1.67367i 0.706104 + 0.708108i \(0.250451\pi\)
0.260188 + 0.965558i \(0.416215\pi\)
\(132\) 0 0
\(133\) 5.95416 10.3129i 0.516291 0.894243i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.15139 + 1.99426i −0.0983697 + 0.170381i −0.911010 0.412384i \(-0.864696\pi\)
0.812640 + 0.582766i \(0.198029\pi\)
\(138\) 0 0
\(139\) −2.15139 3.72631i −0.182478 0.316062i 0.760246 0.649636i \(-0.225079\pi\)
−0.942724 + 0.333574i \(0.891745\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.30278 0.192568
\(144\) 0 0
\(145\) −2.09167 −0.173704
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.90833 6.76942i −0.320183 0.554573i 0.660343 0.750964i \(-0.270411\pi\)
−0.980526 + 0.196392i \(0.937078\pi\)
\(150\) 0 0
\(151\) −3.05971 + 5.29958i −0.248996 + 0.431274i −0.963248 0.268615i \(-0.913434\pi\)
0.714251 + 0.699889i \(0.246767\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3.34861 + 5.79997i −0.268967 + 0.465865i
\(156\) 0 0
\(157\) 9.95416 + 17.2411i 0.794429 + 1.37599i 0.923201 + 0.384317i \(0.125563\pi\)
−0.128773 + 0.991674i \(0.541104\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.9083 1.01732
\(162\) 0 0
\(163\) 23.6333 1.85110 0.925552 0.378621i \(-0.123602\pi\)
0.925552 + 0.378621i \(0.123602\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −11.4083 19.7598i −0.882803 1.52906i −0.848211 0.529658i \(-0.822320\pi\)
−0.0345914 0.999402i \(-0.511013\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.71110 13.3560i 0.586264 1.01544i −0.408452 0.912780i \(-0.633931\pi\)
0.994717 0.102660i \(-0.0327353\pi\)
\(174\) 0 0
\(175\) 0.500000 + 0.866025i 0.0377964 + 0.0654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.90833 0.292122 0.146061 0.989276i \(-0.453340\pi\)
0.146061 + 0.989276i \(0.453340\pi\)
\(180\) 0 0
\(181\) −8.81665 −0.655337 −0.327668 0.944793i \(-0.606263\pi\)
−0.327668 + 0.944793i \(0.606263\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 10.7111 + 18.5522i 0.787496 + 1.36398i
\(186\) 0 0
\(187\) 8.75694 15.1675i 0.640371 1.10915i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.34861 + 5.79997i −0.242297 + 0.419671i −0.961368 0.275266i \(-0.911234\pi\)
0.719071 + 0.694936i \(0.244568\pi\)
\(192\) 0 0
\(193\) 5.10555 + 8.84307i 0.367506 + 0.636538i 0.989175 0.146741i \(-0.0468785\pi\)
−0.621669 + 0.783280i \(0.713545\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) −10.2111 −0.723846 −0.361923 0.932208i \(-0.617880\pi\)
−0.361923 + 0.932208i \(0.617880\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.50000 2.59808i −0.105279 0.182349i
\(204\) 0 0
\(205\) −2.65139 + 4.59234i −0.185181 + 0.320743i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.15139 + 7.19041i −0.287157 + 0.497371i
\(210\) 0 0
\(211\) 3.84861 + 6.66599i 0.264949 + 0.458906i 0.967550 0.252678i \(-0.0813114\pi\)
−0.702601 + 0.711584i \(0.747978\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.69722 −0.661345
\(216\) 0 0
\(217\) −9.60555 −0.652067
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.80278 + 6.58660i 0.255802 + 0.443063i
\(222\) 0 0
\(223\) −10.9083 + 18.8938i −0.730476 + 1.26522i 0.226205 + 0.974080i \(0.427368\pi\)
−0.956680 + 0.291141i \(0.905965\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.69722 + 6.40378i −0.245393 + 0.425034i −0.962242 0.272195i \(-0.912250\pi\)
0.716849 + 0.697229i \(0.245584\pi\)
\(228\) 0 0
\(229\) 11.5597 + 20.0220i 0.763887 + 1.32309i 0.940833 + 0.338871i \(0.110045\pi\)
−0.176945 + 0.984221i \(0.556622\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.0917 −0.923176 −0.461588 0.887094i \(-0.652720\pi\)
−0.461588 + 0.887094i \(0.652720\pi\)
\(234\) 0 0
\(235\) −3.69722 −0.241180
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.86249 10.1541i −0.379213 0.656816i 0.611735 0.791063i \(-0.290472\pi\)
−0.990948 + 0.134247i \(0.957139\pi\)
\(240\) 0 0
\(241\) −0.756939 + 1.31106i −0.0487587 + 0.0844526i −0.889375 0.457179i \(-0.848860\pi\)
0.840616 + 0.541632i \(0.182193\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.50000 + 7.79423i −0.287494 + 0.497955i
\(246\) 0 0
\(247\) −1.80278 3.12250i −0.114708 0.198680i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.3028 −1.09214 −0.546071 0.837739i \(-0.683877\pi\)
−0.546071 + 0.837739i \(0.683877\pi\)
\(252\) 0 0
\(253\) −9.00000 −0.565825
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.54584 + 9.60567i 0.345940 + 0.599185i 0.985524 0.169536i \(-0.0542268\pi\)
−0.639584 + 0.768721i \(0.720893\pi\)
\(258\) 0 0
\(259\) −15.3625 + 26.6086i −0.954579 + 1.65338i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.4680 + 23.3273i −0.830475 + 1.43842i 0.0671870 + 0.997740i \(0.478598\pi\)
−0.897662 + 0.440685i \(0.854736\pi\)
\(264\) 0 0
\(265\) 5.30278 + 9.18468i 0.325747 + 0.564210i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.1194 −0.799906 −0.399953 0.916536i \(-0.630974\pi\)
−0.399953 + 0.916536i \(0.630974\pi\)
\(270\) 0 0
\(271\) −14.8167 −0.900048 −0.450024 0.893017i \(-0.648585\pi\)
−0.450024 + 0.893017i \(0.648585\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.348612 0.603814i −0.0210221 0.0364114i
\(276\) 0 0
\(277\) 8.69722 15.0640i 0.522566 0.905110i −0.477090 0.878855i \(-0.658308\pi\)
0.999655 0.0262555i \(-0.00835835\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.55971 11.3618i 0.391320 0.677786i −0.601304 0.799020i \(-0.705352\pi\)
0.992624 + 0.121235i \(0.0386853\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.60555 −0.448941
\(288\) 0 0
\(289\) 40.8444 2.40261
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.697224 1.20763i −0.0407323 0.0705504i 0.844941 0.534860i \(-0.179636\pi\)
−0.885673 + 0.464310i \(0.846302\pi\)
\(294\) 0 0
\(295\) 5.05971 8.76368i 0.294588 0.510241i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.95416 3.38471i 0.113012 0.195743i
\(300\) 0 0
\(301\) −6.95416 12.0450i −0.400831 0.694260i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.3944 0.595184
\(306\) 0 0
\(307\) −19.2111 −1.09644 −0.548218 0.836336i \(-0.684694\pi\)
−0.548218 + 0.836336i \(0.684694\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.4542 26.7674i −0.876325 1.51784i −0.855344 0.518060i \(-0.826654\pi\)
−0.0209809 0.999780i \(-0.506679\pi\)
\(312\) 0 0
\(313\) −11.9222 + 20.6499i −0.673883 + 1.16720i 0.302911 + 0.953019i \(0.402041\pi\)
−0.976794 + 0.214181i \(0.931292\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.36249 + 12.7522i −0.413519 + 0.716235i −0.995272 0.0971302i \(-0.969034\pi\)
0.581753 + 0.813365i \(0.302367\pi\)
\(318\) 0 0
\(319\) 1.04584 + 1.81144i 0.0585556 + 0.101421i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −27.4222 −1.52581
\(324\) 0 0
\(325\) 0.302776 0.0167950
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2.65139 4.59234i −0.146176 0.253184i
\(330\) 0 0
\(331\) 14.3167 24.7972i 0.786914 1.36298i −0.140934 0.990019i \(-0.545011\pi\)
0.927849 0.372957i \(-0.121656\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.2569 + 17.7655i −0.560396 + 0.970635i
\(336\) 0 0
\(337\) −17.0139 29.4689i −0.926805 1.60527i −0.788632 0.614865i \(-0.789210\pi\)
−0.138173 0.990408i \(-0.544123\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.69722 0.362675
\(342\) 0 0
\(343\) 10.2111 0.551348
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 5.66527 9.81253i 0.303255 0.525253i −0.673616 0.739081i \(-0.735260\pi\)
0.976871 + 0.213828i \(0.0685934\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4.71110 8.15987i 0.250747 0.434306i −0.712985 0.701179i \(-0.752657\pi\)
0.963732 + 0.266873i \(0.0859905\pi\)
\(354\) 0 0
\(355\) 5.05971 + 8.76368i 0.268542 + 0.465128i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.09167 −0.110394 −0.0551971 0.998475i \(-0.517579\pi\)
−0.0551971 + 0.998475i \(0.517579\pi\)
\(360\) 0 0
\(361\) −6.00000 −0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 17.0597 + 29.5483i 0.892946 + 1.54663i
\(366\) 0 0
\(367\) 12.9222 22.3819i 0.674534 1.16833i −0.302071 0.953285i \(-0.597678\pi\)
0.976605 0.215041i \(-0.0689886\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.60555 + 13.1732i −0.394861 + 0.683919i
\(372\) 0 0
\(373\) 1.44029 + 2.49465i 0.0745751 + 0.129168i 0.900901 0.434024i \(-0.142907\pi\)
−0.826326 + 0.563192i \(0.809573\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.908327 −0.0467812
\(378\) 0 0
\(379\) 30.3944 1.56126 0.780629 0.624995i \(-0.214899\pi\)
0.780629 + 0.624995i \(0.214899\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.591673 1.02481i −0.0302331 0.0523652i 0.850513 0.525954i \(-0.176292\pi\)
−0.880746 + 0.473589i \(0.842958\pi\)
\(384\) 0 0
\(385\) 8.75694 15.1675i 0.446295 0.773006i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.2569 + 17.7655i −0.520047 + 0.900749i 0.479681 + 0.877443i \(0.340752\pi\)
−0.999728 + 0.0233056i \(0.992581\pi\)
\(390\) 0 0
\(391\) −14.8625 25.7426i −0.751628 1.30186i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.30278 −0.115865
\(396\) 0 0
\(397\) −27.2389 −1.36708 −0.683540 0.729913i \(-0.739560\pi\)
−0.683540 + 0.729913i \(0.739560\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.3167 21.3331i −0.615064 1.06532i −0.990373 0.138423i \(-0.955797\pi\)
0.375309 0.926900i \(-0.377537\pi\)
\(402\) 0 0
\(403\) −1.45416 + 2.51868i −0.0724370 + 0.125465i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.7111 18.5522i 0.530930 0.919597i
\(408\) 0 0
\(409\) −4.31665 7.47666i −0.213445 0.369697i 0.739346 0.673326i \(-0.235135\pi\)
−0.952790 + 0.303629i \(0.901802\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.5139 0.714181
\(414\) 0 0
\(415\) 20.7250 1.01735
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.2111 21.1503i −0.596551 1.03326i −0.993326 0.115341i \(-0.963204\pi\)
0.396775 0.917916i \(-0.370129\pi\)
\(420\) 0 0
\(421\) 9.60555 16.6373i 0.468146 0.810853i −0.531191 0.847252i \(-0.678255\pi\)
0.999337 + 0.0363993i \(0.0115888\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.15139 1.99426i 0.0558505 0.0967359i
\(426\) 0 0
\(427\) 7.45416 + 12.9110i 0.360732 + 0.624807i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.3944 −0.645188 −0.322594 0.946537i \(-0.604555\pi\)
−0.322594 + 0.946537i \(0.604555\pi\)
\(432\) 0 0
\(433\) −31.4222 −1.51005 −0.755027 0.655693i \(-0.772376\pi\)
−0.755027 + 0.655693i \(0.772376\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.04584 + 12.2037i 0.337048 + 0.583784i
\(438\) 0 0
\(439\) −2.71110 + 4.69577i −0.129394 + 0.224117i −0.923442 0.383738i \(-0.874636\pi\)
0.794048 + 0.607855i \(0.207970\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.6194 25.3216i 0.694590 1.20307i −0.275729 0.961236i \(-0.588919\pi\)
0.970319 0.241830i \(-0.0777475\pi\)
\(444\) 0 0
\(445\) −15.1056 26.1636i −0.716072 1.24027i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 27.0000 1.27421 0.637104 0.770778i \(-0.280132\pi\)
0.637104 + 0.770778i \(0.280132\pi\)
\(450\) 0 0
\(451\) 5.30278 0.249698
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.80278 + 6.58660i 0.178277 + 0.308785i
\(456\) 0 0
\(457\) 1.30278 2.25647i 0.0609413 0.105553i −0.833945 0.551847i \(-0.813923\pi\)
0.894886 + 0.446294i \(0.147256\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.59167 6.22096i 0.167281 0.289739i −0.770182 0.637824i \(-0.779835\pi\)
0.937463 + 0.348085i \(0.113168\pi\)
\(462\) 0 0
\(463\) −1.21110 2.09769i −0.0562847 0.0974880i 0.836510 0.547951i \(-0.184592\pi\)
−0.892795 + 0.450463i \(0.851259\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −36.4222 −1.68542 −0.842709 0.538369i \(-0.819041\pi\)
−0.842709 + 0.538369i \(0.819041\pi\)
\(468\) 0 0
\(469\) −29.4222 −1.35859
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.84861 + 8.39804i 0.222939 + 0.386142i
\(474\) 0 0
\(475\) −0.545837 + 0.945417i −0.0250447 + 0.0433787i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.1194 33.1158i 0.873589 1.51310i 0.0153308 0.999882i \(-0.495120\pi\)
0.858258 0.513218i \(-0.171547\pi\)
\(480\) 0 0
\(481\) 4.65139 + 8.05644i 0.212085 + 0.367342i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −30.4222 −1.38140
\(486\) 0 0
\(487\) −10.2111 −0.462709 −0.231355 0.972869i \(-0.574316\pi\)
−0.231355 + 0.972869i \(0.574316\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.2708 + 19.5216i 0.508645 + 0.880999i 0.999950 + 0.0100112i \(0.00318670\pi\)
−0.491305 + 0.870988i \(0.663480\pi\)
\(492\) 0 0
\(493\) −3.45416 + 5.98279i −0.155568 + 0.269451i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.25694 + 12.5694i −0.325518 + 0.563814i
\(498\) 0 0
\(499\) 4.16527 + 7.21445i 0.186463 + 0.322963i 0.944069 0.329749i \(-0.106964\pi\)
−0.757606 + 0.652713i \(0.773631\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 27.1472 1.21043 0.605217 0.796061i \(-0.293087\pi\)
0.605217 + 0.796061i \(0.293087\pi\)
\(504\) 0 0
\(505\) 31.3305 1.39419
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.6791 + 28.8891i 0.739290 + 1.28049i 0.952815 + 0.303550i \(0.0981721\pi\)
−0.213525 + 0.976938i \(0.568495\pi\)
\(510\) 0 0
\(511\) −24.4680 + 42.3799i −1.08240 + 1.87478i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.7111 34.1406i 0.868575 1.50442i
\(516\) 0 0
\(517\) 1.84861 + 3.20189i 0.0813019 + 0.140819i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 40.6056 1.77896 0.889481 0.456973i \(-0.151066\pi\)
0.889481 + 0.456973i \(0.151066\pi\)
\(522\) 0 0
\(523\) −13.2111 −0.577681 −0.288841 0.957377i \(-0.593270\pi\)
−0.288841 + 0.957377i \(0.593270\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11.0597 + 19.1560i 0.481769 + 0.834448i
\(528\) 0 0
\(529\) 3.86249 6.69003i 0.167934 0.290871i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.15139 + 1.99426i −0.0498721 + 0.0863811i
\(534\) 0 0
\(535\) 5.86249 + 10.1541i 0.253458 + 0.439001i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.00000 0.387657
\(540\) 0 0
\(541\) −8.18335 −0.351830 −0.175915 0.984405i \(-0.556288\pi\)
−0.175915 + 0.984405i \(0.556288\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.21110 + 10.7579i 0.266054 + 0.460820i
\(546\) 0 0
\(547\) −4.90833 + 8.50147i −0.209865 + 0.363497i −0.951672 0.307117i \(-0.900636\pi\)
0.741807 + 0.670614i \(0.233969\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.63751 2.83625i 0.0697603 0.120828i
\(552\) 0 0
\(553\) −1.65139 2.86029i −0.0702242 0.121632i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.0917 0.597083 0.298542 0.954397i \(-0.403500\pi\)
0.298542 + 0.954397i \(0.403500\pi\)
\(558\) 0 0
\(559\) −4.21110 −0.178111
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.2111 36.7387i −0.893941 1.54835i −0.835109 0.550084i \(-0.814596\pi\)
−0.0588321 0.998268i \(-0.518738\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.04584 7.00759i 0.169610 0.293774i −0.768673 0.639642i \(-0.779082\pi\)
0.938283 + 0.345869i \(0.112416\pi\)
\(570\) 0 0
\(571\) 9.01388 + 15.6125i 0.377219 + 0.653363i 0.990656 0.136381i \(-0.0435471\pi\)
−0.613437 + 0.789743i \(0.710214\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.18335 −0.0493489
\(576\) 0 0
\(577\) 16.0278 0.667244 0.333622 0.942707i \(-0.391729\pi\)
0.333622 + 0.942707i \(0.391729\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.8625 + 25.7426i 0.616600 + 1.06798i
\(582\) 0 0
\(583\) 5.30278 9.18468i 0.219619 0.380390i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.2569 + 17.7655i −0.423349 + 0.733262i −0.996265 0.0863521i \(-0.972479\pi\)
0.572915 + 0.819614i \(0.305812\pi\)
\(588\) 0 0
\(589\) −5.24306 9.08125i −0.216037 0.374186i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 27.9083 1.14606 0.573029 0.819535i \(-0.305768\pi\)
0.573029 + 0.819535i \(0.305768\pi\)
\(594\) 0 0
\(595\) 57.8444 2.37139
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.31665 10.9408i −0.258091 0.447028i 0.707639 0.706574i \(-0.249760\pi\)
−0.965731 + 0.259546i \(0.916427\pi\)
\(600\) 0 0
\(601\) 2.90833 5.03737i 0.118633 0.205479i −0.800593 0.599208i \(-0.795482\pi\)
0.919226 + 0.393730i \(0.128815\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.55971 11.3618i 0.266690 0.461921i
\(606\) 0 0
\(607\) −5.04584 8.73965i −0.204804 0.354731i 0.745266 0.666767i \(-0.232322\pi\)
−0.950070 + 0.312036i \(0.898989\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.60555 −0.0649537
\(612\) 0 0
\(613\) 11.6972 0.472446 0.236223 0.971699i \(-0.424090\pi\)
0.236223 + 0.971699i \(0.424090\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.95416 3.38471i −0.0786717 0.136263i 0.824005 0.566582i \(-0.191735\pi\)
−0.902677 + 0.430319i \(0.858401\pi\)
\(618\) 0 0
\(619\) −7.00000 + 12.1244i −0.281354 + 0.487319i −0.971718 0.236143i \(-0.924117\pi\)
0.690365 + 0.723462i \(0.257450\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 21.6653 37.5253i 0.868001 1.50342i
\(624\) 0 0
\(625\) 13.2111 + 22.8823i 0.528444 + 0.915292i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 70.7527 2.82110
\(630\) 0 0
\(631\) −44.3305 −1.76477 −0.882385 0.470528i \(-0.844064\pi\)
−0.882385 + 0.470528i \(0.844064\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.90833 + 17.1617i 0.393200 + 0.681042i
\(636\) 0 0
\(637\) −1.95416 + 3.38471i −0.0774268 + 0.134107i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.2569 17.7655i 0.405125 0.701697i −0.589211 0.807979i \(-0.700561\pi\)
0.994336 + 0.106282i \(0.0338948\pi\)
\(642\) 0 0
\(643\) 3.36249 + 5.82400i 0.132604 + 0.229676i 0.924679 0.380746i \(-0.124333\pi\)
−0.792076 + 0.610423i \(0.791000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −48.3583 −1.90116 −0.950580 0.310479i \(-0.899511\pi\)
−0.950580 + 0.310479i \(0.899511\pi\)
\(648\) 0 0
\(649\) −10.1194 −0.397222
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.7847 39.4643i −0.891634 1.54436i −0.837916 0.545799i \(-0.816226\pi\)
−0.0537181 0.998556i \(-0.517107\pi\)
\(654\) 0 0
\(655\) 25.4680 44.1119i 0.995119 1.72360i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.45416 11.1789i 0.251419 0.435470i −0.712498 0.701674i \(-0.752436\pi\)
0.963917 + 0.266204i \(0.0857696\pi\)
\(660\) 0 0
\(661\) 2.69722 + 4.67173i 0.104910 + 0.181709i 0.913701 0.406386i \(-0.133211\pi\)
−0.808792 + 0.588095i \(0.799878\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −27.4222 −1.06339
\(666\) 0 0
\(667\) 3.55004 0.137458
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −5.19722 9.00186i −0.200637 0.347513i
\(672\) 0 0
\(673\) 2.10555 3.64692i 0.0811630 0.140579i −0.822587 0.568640i \(-0.807470\pi\)
0.903750 + 0.428061i \(0.140803\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.8764 + 43.0871i −0.956077 + 1.65597i −0.224191 + 0.974545i \(0.571974\pi\)
−0.731885 + 0.681428i \(0.761359\pi\)
\(678\) 0 0
\(679\) −21.8167 37.7876i −0.837246 1.45015i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.4861 1.05173 0.525864 0.850569i \(-0.323742\pi\)
0.525864 + 0.850569i \(0.323742\pi\)
\(684\) 0 0
\(685\) 5.30278 0.202609
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.30278 + 3.98852i 0.0877288 + 0.151951i
\(690\) 0 0
\(691\) −21.7569 + 37.6841i −0.827673 + 1.43357i 0.0721862 + 0.997391i \(0.477002\pi\)
−0.899859 + 0.436180i \(0.856331\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.95416 + 8.58086i −0.187922 + 0.325491i
\(696\) 0 0
\(697\) 8.75694 + 15.1675i 0.331693 + 0.574509i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.5139 0.548182 0.274091 0.961704i \(-0.411623\pi\)
0.274091 + 0.961704i \(0.411623\pi\)
\(702\) 0 0
\(703\) −33.5416 −1.26505
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.4680 + 38.9158i 0.844998 + 1.46358i
\(708\) 0 0
\(709\) 6.84861 11.8621i 0.257205 0.445492i −0.708287 0.705925i \(-0.750532\pi\)
0.965492 + 0.260432i \(0.0838651\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.68335 9.84384i 0.212843 0.368655i
\(714\) 0 0
\(715\) −2.65139 4.59234i −0.0991563 0.171744i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.81665 0.179631 0.0898154 0.995958i \(-0.471372\pi\)
0.0898154 + 0.995958i \(0.471372\pi\)
\(720\) 0 0
\(721\) 56.5416 2.10572
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.137510 + 0.238174i 0.00510698 + 0.00884555i
\(726\) 0 0
\(727\) −16.4542 + 28.4994i −0.610251 + 1.05699i 0.380947 + 0.924597i \(0.375598\pi\)
−0.991198 + 0.132389i \(0.957735\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.0139 + 27.7369i −0.592295 + 1.02588i
\(732\) 0 0
\(733\) 12.2889 + 21.2850i 0.453901 + 0.786179i 0.998624 0.0524365i \(-0.0166987\pi\)
−0.544723 + 0.838616i \(0.683365\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.5139 0.755638
\(738\) 0 0
\(739\) 26.4222 0.971957 0.485978 0.873971i \(-0.338463\pi\)
0.485978 + 0.873971i \(0.338463\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.5000 38.9711i −0.825445 1.42971i −0.901579 0.432615i \(-0.857591\pi\)
0.0761338 0.997098i \(-0.475742\pi\)
\(744\) 0 0
\(745\) −9.00000 + 15.5885i −0.329734 + 0.571117i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.40833 + 14.5636i −0.307234 + 0.532144i
\(750\) 0 0
\(751\) 6.04584 + 10.4717i 0.220616 + 0.382118i 0.954995 0.296622i \(-0.0958600\pi\)
−0.734379 + 0.678739i \(0.762527\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.0917 0.512848
\(756\) 0 0
\(757\) 31.9361 1.16074 0.580368 0.814354i \(-0.302909\pi\)
0.580368 + 0.814354i \(0.302909\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.07359 15.7159i −0.328917 0.569702i 0.653380 0.757030i \(-0.273350\pi\)
−0.982297 + 0.187328i \(0.940017\pi\)
\(762\) 0 0
\(763\) −8.90833 + 15.4297i −0.322503 + 0.558592i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.19722 3.80570i 0.0793372 0.137416i
\(768\) 0 0
\(769\) −16.0000 27.7128i −0.576975 0.999350i −0.995824 0.0912938i \(-0.970900\pi\)
0.418849 0.908056i \(-0.362434\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.81665 0.173243 0.0866215 0.996241i \(-0.472393\pi\)
0.0866215 + 0.996241i \(0.472393\pi\)
\(774\) 0 0
\(775\) 0.880571 0.0316310
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.15139 7.19041i −0.148739 0.257623i
\(780\) 0 0
\(781\) 5.05971 8.76368i 0.181051 0.313589i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.9222 39.7024i 0.818129 1.41704i
\(786\) 0 0
\(787\) −18.7569 32.4880i −0.668613 1.15807i −0.978292 0.207230i \(-0.933555\pi\)
0.309680 0.950841i \(-0.399778\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.51388 0.160293
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.44029 14.6190i −0.298970 0.517832i 0.676930 0.736047i \(-0.263310\pi\)
−0.975901 + 0.218215i \(0.929976\pi\)
\(798\) 0 0
\(799\) −6.10555 + 10.5751i −0.215999 + 0.374121i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 17.0597 29.5483i 0.602024 1.04274i
\(804\) 0 0
\(805\) −14.8625 25.7426i −0.523834 0.907307i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 42.8444 1.50633 0.753165 0.657832i \(-0.228526\pi\)
0.753165 + 0.657832i \(0.228526\pi\)
\(810\) 0 0
\(811\) −10.6972 −0.375630 −0.187815 0.982204i \(-0.560141\pi\)
−0.187815 + 0.982204i \(0.560141\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −27.2111 47.1310i −0.953163 1.65093i
\(816\) 0 0
\(817\) 7.59167 13.1492i 0.265599 0.460031i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.59167 16.6133i 0.334752 0.579807i −0.648685 0.761057i \(-0.724681\pi\)
0.983437 + 0.181250i \(0.0580142\pi\)
\(822\) 0 0
\(823\) −18.4083 31.8842i −0.641674 1.11141i −0.985059 0.172217i \(-0.944907\pi\)
0.343385 0.939195i \(-0.388426\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.97224 0.138128 0.0690642 0.997612i \(-0.477999\pi\)
0.0690642 + 0.997612i \(0.477999\pi\)
\(828\) 0 0
\(829\) 28.5139 0.990328 0.495164 0.868800i \(-0.335108\pi\)
0.495164 + 0.868800i \(0.335108\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.8625 + 25.7426i 0.514955 + 0.891928i
\(834\) 0 0
\(835\) −26.2708 + 45.5024i −0.909139 + 1.57468i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.80278 16.9789i 0.338429 0.586177i −0.645708 0.763584i \(-0.723438\pi\)
0.984137 + 0.177407i \(0.0567710\pi\)
\(840\) 0 0
\(841\) 14.0875 + 24.4002i 0.485775 + 0.841387i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.30278 0.0792179
\(846\) 0 0
\(847\) 18.8167 0.646548
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −18.1791 31.4872i −0.623173 1.07937i
\(852\) 0 0
\(853\) −16.0736 + 27.8403i −0.550349 + 0.953233i 0.447900 + 0.894084i \(0.352172\pi\)
−0.998249 + 0.0591493i \(0.981161\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.86249 + 10.1541i −0.200259 + 0.346859i −0.948612 0.316442i \(-0.897512\pi\)
0.748353 + 0.663301i \(0.230845\pi\)
\(858\) 0 0
\(859\) −1.34861 2.33586i −0.0460141 0.0796987i 0.842101 0.539320i \(-0.181319\pi\)
−0.888115 + 0.459621i \(0.847985\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.8806 0.676742 0.338371 0.941013i \(-0.390124\pi\)
0.338371 + 0.941013i \(0.390124\pi\)
\(864\) 0 0
\(865\) −35.5139 −1.20751
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.15139 + 1.99426i 0.0390582 + 0.0676507i
\(870\) 0 0
\(871\) −4.45416 + 7.71484i −0.150924 + 0.261407i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −17.8625 + 30.9387i −0.603862 + 1.04592i
\(876\) 0 0
\(877\) 14.8764 + 25.7666i 0.502339 + 0.870077i 0.999996 + 0.00270327i \(0.000860478\pi\)
−0.497657 + 0.867374i \(0.665806\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.2111 0.613548 0.306774 0.951782i \(-0.400750\pi\)
0.306774 + 0.951782i \(0.400750\pi\)
\(882\) 0 0
\(883\) 34.7889 1.17074 0.585370 0.810766i \(-0.300949\pi\)
0.585370 + 0.810766i \(0.300949\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −25.5000 44.1673i −0.856206 1.48299i −0.875521 0.483179i \(-0.839482\pi\)
0.0193153 0.999813i \(-0.493851\pi\)
\(888\) 0 0
\(889\) −14.2111 + 24.6144i −0.476625 + 0.825539i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.89445 5.01333i 0.0968590 0.167765i
\(894\) 0 0
\(895\) −4.50000 7.79423i −0.150418 0.260532i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.64171 −0.0881060
\(900\) 0 0
\(901\) 35.0278 1.16694
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.1514 + 17.5827i 0.337444 + 0.584469i
\(906\) 0 0
\(907\) −26.2569 + 45.4784i −0.871847 + 1.51008i −0.0117637 + 0.999931i \(0.503745\pi\)
−0.860084 + 0.510153i \(0.829589\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 28.6056 49.5463i 0.947744 1.64154i 0.197583 0.980286i \(-0.436691\pi\)
0.750161 0.661255i \(-0.229976\pi\)
\(912\) 0 0
\(913\) −10.3625 17.9484i −0.342948 0.594004i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 73.0555 2.41251
\(918\) 0 0
\(919\) 11.0000 0.362857 0.181428 0.983404i \(-0.441928\pi\)
0.181428 + 0.983404i \(0.441928\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.19722 + 3.80570i 0.0723225 + 0.125266i
\(924\) 0 0
\(925\) 1.40833 2.43929i 0.0463055 0.0802035i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 19.9222 34.5063i 0.653626 1.13211i −0.328610 0.944466i \(-0.606580\pi\)
0.982236 0.187648i \(-0.0600865\pi\)
\(930\) 0 0
\(931\) −7.04584 12.2037i −0.230918 0.399962i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −40.3305 −1.31895
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.89445 + 10.2095i 0.192154 + 0.332820i 0.945964 0.324273i \(-0.105120\pi\)
−0.753810 + 0.657092i \(0.771786\pi\)
\(942\) 0 0
\(943\) 4.50000 7.79423i 0.146540 0.253815i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.5597 + 32.1464i −0.603110 + 1.04462i 0.389237 + 0.921137i \(0.372739\pi\)
−0.992347 + 0.123479i \(0.960595\pi\)
\(948\) 0 0
\(949\) 7.40833 + 12.8316i 0.240484 + 0.416531i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −41.4500 −1.34270 −0.671348 0.741142i \(-0.734284\pi\)
−0.671348 + 0.741142i \(0.734284\pi\)
\(954\) 0 0
\(955\) 15.4222 0.499051
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 3.80278 + 6.58660i 0.122798 + 0.212692i
\(960\) 0 0
\(961\) 11.2708 19.5216i 0.363575 0.629730i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.7569 20.3636i 0.378469 0.655528i
\(966\) 0 0
\(967\) 4.78890 + 8.29461i 0.154001 + 0.266737i 0.932695 0.360667i \(-0.117451\pi\)
−0.778694 + 0.627404i \(0.784118\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −47.2389 −1.51597 −0.757984 0.652274i \(-0.773815\pi\)
−0.757984 + 0.652274i \(0.773815\pi\)
\(972\) 0 0
\(973\) −14.2111 −0.455587
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19.8167 34.3235i −0.633991 1.09810i −0.986728 0.162382i \(-0.948082\pi\)
0.352737 0.935722i \(-0.385251\pi\)
\(978\) 0 0
\(979\) −15.1056 + 26.1636i −0.482776 + 0.836192i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.18335 12.4419i 0.229113 0.396836i −0.728432 0.685118i \(-0.759751\pi\)
0.957546 + 0.288282i \(0.0930841\pi\)
\(984\) 0 0
\(985\) 17.2708 + 29.9139i 0.550294 + 0.953137i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 16.4584 0.523346
\(990\) 0 0
\(991\) −16.4222 −0.521669 −0.260834 0.965384i \(-0.583998\pi\)
−0.260834 + 0.965384i \(0.583998\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 11.7569 + 20.3636i 0.372720 + 0.645570i
\(996\) 0 0
\(997\) −22.0736 + 38.2326i −0.699078 + 1.21084i 0.269709 + 0.962942i \(0.413073\pi\)
−0.968787 + 0.247896i \(0.920261\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.i.o.2809.1 4
3.2 odd 2 4212.2.i.t.2809.2 4
9.2 odd 6 4212.2.a.c.1.1 2
9.4 even 3 inner 4212.2.i.o.1405.1 4
9.5 odd 6 4212.2.i.t.1405.2 4
9.7 even 3 4212.2.a.e.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4212.2.a.c.1.1 2 9.2 odd 6
4212.2.a.e.1.2 yes 2 9.7 even 3
4212.2.i.o.1405.1 4 9.4 even 3 inner
4212.2.i.o.2809.1 4 1.1 even 1 trivial
4212.2.i.t.1405.2 4 9.5 odd 6
4212.2.i.t.2809.2 4 3.2 odd 2