Properties

Label 4212.2.i.n.1405.1
Level $4212$
Weight $2$
Character 4212.1405
Analytic conductor $33.633$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1405,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1405"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-1,0,0,0,0,0,-7,0,-2,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1404)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1405.1
Root \(1.15139 - 1.99426i\) of defining polynomial
Character \(\chi\) \(=\) 4212.1405
Dual form 4212.2.i.n.2809.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15139 + 1.99426i) q^{5} +(-1.80278 - 3.12250i) q^{7} +(-2.65139 - 4.59234i) q^{11} +(-0.500000 + 0.866025i) q^{13} +2.30278 q^{17} -3.30278 q^{19} +(1.95416 - 3.38471i) q^{23} +(-0.151388 - 0.262211i) q^{25} +(-1.50000 - 2.59808i) q^{29} +(-1.00000 + 1.73205i) q^{31} +8.30278 q^{35} -10.2111 q^{37} +(0.802776 - 1.39045i) q^{41} +(4.65139 + 8.05644i) q^{43} +(2.75694 + 4.77516i) q^{47} +(-3.00000 + 5.19615i) q^{49} +2.30278 q^{53} +12.2111 q^{55} +(0.105551 - 0.182820i) q^{59} +(-1.80278 - 3.12250i) q^{61} +(-1.15139 - 1.99426i) q^{65} +(-0.545837 + 0.945417i) q^{67} +16.6056 q^{71} -10.9083 q^{73} +(-9.55971 + 16.5579i) q^{77} +(3.95416 + 6.84881i) q^{79} +(-5.40833 - 9.36750i) q^{83} +(-2.65139 + 4.59234i) q^{85} -4.60555 q^{89} +3.60555 q^{91} +(3.80278 - 6.58660i) q^{95} +(6.60555 + 11.4412i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} - 7 q^{11} - 2 q^{13} + 2 q^{17} - 6 q^{19} - 3 q^{23} + 3 q^{25} - 6 q^{29} - 4 q^{31} + 26 q^{35} - 12 q^{37} - 4 q^{41} + 15 q^{43} - 7 q^{47} - 12 q^{49} + 2 q^{53} + 20 q^{55} - 14 q^{59}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4212\mathbb{Z}\right)^\times\).

\(n\) \(2107\) \(3485\) \(3889\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.15139 + 1.99426i −0.514916 + 0.891861i 0.484934 + 0.874551i \(0.338844\pi\)
−0.999850 + 0.0173104i \(0.994490\pi\)
\(6\) 0 0
\(7\) −1.80278 3.12250i −0.681385 1.18019i −0.974558 0.224134i \(-0.928045\pi\)
0.293173 0.956059i \(-0.405289\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.65139 4.59234i −0.799424 1.38464i −0.919992 0.391937i \(-0.871805\pi\)
0.120569 0.992705i \(-0.461528\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.30278 0.558505 0.279253 0.960218i \(-0.409913\pi\)
0.279253 + 0.960218i \(0.409913\pi\)
\(18\) 0 0
\(19\) −3.30278 −0.757709 −0.378854 0.925456i \(-0.623682\pi\)
−0.378854 + 0.925456i \(0.623682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.95416 3.38471i 0.407471 0.705761i −0.587134 0.809489i \(-0.699744\pi\)
0.994606 + 0.103729i \(0.0330773\pi\)
\(24\) 0 0
\(25\) −0.151388 0.262211i −0.0302776 0.0524423i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.30278 1.40343
\(36\) 0 0
\(37\) −10.2111 −1.67869 −0.839347 0.543595i \(-0.817063\pi\)
−0.839347 + 0.543595i \(0.817063\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.802776 1.39045i 0.125372 0.217152i −0.796506 0.604631i \(-0.793321\pi\)
0.921878 + 0.387479i \(0.126654\pi\)
\(42\) 0 0
\(43\) 4.65139 + 8.05644i 0.709330 + 1.22860i 0.965106 + 0.261860i \(0.0843357\pi\)
−0.255776 + 0.966736i \(0.582331\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.75694 + 4.77516i 0.402141 + 0.696528i 0.993984 0.109525i \(-0.0349329\pi\)
−0.591843 + 0.806053i \(0.701600\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.30278 0.316311 0.158155 0.987414i \(-0.449445\pi\)
0.158155 + 0.987414i \(0.449445\pi\)
\(54\) 0 0
\(55\) 12.2111 1.64654
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.105551 0.182820i 0.0137416 0.0238012i −0.859073 0.511853i \(-0.828959\pi\)
0.872814 + 0.488052i \(0.162292\pi\)
\(60\) 0 0
\(61\) −1.80278 3.12250i −0.230822 0.399795i 0.727228 0.686396i \(-0.240808\pi\)
−0.958050 + 0.286601i \(0.907475\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.15139 1.99426i −0.142812 0.247358i
\(66\) 0 0
\(67\) −0.545837 + 0.945417i −0.0666845 + 0.115501i −0.897440 0.441137i \(-0.854575\pi\)
0.830755 + 0.556638i \(0.187909\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.6056 1.97072 0.985358 0.170497i \(-0.0545373\pi\)
0.985358 + 0.170497i \(0.0545373\pi\)
\(72\) 0 0
\(73\) −10.9083 −1.27672 −0.638362 0.769737i \(-0.720388\pi\)
−0.638362 + 0.769737i \(0.720388\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.55971 + 16.5579i −1.08943 + 1.88695i
\(78\) 0 0
\(79\) 3.95416 + 6.84881i 0.444878 + 0.770552i 0.998044 0.0625198i \(-0.0199137\pi\)
−0.553166 + 0.833071i \(0.686580\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.40833 9.36750i −0.593641 1.02822i −0.993737 0.111743i \(-0.964357\pi\)
0.400096 0.916473i \(-0.368977\pi\)
\(84\) 0 0
\(85\) −2.65139 + 4.59234i −0.287583 + 0.498109i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.60555 −0.488187 −0.244094 0.969752i \(-0.578490\pi\)
−0.244094 + 0.969752i \(0.578490\pi\)
\(90\) 0 0
\(91\) 3.60555 0.377964
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.80278 6.58660i 0.390157 0.675771i
\(96\) 0 0
\(97\) 6.60555 + 11.4412i 0.670692 + 1.16167i 0.977708 + 0.209968i \(0.0673361\pi\)
−0.307016 + 0.951704i \(0.599331\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.10555 + 10.5751i 0.607525 + 1.05226i 0.991647 + 0.128982i \(0.0411709\pi\)
−0.384122 + 0.923282i \(0.625496\pi\)
\(102\) 0 0
\(103\) −2.84861 + 4.93394i −0.280682 + 0.486156i −0.971553 0.236823i \(-0.923894\pi\)
0.690871 + 0.722978i \(0.257227\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.90833 0.957874 0.478937 0.877849i \(-0.341022\pi\)
0.478937 + 0.877849i \(0.341022\pi\)
\(108\) 0 0
\(109\) −9.30278 −0.891044 −0.445522 0.895271i \(-0.646982\pi\)
−0.445522 + 0.895271i \(0.646982\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.40833 + 9.36750i −0.508773 + 0.881220i 0.491176 + 0.871060i \(0.336567\pi\)
−0.999948 + 0.0101595i \(0.996766\pi\)
\(114\) 0 0
\(115\) 4.50000 + 7.79423i 0.419627 + 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.15139 7.19041i −0.380557 0.659144i
\(120\) 0 0
\(121\) −8.55971 + 14.8259i −0.778156 + 1.34781i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.8167 −0.967471
\(126\) 0 0
\(127\) 22.0278 1.95465 0.977324 0.211751i \(-0.0679166\pi\)
0.977324 + 0.211751i \(0.0679166\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.71110 + 13.3560i −0.673722 + 1.16692i 0.303118 + 0.952953i \(0.401972\pi\)
−0.976841 + 0.213968i \(0.931361\pi\)
\(132\) 0 0
\(133\) 5.95416 + 10.3129i 0.516291 + 0.894243i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.697224 1.20763i −0.0595679 0.103175i 0.834704 0.550699i \(-0.185639\pi\)
−0.894272 + 0.447525i \(0.852306\pi\)
\(138\) 0 0
\(139\) −7.10555 + 12.3072i −0.602685 + 1.04388i 0.389728 + 0.920930i \(0.372569\pi\)
−0.992413 + 0.122951i \(0.960764\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.30278 0.443440
\(144\) 0 0
\(145\) 6.90833 0.573705
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.86249 15.3503i 0.726044 1.25754i −0.232500 0.972597i \(-0.574690\pi\)
0.958543 0.284948i \(-0.0919762\pi\)
\(150\) 0 0
\(151\) 5.80278 + 10.0507i 0.472223 + 0.817915i 0.999495 0.0317822i \(-0.0101183\pi\)
−0.527272 + 0.849697i \(0.676785\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.30278 3.98852i −0.184963 0.320366i
\(156\) 0 0
\(157\) 4.86249 8.42208i 0.388069 0.672155i −0.604121 0.796893i \(-0.706476\pi\)
0.992190 + 0.124738i \(0.0398089\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −14.0917 −1.11058
\(162\) 0 0
\(163\) 2.90833 0.227798 0.113899 0.993492i \(-0.463666\pi\)
0.113899 + 0.993492i \(0.463666\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.50000 + 12.9904i −0.580367 + 1.00523i 0.415068 + 0.909790i \(0.363758\pi\)
−0.995436 + 0.0954356i \(0.969576\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.34861 + 10.9961i 0.482676 + 0.836019i 0.999802 0.0198898i \(-0.00633153\pi\)
−0.517126 + 0.855909i \(0.672998\pi\)
\(174\) 0 0
\(175\) −0.545837 + 0.945417i −0.0412614 + 0.0714668i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −20.7250 −1.54906 −0.774529 0.632539i \(-0.782013\pi\)
−0.774529 + 0.632539i \(0.782013\pi\)
\(180\) 0 0
\(181\) 8.90833 0.662151 0.331075 0.943604i \(-0.392589\pi\)
0.331075 + 0.943604i \(0.392589\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.7569 20.3636i 0.864387 1.49716i
\(186\) 0 0
\(187\) −6.10555 10.5751i −0.446482 0.773330i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.84861 8.39804i −0.350833 0.607661i 0.635562 0.772049i \(-0.280768\pi\)
−0.986396 + 0.164388i \(0.947435\pi\)
\(192\) 0 0
\(193\) −12.1653 + 21.0709i −0.875675 + 1.51671i −0.0196331 + 0.999807i \(0.506250\pi\)
−0.856042 + 0.516906i \(0.827084\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.8167 −0.984396 −0.492198 0.870483i \(-0.663806\pi\)
−0.492198 + 0.870483i \(0.663806\pi\)
\(198\) 0 0
\(199\) −21.9361 −1.55501 −0.777504 0.628878i \(-0.783514\pi\)
−0.777504 + 0.628878i \(0.783514\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.40833 + 9.36750i −0.379590 + 0.657469i
\(204\) 0 0
\(205\) 1.84861 + 3.20189i 0.129113 + 0.223630i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.75694 + 15.1675i 0.605730 + 1.04916i
\(210\) 0 0
\(211\) −2.74306 + 4.75112i −0.188840 + 0.327081i −0.944864 0.327464i \(-0.893806\pi\)
0.756024 + 0.654544i \(0.227139\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −21.4222 −1.46098
\(216\) 0 0
\(217\) 7.21110 0.489522
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.15139 + 1.99426i −0.0774507 + 0.134149i
\(222\) 0 0
\(223\) 12.9542 + 22.4373i 0.867475 + 1.50251i 0.864569 + 0.502515i \(0.167592\pi\)
0.00290640 + 0.999996i \(0.499075\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.0597 19.1560i −0.734059 1.27143i −0.955135 0.296171i \(-0.904290\pi\)
0.221076 0.975257i \(-0.429043\pi\)
\(228\) 0 0
\(229\) −11.2569 + 19.4976i −0.743879 + 1.28844i 0.206837 + 0.978375i \(0.433683\pi\)
−0.950716 + 0.310062i \(0.899650\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) 0 0
\(235\) −12.6972 −0.828276
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.4083 24.9560i 0.931997 1.61427i 0.152094 0.988366i \(-0.451398\pi\)
0.779903 0.625900i \(-0.215268\pi\)
\(240\) 0 0
\(241\) −1.34861 2.33586i −0.0868717 0.150466i 0.819316 0.573343i \(-0.194354\pi\)
−0.906187 + 0.422877i \(0.861020\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.90833 11.9656i −0.441357 0.764452i
\(246\) 0 0
\(247\) 1.65139 2.86029i 0.105075 0.181996i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.51388 0.348033 0.174016 0.984743i \(-0.444325\pi\)
0.174016 + 0.984743i \(0.444325\pi\)
\(252\) 0 0
\(253\) −20.7250 −1.30297
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.0458 17.3999i 0.626642 1.08538i −0.361579 0.932342i \(-0.617762\pi\)
0.988221 0.153034i \(-0.0489045\pi\)
\(258\) 0 0
\(259\) 18.4083 + 31.8842i 1.14384 + 1.98119i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.84861 + 8.39804i 0.298978 + 0.517845i 0.975902 0.218207i \(-0.0700209\pi\)
−0.676924 + 0.736053i \(0.736688\pi\)
\(264\) 0 0
\(265\) −2.65139 + 4.59234i −0.162873 + 0.282105i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 20.5139 1.25075 0.625377 0.780323i \(-0.284945\pi\)
0.625377 + 0.780323i \(0.284945\pi\)
\(270\) 0 0
\(271\) 3.18335 0.193375 0.0966873 0.995315i \(-0.469175\pi\)
0.0966873 + 0.995315i \(0.469175\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.802776 + 1.39045i −0.0484092 + 0.0838472i
\(276\) 0 0
\(277\) −14.1194 24.4556i −0.848354 1.46939i −0.882676 0.469982i \(-0.844260\pi\)
0.0343218 0.999411i \(-0.489073\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.6056 + 18.3694i 0.632674 + 1.09582i 0.987003 + 0.160703i \(0.0513761\pi\)
−0.354329 + 0.935121i \(0.615291\pi\)
\(282\) 0 0
\(283\) 9.36249 16.2163i 0.556542 0.963960i −0.441239 0.897389i \(-0.645461\pi\)
0.997782 0.0665701i \(-0.0212056\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.78890 −0.341708
\(288\) 0 0
\(289\) −11.6972 −0.688072
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −16.0139 + 27.7369i −0.935541 + 1.62040i −0.161874 + 0.986811i \(0.551754\pi\)
−0.773667 + 0.633593i \(0.781580\pi\)
\(294\) 0 0
\(295\) 0.243061 + 0.420994i 0.0141516 + 0.0245112i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.95416 + 3.38471i 0.113012 + 0.195743i
\(300\) 0 0
\(301\) 16.7708 29.0479i 0.966654 1.67429i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.30278 0.475416
\(306\) 0 0
\(307\) −21.9361 −1.25196 −0.625979 0.779840i \(-0.715301\pi\)
−0.625979 + 0.779840i \(0.715301\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.45416 + 16.3751i −0.536096 + 0.928546i 0.463013 + 0.886352i \(0.346768\pi\)
−0.999109 + 0.0421947i \(0.986565\pi\)
\(312\) 0 0
\(313\) −1.69722 2.93968i −0.0959328 0.166160i 0.814065 0.580774i \(-0.197250\pi\)
−0.909998 + 0.414614i \(0.863917\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.5458 + 19.9980i 0.648479 + 1.12320i 0.983486 + 0.180983i \(0.0579278\pi\)
−0.335007 + 0.942215i \(0.608739\pi\)
\(318\) 0 0
\(319\) −7.95416 + 13.7770i −0.445348 + 0.771365i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.60555 −0.423184
\(324\) 0 0
\(325\) 0.302776 0.0167950
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.94029 17.2171i 0.548026 0.949208i
\(330\) 0 0
\(331\) −6.40833 11.0995i −0.352234 0.610086i 0.634407 0.772999i \(-0.281244\pi\)
−0.986640 + 0.162913i \(0.947911\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.25694 2.17708i −0.0686739 0.118947i
\(336\) 0 0
\(337\) −0.197224 + 0.341603i −0.0107435 + 0.0186083i −0.871347 0.490667i \(-0.836753\pi\)
0.860604 + 0.509275i \(0.170086\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.6056 0.574323
\(342\) 0 0
\(343\) −3.60555 −0.194681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.31665 10.9408i 0.339096 0.587331i −0.645167 0.764041i \(-0.723212\pi\)
0.984263 + 0.176710i \(0.0565456\pi\)
\(348\) 0 0
\(349\) −5.15139 8.92247i −0.275747 0.477609i 0.694576 0.719419i \(-0.255592\pi\)
−0.970323 + 0.241811i \(0.922259\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.8028 + 22.1751i 0.681423 + 1.18026i 0.974547 + 0.224185i \(0.0719719\pi\)
−0.293124 + 0.956075i \(0.594695\pi\)
\(354\) 0 0
\(355\) −19.1194 + 33.1158i −1.01475 + 1.75761i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.8167 0.887549 0.443775 0.896138i \(-0.353639\pi\)
0.443775 + 0.896138i \(0.353639\pi\)
\(360\) 0 0
\(361\) −8.09167 −0.425878
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.5597 21.7541i 0.657406 1.13866i
\(366\) 0 0
\(367\) 0.288897 + 0.500385i 0.0150803 + 0.0261199i 0.873467 0.486883i \(-0.161866\pi\)
−0.858387 + 0.513003i \(0.828533\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.15139 7.19041i −0.215529 0.373308i
\(372\) 0 0
\(373\) 1.75694 3.04311i 0.0909709 0.157566i −0.816949 0.576710i \(-0.804336\pi\)
0.907920 + 0.419144i \(0.137670\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.00000 0.154508
\(378\) 0 0
\(379\) 34.0278 1.74789 0.873944 0.486026i \(-0.161554\pi\)
0.873944 + 0.486026i \(0.161554\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.00000 + 5.19615i −0.153293 + 0.265511i −0.932436 0.361335i \(-0.882321\pi\)
0.779143 + 0.626846i \(0.215654\pi\)
\(384\) 0 0
\(385\) −22.0139 38.1292i −1.12193 1.94324i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.51388 + 9.55032i 0.279565 + 0.484220i 0.971277 0.237953i \(-0.0764765\pi\)
−0.691712 + 0.722174i \(0.743143\pi\)
\(390\) 0 0
\(391\) 4.50000 7.79423i 0.227575 0.394171i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −18.2111 −0.916300
\(396\) 0 0
\(397\) −9.78890 −0.491291 −0.245645 0.969360i \(-0.579000\pi\)
−0.245645 + 0.969360i \(0.579000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.90833 11.9656i 0.344985 0.597532i −0.640366 0.768070i \(-0.721217\pi\)
0.985351 + 0.170538i \(0.0545505\pi\)
\(402\) 0 0
\(403\) −1.00000 1.73205i −0.0498135 0.0862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 27.0736 + 46.8928i 1.34199 + 2.32439i
\(408\) 0 0
\(409\) −8.81665 + 15.2709i −0.435955 + 0.755097i −0.997373 0.0724356i \(-0.976923\pi\)
0.561418 + 0.827533i \(0.310256\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.761141 −0.0374533
\(414\) 0 0
\(415\) 24.9083 1.22270
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.4222 26.7120i 0.753424 1.30497i −0.192730 0.981252i \(-0.561734\pi\)
0.946154 0.323717i \(-0.104933\pi\)
\(420\) 0 0
\(421\) 7.51388 + 13.0144i 0.366204 + 0.634284i 0.988969 0.148125i \(-0.0473239\pi\)
−0.622765 + 0.782409i \(0.713991\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.348612 0.603814i −0.0169102 0.0292893i
\(426\) 0 0
\(427\) −6.50000 + 11.2583i −0.314557 + 0.544829i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 41.2389 1.98641 0.993203 0.116395i \(-0.0371339\pi\)
0.993203 + 0.116395i \(0.0371339\pi\)
\(432\) 0 0
\(433\) 14.4861 0.696159 0.348079 0.937465i \(-0.386834\pi\)
0.348079 + 0.937465i \(0.386834\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.45416 + 11.1789i −0.308745 + 0.534761i
\(438\) 0 0
\(439\) 6.60555 + 11.4412i 0.315266 + 0.546056i 0.979494 0.201474i \(-0.0645730\pi\)
−0.664228 + 0.747530i \(0.731240\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.80278 + 16.9789i 0.465744 + 0.806692i 0.999235 0.0391137i \(-0.0124535\pi\)
−0.533491 + 0.845806i \(0.679120\pi\)
\(444\) 0 0
\(445\) 5.30278 9.18468i 0.251376 0.435395i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.6333 1.44568 0.722838 0.691018i \(-0.242837\pi\)
0.722838 + 0.691018i \(0.242837\pi\)
\(450\) 0 0
\(451\) −8.51388 −0.400903
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.15139 + 7.19041i −0.194620 + 0.337092i
\(456\) 0 0
\(457\) 15.7111 + 27.2124i 0.734934 + 1.27294i 0.954752 + 0.297403i \(0.0961204\pi\)
−0.219818 + 0.975541i \(0.570546\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −13.0458 22.5961i −0.607605 1.05240i −0.991634 0.129082i \(-0.958797\pi\)
0.384029 0.923321i \(-0.374536\pi\)
\(462\) 0 0
\(463\) −0.165266 + 0.286249i −0.00768056 + 0.0133031i −0.869840 0.493334i \(-0.835778\pi\)
0.862160 + 0.506637i \(0.169111\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −29.2389 −1.35301 −0.676507 0.736437i \(-0.736507\pi\)
−0.676507 + 0.736437i \(0.736507\pi\)
\(468\) 0 0
\(469\) 3.93608 0.181751
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 24.6653 42.7215i 1.13411 1.96434i
\(474\) 0 0
\(475\) 0.500000 + 0.866025i 0.0229416 + 0.0397360i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7.74306 13.4114i −0.353789 0.612781i 0.633121 0.774053i \(-0.281774\pi\)
−0.986910 + 0.161272i \(0.948440\pi\)
\(480\) 0 0
\(481\) 5.10555 8.84307i 0.232793 0.403209i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −30.4222 −1.38140
\(486\) 0 0
\(487\) −1.21110 −0.0548803 −0.0274401 0.999623i \(-0.508736\pi\)
−0.0274401 + 0.999623i \(0.508736\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.95416 + 3.38471i −0.0881902 + 0.152750i −0.906746 0.421677i \(-0.861442\pi\)
0.818556 + 0.574427i \(0.194775\pi\)
\(492\) 0 0
\(493\) −3.45416 5.98279i −0.155568 0.269451i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −29.9361 51.8508i −1.34282 2.32583i
\(498\) 0 0
\(499\) −0.651388 + 1.12824i −0.0291601 + 0.0505068i −0.880237 0.474534i \(-0.842617\pi\)
0.851077 + 0.525041i \(0.175950\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2.02776 −0.0904132 −0.0452066 0.998978i \(-0.514395\pi\)
−0.0452066 + 0.998978i \(0.514395\pi\)
\(504\) 0 0
\(505\) −28.1194 −1.25130
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.9083 + 22.3579i −0.572152 + 0.990996i 0.424193 + 0.905572i \(0.360558\pi\)
−0.996345 + 0.0854238i \(0.972776\pi\)
\(510\) 0 0
\(511\) 19.6653 + 34.0612i 0.869940 + 1.50678i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −6.55971 11.3618i −0.289056 0.500659i
\(516\) 0 0
\(517\) 14.6194 25.3216i 0.642962 1.11364i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.8444 −1.21989 −0.609943 0.792445i \(-0.708808\pi\)
−0.609943 + 0.792445i \(0.708808\pi\)
\(522\) 0 0
\(523\) 42.3305 1.85098 0.925492 0.378766i \(-0.123651\pi\)
0.925492 + 0.378766i \(0.123651\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.30278 + 3.98852i −0.100310 + 0.173743i
\(528\) 0 0
\(529\) 3.86249 + 6.69003i 0.167934 + 0.290871i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.802776 + 1.39045i 0.0347721 + 0.0602270i
\(534\) 0 0
\(535\) −11.4083 + 19.7598i −0.493225 + 0.854291i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 31.8167 1.37044
\(540\) 0 0
\(541\) −3.09167 −0.132921 −0.0664607 0.997789i \(-0.521171\pi\)
−0.0664607 + 0.997789i \(0.521171\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.7111 18.5522i 0.458813 0.794688i
\(546\) 0 0
\(547\) −6.54584 11.3377i −0.279880 0.484766i 0.691475 0.722401i \(-0.256961\pi\)
−0.971355 + 0.237635i \(0.923628\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.95416 + 8.58086i 0.211054 + 0.365557i
\(552\) 0 0
\(553\) 14.2569 24.6937i 0.606267 1.05008i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 34.8167 1.47523 0.737614 0.675222i \(-0.235952\pi\)
0.737614 + 0.675222i \(0.235952\pi\)
\(558\) 0 0
\(559\) −9.30278 −0.393465
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.28890 7.42859i 0.180755 0.313078i −0.761383 0.648303i \(-0.775479\pi\)
0.942138 + 0.335225i \(0.108812\pi\)
\(564\) 0 0
\(565\) −12.4542 21.5712i −0.523951 0.907509i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.316654 0.548461i −0.0132748 0.0229927i 0.859312 0.511452i \(-0.170892\pi\)
−0.872587 + 0.488460i \(0.837559\pi\)
\(570\) 0 0
\(571\) −1.21110 + 2.09769i −0.0506831 + 0.0877856i −0.890254 0.455465i \(-0.849473\pi\)
0.839571 + 0.543250i \(0.182807\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.18335 −0.0493489
\(576\) 0 0
\(577\) −5.88057 −0.244811 −0.122406 0.992480i \(-0.539061\pi\)
−0.122406 + 0.992480i \(0.539061\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.5000 + 33.7750i −0.808996 + 1.40122i
\(582\) 0 0
\(583\) −6.10555 10.5751i −0.252866 0.437977i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.8486 23.9865i −0.571593 0.990029i −0.996403 0.0847459i \(-0.972992\pi\)
0.424809 0.905283i \(-0.360341\pi\)
\(588\) 0 0
\(589\) 3.30278 5.72058i 0.136088 0.235712i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.72498 0.111902 0.0559508 0.998434i \(-0.482181\pi\)
0.0559508 + 0.998434i \(0.482181\pi\)
\(594\) 0 0
\(595\) 19.1194 0.783820
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.7250 + 30.7006i −0.724223 + 1.25439i 0.235070 + 0.971978i \(0.424468\pi\)
−0.959293 + 0.282413i \(0.908865\pi\)
\(600\) 0 0
\(601\) 8.77082 + 15.1915i 0.357769 + 0.619674i 0.987588 0.157068i \(-0.0502042\pi\)
−0.629819 + 0.776742i \(0.716871\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −19.7111 34.1406i −0.801370 1.38801i
\(606\) 0 0
\(607\) 9.95416 17.2411i 0.404027 0.699795i −0.590181 0.807271i \(-0.700943\pi\)
0.994208 + 0.107476i \(0.0342768\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.51388 −0.223068
\(612\) 0 0
\(613\) 29.4222 1.18835 0.594176 0.804335i \(-0.297478\pi\)
0.594176 + 0.804335i \(0.297478\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.0458 + 17.3999i −0.404430 + 0.700494i −0.994255 0.107038i \(-0.965863\pi\)
0.589825 + 0.807531i \(0.299197\pi\)
\(618\) 0 0
\(619\) 6.81665 + 11.8068i 0.273984 + 0.474555i 0.969878 0.243590i \(-0.0783250\pi\)
−0.695894 + 0.718145i \(0.744992\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.30278 + 14.3808i 0.332644 + 0.576156i
\(624\) 0 0
\(625\) 13.2111 22.8823i 0.528444 0.915292i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.5139 −0.937560
\(630\) 0 0
\(631\) −7.42221 −0.295473 −0.147737 0.989027i \(-0.547199\pi\)
−0.147737 + 0.989027i \(0.547199\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −25.3625 + 43.9291i −1.00648 + 1.74327i
\(636\) 0 0
\(637\) −3.00000 5.19615i −0.118864 0.205879i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −4.60555 7.97705i −0.181908 0.315074i 0.760622 0.649195i \(-0.224894\pi\)
−0.942530 + 0.334121i \(0.891561\pi\)
\(642\) 0 0
\(643\) −2.50000 + 4.33013i −0.0985904 + 0.170764i −0.911101 0.412182i \(-0.864767\pi\)
0.812511 + 0.582946i \(0.198100\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 34.5416 1.35797 0.678986 0.734151i \(-0.262420\pi\)
0.678986 + 0.734151i \(0.262420\pi\)
\(648\) 0 0
\(649\) −1.11943 −0.0439415
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.1194 17.5274i 0.396004 0.685899i −0.597225 0.802074i \(-0.703730\pi\)
0.993229 + 0.116175i \(0.0370633\pi\)
\(654\) 0 0
\(655\) −17.7569 30.7559i −0.693821 1.20173i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.5000 28.5788i −0.642749 1.11327i −0.984817 0.173598i \(-0.944461\pi\)
0.342068 0.939675i \(-0.388873\pi\)
\(660\) 0 0
\(661\) 0.288897 0.500385i 0.0112368 0.0194627i −0.860352 0.509700i \(-0.829756\pi\)
0.871589 + 0.490237i \(0.163090\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −27.4222 −1.06339
\(666\) 0 0
\(667\) −11.7250 −0.453993
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.55971 + 16.5579i −0.369049 + 0.639211i
\(672\) 0 0
\(673\) −4.48612 7.77019i −0.172927 0.299519i 0.766515 0.642227i \(-0.221989\pi\)
−0.939442 + 0.342708i \(0.888656\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.5278 + 21.6987i 0.481481 + 0.833949i 0.999774 0.0212537i \(-0.00676578\pi\)
−0.518293 + 0.855203i \(0.673432\pi\)
\(678\) 0 0
\(679\) 23.8167 41.2517i 0.913999 1.58309i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.3944 0.512524 0.256262 0.966607i \(-0.417509\pi\)
0.256262 + 0.966607i \(0.417509\pi\)
\(684\) 0 0
\(685\) 3.21110 0.122690
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.15139 + 1.99426i −0.0438644 + 0.0759753i
\(690\) 0 0
\(691\) 0.880571 + 1.52519i 0.0334985 + 0.0580211i 0.882289 0.470709i \(-0.156002\pi\)
−0.848790 + 0.528730i \(0.822668\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.3625 28.3407i −0.620665 1.07502i
\(696\) 0 0
\(697\) 1.84861 3.20189i 0.0700212 0.121280i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 49.6056 1.87358 0.936788 0.349898i \(-0.113784\pi\)
0.936788 + 0.349898i \(0.113784\pi\)
\(702\) 0 0
\(703\) 33.7250 1.27196
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 22.0139 38.1292i 0.827917 1.43399i
\(708\) 0 0
\(709\) −13.2431 22.9377i −0.497354 0.861442i 0.502642 0.864495i \(-0.332361\pi\)
−0.999995 + 0.00305312i \(0.999028\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.90833 + 6.76942i 0.146368 + 0.253517i
\(714\) 0 0
\(715\) −6.10555 + 10.5751i −0.228335 + 0.395487i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −37.8167 −1.41032 −0.705162 0.709047i \(-0.749126\pi\)
−0.705162 + 0.709047i \(0.749126\pi\)
\(720\) 0 0
\(721\) 20.5416 0.765010
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.454163 + 0.786634i −0.0168672 + 0.0292149i
\(726\) 0 0
\(727\) −4.31665 7.47666i −0.160096 0.277294i 0.774807 0.632198i \(-0.217847\pi\)
−0.934903 + 0.354904i \(0.884514\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10.7111 + 18.5522i 0.396164 + 0.686177i
\(732\) 0 0
\(733\) 4.78890 8.29461i 0.176882 0.306369i −0.763929 0.645300i \(-0.776732\pi\)
0.940811 + 0.338932i \(0.110066\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.78890 0.213237
\(738\) 0 0
\(739\) −48.9361 −1.80014 −0.900071 0.435742i \(-0.856486\pi\)
−0.900071 + 0.435742i \(0.856486\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.54584 4.40952i 0.0933977 0.161770i −0.815541 0.578699i \(-0.803561\pi\)
0.908939 + 0.416930i \(0.136894\pi\)
\(744\) 0 0
\(745\) 20.4083 + 35.3483i 0.747703 + 1.29506i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −17.8625 30.9387i −0.652681 1.13048i
\(750\) 0 0
\(751\) −15.2708 + 26.4498i −0.557240 + 0.965168i 0.440485 + 0.897760i \(0.354806\pi\)
−0.997725 + 0.0674083i \(0.978527\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −26.7250 −0.972622
\(756\) 0 0
\(757\) −11.3305 −0.411815 −0.205908 0.978571i \(-0.566015\pi\)
−0.205908 + 0.978571i \(0.566015\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.3944 + 18.0037i −0.376798 + 0.652634i −0.990594 0.136831i \(-0.956308\pi\)
0.613796 + 0.789465i \(0.289642\pi\)
\(762\) 0 0
\(763\) 16.7708 + 29.0479i 0.607144 + 1.05160i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.105551 + 0.182820i 0.00381124 + 0.00660125i
\(768\) 0 0
\(769\) −9.40833 + 16.2957i −0.339273 + 0.587638i −0.984296 0.176525i \(-0.943514\pi\)
0.645023 + 0.764163i \(0.276848\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12.2750 0.441502 0.220751 0.975330i \(-0.429149\pi\)
0.220751 + 0.975330i \(0.429149\pi\)
\(774\) 0 0
\(775\) 0.605551 0.0217520
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.65139 + 4.59234i −0.0949958 + 0.164538i
\(780\) 0 0
\(781\) −44.0278 76.2583i −1.57544 2.72874i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.1972 + 19.3942i 0.399646 + 0.692207i
\(786\) 0 0
\(787\) 24.9222 43.1665i 0.888381 1.53872i 0.0465915 0.998914i \(-0.485164\pi\)
0.841789 0.539806i \(-0.181503\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 39.0000 1.38668
\(792\) 0 0
\(793\) 3.60555 0.128037
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.7111 + 44.5329i −0.910734 + 1.57744i −0.0977041 + 0.995216i \(0.531150\pi\)
−0.813030 + 0.582222i \(0.802183\pi\)
\(798\) 0 0
\(799\) 6.34861 + 10.9961i 0.224598 + 0.389015i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.9222 + 50.0947i 1.02064 + 1.76780i
\(804\) 0 0
\(805\) 16.2250 28.1025i 0.571855 0.990483i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.1472 −0.848970 −0.424485 0.905435i \(-0.639545\pi\)
−0.424485 + 0.905435i \(0.639545\pi\)
\(810\) 0 0
\(811\) −37.4222 −1.31407 −0.657036 0.753859i \(-0.728190\pi\)
−0.657036 + 0.753859i \(0.728190\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.34861 + 5.79997i −0.117297 + 0.203164i
\(816\) 0 0
\(817\) −15.3625 26.6086i −0.537466 0.930918i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.09167 8.81904i −0.177701 0.307786i 0.763392 0.645936i \(-0.223533\pi\)
−0.941093 + 0.338149i \(0.890199\pi\)
\(822\) 0 0
\(823\) 22.4083 38.8124i 0.781105 1.35291i −0.150193 0.988657i \(-0.547990\pi\)
0.931298 0.364257i \(-0.118677\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.6056 0.473111 0.236556 0.971618i \(-0.423981\pi\)
0.236556 + 0.971618i \(0.423981\pi\)
\(828\) 0 0
\(829\) −19.2111 −0.667229 −0.333615 0.942710i \(-0.608268\pi\)
−0.333615 + 0.942710i \(0.608268\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.90833 + 11.9656i −0.239359 + 0.414583i
\(834\) 0 0
\(835\) −17.2708 29.9139i −0.597681 1.03521i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.5597 21.7541i −0.433610 0.751034i 0.563572 0.826067i \(-0.309427\pi\)
−0.997181 + 0.0750336i \(0.976094\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.30278 0.0792179
\(846\) 0 0
\(847\) 61.7250 2.12090
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −19.9542 + 34.5616i −0.684020 + 1.18476i
\(852\) 0 0
\(853\) −20.5736 35.6345i −0.704426 1.22010i −0.966898 0.255163i \(-0.917871\pi\)
0.262472 0.964940i \(-0.415462\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.36249 + 12.7522i 0.251498 + 0.435607i 0.963938 0.266125i \(-0.0857435\pi\)
−0.712441 + 0.701732i \(0.752410\pi\)
\(858\) 0 0
\(859\) −25.5278 + 44.2154i −0.870996 + 1.50861i −0.0100279 + 0.999950i \(0.503192\pi\)
−0.860968 + 0.508659i \(0.830141\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.3944 −0.864437 −0.432219 0.901769i \(-0.642269\pi\)
−0.432219 + 0.901769i \(0.642269\pi\)
\(864\) 0 0
\(865\) −29.2389 −0.994151
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.9680 36.3177i 0.711292 1.23199i
\(870\) 0 0
\(871\) −0.545837 0.945417i −0.0184950 0.0320342i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.5000 + 33.7750i 0.659220 + 1.14180i
\(876\) 0 0
\(877\) 3.28890 5.69654i 0.111058 0.192358i −0.805139 0.593086i \(-0.797909\pi\)
0.916197 + 0.400728i \(0.131243\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33.4222 −1.12602 −0.563011 0.826449i \(-0.690357\pi\)
−0.563011 + 0.826449i \(0.690357\pi\)
\(882\) 0 0
\(883\) −3.93608 −0.132460 −0.0662299 0.997804i \(-0.521097\pi\)
−0.0662299 + 0.997804i \(0.521097\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.2250 + 28.1025i −0.544782 + 0.943589i 0.453839 + 0.891084i \(0.350054\pi\)
−0.998621 + 0.0525056i \(0.983279\pi\)
\(888\) 0 0
\(889\) −39.7111 68.7816i −1.33187 2.30686i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.10555 15.7713i −0.304706 0.527766i
\(894\) 0 0
\(895\) 23.8625 41.3310i 0.797635 1.38154i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.00000 0.200111
\(900\) 0 0
\(901\) 5.30278 0.176661
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.2569 + 17.7655i −0.340952 + 0.590547i
\(906\) 0 0
\(907\) −21.0278 36.4211i −0.698215 1.20934i −0.969085 0.246728i \(-0.920645\pi\)
0.270870 0.962616i \(-0.412689\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.83473 + 6.64195i 0.127050 + 0.220058i 0.922533 0.385919i \(-0.126116\pi\)
−0.795482 + 0.605977i \(0.792782\pi\)
\(912\) 0 0
\(913\) −28.6791 + 49.6737i −0.949141 + 1.64396i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 55.6056 1.83626
\(918\) 0 0
\(919\) 38.0000 1.25350 0.626752 0.779219i \(-0.284384\pi\)
0.626752 + 0.779219i \(0.284384\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.30278 + 14.3808i −0.273289 + 0.473351i
\(924\) 0 0
\(925\) 1.54584 + 2.67747i 0.0508268 + 0.0880346i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.10555 + 5.37897i 0.101890 + 0.176478i 0.912463 0.409159i \(-0.134178\pi\)
−0.810573 + 0.585637i \(0.800844\pi\)
\(930\) 0 0
\(931\) 9.90833 17.1617i 0.324732 0.562453i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 28.1194 0.919604
\(936\) 0 0
\(937\) −45.7250 −1.49377 −0.746885 0.664953i \(-0.768451\pi\)
−0.746885 + 0.664953i \(0.768451\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.30278 14.3808i 0.270663 0.468802i −0.698369 0.715738i \(-0.746091\pi\)
0.969032 + 0.246936i \(0.0794238\pi\)
\(942\) 0 0
\(943\) −3.13751 5.43433i −0.102171 0.176966i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −19.9222 34.5063i −0.647385 1.12130i −0.983745 0.179570i \(-0.942529\pi\)
0.336361 0.941733i \(-0.390804\pi\)
\(948\) 0 0
\(949\) 5.45416 9.44689i 0.177050 0.306659i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 0 0
\(955\) 22.3305 0.722599
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.51388 + 4.35416i −0.0811774 + 0.140603i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −28.0139 48.5215i −0.901799 1.56196i
\(966\) 0 0
\(967\) 24.3305 42.1417i 0.782417 1.35519i −0.148113 0.988970i \(-0.547320\pi\)
0.930530 0.366216i \(-0.119347\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 27.2111 0.873246 0.436623 0.899645i \(-0.356174\pi\)
0.436623 + 0.899645i \(0.356174\pi\)
\(972\) 0 0
\(973\) 51.2389 1.64264
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −6.90833 + 11.9656i −0.221017 + 0.382813i −0.955117 0.296229i \(-0.904271\pi\)
0.734100 + 0.679041i \(0.237604\pi\)
\(978\) 0 0
\(979\) 12.2111 + 21.1503i 0.390269 + 0.675965i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.7250 + 35.8967i 0.661024 + 1.14493i 0.980347 + 0.197281i \(0.0632113\pi\)
−0.319323 + 0.947646i \(0.603455\pi\)
\(984\) 0 0
\(985\) 15.9083 27.5540i 0.506881 0.877944i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 36.3583 1.15613
\(990\) 0 0
\(991\) 18.3944 0.584319 0.292159 0.956370i \(-0.405626\pi\)
0.292159 + 0.956370i \(0.405626\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 25.2569 43.7463i 0.800699 1.38685i
\(996\) 0 0
\(997\) −3.75694 6.50721i −0.118983 0.206085i 0.800382 0.599491i \(-0.204630\pi\)
−0.919365 + 0.393405i \(0.871297\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.i.n.1405.1 4
3.2 odd 2 4212.2.i.s.1405.2 4
9.2 odd 6 4212.2.i.s.2809.2 4
9.4 even 3 1404.2.a.i.1.2 yes 2
9.5 odd 6 1404.2.a.f.1.1 2
9.7 even 3 inner 4212.2.i.n.2809.1 4
36.23 even 6 5616.2.a.bp.1.1 2
36.31 odd 6 5616.2.a.bt.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1404.2.a.f.1.1 2 9.5 odd 6
1404.2.a.i.1.2 yes 2 9.4 even 3
4212.2.i.n.1405.1 4 1.1 even 1 trivial
4212.2.i.n.2809.1 4 9.7 even 3 inner
4212.2.i.s.1405.2 4 3.2 odd 2
4212.2.i.s.2809.2 4 9.2 odd 6
5616.2.a.bp.1.1 2 36.23 even 6
5616.2.a.bt.1.2 2 36.31 odd 6