Properties

Label 4212.2.i.j.2809.1
Level $4212$
Weight $2$
Character 4212.2809
Analytic conductor $33.633$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1405,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1405"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,3,0,-2,0,0,0,0,0,-1,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1404)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2809.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 4212.2809
Dual form 4212.2.i.j.1405.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{5} +(-1.00000 + 1.73205i) q^{7} +(-0.500000 - 0.866025i) q^{13} +2.00000 q^{19} +(3.00000 + 5.19615i) q^{23} +(-2.00000 + 3.46410i) q^{25} +(-3.00000 + 5.19615i) q^{29} +(-1.00000 - 1.73205i) q^{31} -6.00000 q^{35} +2.00000 q^{37} +(-3.00000 - 5.19615i) q^{41} +(-2.50000 + 4.33013i) q^{43} +(-1.50000 + 2.59808i) q^{47} +(1.50000 + 2.59808i) q^{49} +12.0000 q^{53} +(1.50000 + 2.59808i) q^{59} +(-5.50000 + 9.52628i) q^{61} +(1.50000 - 2.59808i) q^{65} +(-4.00000 - 6.92820i) q^{67} +9.00000 q^{71} -4.00000 q^{73} +(-4.00000 + 6.92820i) q^{79} +(-4.50000 + 7.79423i) q^{83} -3.00000 q^{89} +2.00000 q^{91} +(3.00000 + 5.19615i) q^{95} +(-4.00000 + 6.92820i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{5} - 2 q^{7} - q^{13} + 4 q^{19} + 6 q^{23} - 4 q^{25} - 6 q^{29} - 2 q^{31} - 12 q^{35} + 4 q^{37} - 6 q^{41} - 5 q^{43} - 3 q^{47} + 3 q^{49} + 24 q^{53} + 3 q^{59} - 11 q^{61} + 3 q^{65}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4212\mathbb{Z}\right)^\times\).

\(n\) \(2107\) \(3485\) \(3889\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) −1.00000 + 1.73205i −0.377964 + 0.654654i −0.990766 0.135583i \(-0.956709\pi\)
0.612801 + 0.790237i \(0.290043\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 −1.01419
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 5.19615i −0.468521 0.811503i 0.530831 0.847477i \(-0.321880\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(42\) 0 0
\(43\) −2.50000 + 4.33013i −0.381246 + 0.660338i −0.991241 0.132068i \(-0.957838\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.50000 + 2.59808i −0.218797 + 0.378968i −0.954441 0.298401i \(-0.903547\pi\)
0.735643 + 0.677369i \(0.236880\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) −5.50000 + 9.52628i −0.704203 + 1.21972i 0.262776 + 0.964857i \(0.415362\pi\)
−0.966978 + 0.254858i \(0.917971\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.50000 2.59808i 0.186052 0.322252i
\(66\) 0 0
\(67\) −4.00000 6.92820i −0.488678 0.846415i 0.511237 0.859440i \(-0.329187\pi\)
−0.999915 + 0.0130248i \(0.995854\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.50000 + 7.79423i −0.493939 + 0.855528i −0.999976 0.00698436i \(-0.997777\pi\)
0.506036 + 0.862512i \(0.331110\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.00000 + 5.19615i 0.307794 + 0.533114i
\(96\) 0 0
\(97\) −4.00000 + 6.92820i −0.406138 + 0.703452i −0.994453 0.105180i \(-0.966458\pi\)
0.588315 + 0.808632i \(0.299792\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −5.50000 9.52628i −0.541931 0.938652i −0.998793 0.0491146i \(-0.984360\pi\)
0.456862 0.889538i \(-0.348973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) −9.00000 + 15.5885i −0.839254 + 1.45363i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 0 0
\(133\) −2.00000 + 3.46410i −0.173422 + 0.300376i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) −5.50000 9.52628i −0.466504 0.808008i 0.532764 0.846264i \(-0.321153\pi\)
−0.999268 + 0.0382553i \(0.987820\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −18.0000 −1.49482
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.50000 12.9904i −0.614424 1.06421i −0.990485 0.137619i \(-0.956055\pi\)
0.376061 0.926595i \(-0.377278\pi\)
\(150\) 0 0
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.00000 5.19615i 0.240966 0.417365i
\(156\) 0 0
\(157\) 3.50000 + 6.06218i 0.279330 + 0.483814i 0.971219 0.238190i \(-0.0765542\pi\)
−0.691888 + 0.722005i \(0.743221\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.50000 7.79423i −0.348220 0.603136i 0.637713 0.770274i \(-0.279881\pi\)
−0.985933 + 0.167139i \(0.946547\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.0000 20.7846i 0.912343 1.58022i 0.101598 0.994826i \(-0.467605\pi\)
0.810745 0.585399i \(-0.199062\pi\)
\(174\) 0 0
\(175\) −4.00000 6.92820i −0.302372 0.523723i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 + 5.19615i 0.220564 + 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.00000 10.3923i 0.434145 0.751961i −0.563081 0.826402i \(-0.690384\pi\)
0.997225 + 0.0744412i \(0.0237173\pi\)
\(192\) 0 0
\(193\) 8.00000 + 13.8564i 0.575853 + 0.997406i 0.995948 + 0.0899262i \(0.0286631\pi\)
−0.420096 + 0.907480i \(0.638004\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.0000 1.49619 0.748094 0.663593i \(-0.230969\pi\)
0.748094 + 0.663593i \(0.230969\pi\)
\(198\) 0 0
\(199\) −25.0000 −1.77220 −0.886102 0.463491i \(-0.846597\pi\)
−0.886102 + 0.463491i \(0.846597\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.00000 10.3923i −0.421117 0.729397i
\(204\) 0 0
\(205\) 9.00000 15.5885i 0.628587 1.08875i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.0000 −1.02299
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4.00000 + 6.92820i −0.267860 + 0.463947i −0.968309 0.249756i \(-0.919650\pi\)
0.700449 + 0.713702i \(0.252983\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.5000 + 23.3827i −0.896026 + 1.55196i −0.0634974 + 0.997982i \(0.520225\pi\)
−0.832529 + 0.553981i \(0.813108\pi\)
\(228\) 0 0
\(229\) 11.0000 + 19.0526i 0.726900 + 1.25903i 0.958187 + 0.286143i \(0.0923732\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(240\) 0 0
\(241\) −4.00000 + 6.92820i −0.257663 + 0.446285i −0.965615 0.259975i \(-0.916286\pi\)
0.707953 + 0.706260i \(0.249619\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.50000 + 7.79423i −0.287494 + 0.497955i
\(246\) 0 0
\(247\) −1.00000 1.73205i −0.0636285 0.110208i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.00000 5.19615i −0.187135 0.324127i 0.757159 0.653231i \(-0.226587\pi\)
−0.944294 + 0.329104i \(0.893253\pi\)
\(258\) 0 0
\(259\) −2.00000 + 3.46410i −0.124274 + 0.215249i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 + 20.7846i −0.739952 + 1.28163i 0.212565 + 0.977147i \(0.431818\pi\)
−0.952517 + 0.304487i \(0.901515\pi\)
\(264\) 0 0
\(265\) 18.0000 + 31.1769i 1.10573 + 1.91518i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.500000 0.866025i 0.0300421 0.0520344i −0.850613 0.525792i \(-0.823769\pi\)
0.880656 + 0.473757i \(0.157103\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.5000 18.1865i 0.626377 1.08492i −0.361895 0.932219i \(-0.617870\pi\)
0.988273 0.152699i \(-0.0487965\pi\)
\(282\) 0 0
\(283\) 3.50000 + 6.06218i 0.208053 + 0.360359i 0.951101 0.308879i \(-0.0999539\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.00000 + 5.19615i 0.175262 + 0.303562i 0.940252 0.340480i \(-0.110589\pi\)
−0.764990 + 0.644042i \(0.777256\pi\)
\(294\) 0 0
\(295\) −4.50000 + 7.79423i −0.262000 + 0.453798i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) −5.00000 8.66025i −0.288195 0.499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −33.0000 −1.88957
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) 15.5000 26.8468i 0.876112 1.51747i 0.0205381 0.999789i \(-0.493462\pi\)
0.855574 0.517681i \(-0.173205\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.00000 5.19615i −0.165395 0.286473i
\(330\) 0 0
\(331\) −13.0000 + 22.5167i −0.714545 + 1.23763i 0.248590 + 0.968609i \(0.420033\pi\)
−0.963135 + 0.269019i \(0.913301\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 12.0000 20.7846i 0.655630 1.13558i
\(336\) 0 0
\(337\) 3.50000 + 6.06218i 0.190657 + 0.330228i 0.945468 0.325714i \(-0.105605\pi\)
−0.754811 + 0.655942i \(0.772271\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.00000 + 5.19615i 0.161048 + 0.278944i 0.935245 0.354001i \(-0.115179\pi\)
−0.774197 + 0.632945i \(0.781846\pi\)
\(348\) 0 0
\(349\) −7.00000 + 12.1244i −0.374701 + 0.649002i −0.990282 0.139072i \(-0.955588\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.50000 + 12.9904i −0.399185 + 0.691408i −0.993626 0.112731i \(-0.964040\pi\)
0.594441 + 0.804139i \(0.297373\pi\)
\(354\) 0 0
\(355\) 13.5000 + 23.3827i 0.716506 + 1.24102i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.0000 1.74167 0.870837 0.491572i \(-0.163578\pi\)
0.870837 + 0.491572i \(0.163578\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 10.3923i −0.314054 0.543958i
\(366\) 0 0
\(367\) 8.00000 13.8564i 0.417597 0.723299i −0.578101 0.815966i \(-0.696206\pi\)
0.995697 + 0.0926670i \(0.0295392\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0000 + 20.7846i −0.623009 + 1.07908i
\(372\) 0 0
\(373\) −2.50000 4.33013i −0.129445 0.224205i 0.794017 0.607896i \(-0.207986\pi\)
−0.923462 + 0.383691i \(0.874653\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 0.309016
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 + 20.7846i 0.613171 + 1.06204i 0.990702 + 0.136047i \(0.0434398\pi\)
−0.377531 + 0.925997i \(0.623227\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.00000 15.5885i 0.456318 0.790366i −0.542445 0.840091i \(-0.682501\pi\)
0.998763 + 0.0497253i \(0.0158346\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −24.0000 −1.20757
\(396\) 0 0
\(397\) 32.0000 1.60603 0.803017 0.595956i \(-0.203227\pi\)
0.803017 + 0.595956i \(0.203227\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.5000 + 33.7750i 0.973784 + 1.68664i 0.683892 + 0.729583i \(0.260286\pi\)
0.289891 + 0.957060i \(0.406381\pi\)
\(402\) 0 0
\(403\) −1.00000 + 1.73205i −0.0498135 + 0.0862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 5.00000 + 8.66025i 0.247234 + 0.428222i 0.962757 0.270367i \(-0.0871450\pi\)
−0.715523 + 0.698589i \(0.753812\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −27.0000 −1.32538
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) 0 0
\(421\) 17.0000 29.4449i 0.828529 1.43505i −0.0706626 0.997500i \(-0.522511\pi\)
0.899192 0.437555i \(-0.144155\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −11.0000 19.0526i −0.532327 0.922018i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −27.0000 −1.30054 −0.650272 0.759701i \(-0.725345\pi\)
−0.650272 + 0.759701i \(0.725345\pi\)
\(432\) 0 0
\(433\) −22.0000 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.00000 + 10.3923i 0.287019 + 0.497131i
\(438\) 0 0
\(439\) 0.500000 0.866025i 0.0238637 0.0413331i −0.853847 0.520524i \(-0.825737\pi\)
0.877711 + 0.479191i \(0.159070\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.0000 25.9808i 0.712672 1.23438i −0.251179 0.967941i \(-0.580818\pi\)
0.963851 0.266443i \(-0.0858483\pi\)
\(444\) 0 0
\(445\) −4.50000 7.79423i −0.213320 0.369482i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 21.0000 0.991051 0.495526 0.868593i \(-0.334975\pi\)
0.495526 + 0.868593i \(0.334975\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.00000 + 5.19615i 0.140642 + 0.243599i
\(456\) 0 0
\(457\) 8.00000 13.8564i 0.374224 0.648175i −0.615986 0.787757i \(-0.711242\pi\)
0.990211 + 0.139581i \(0.0445757\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.5000 + 28.5788i −0.768482 + 1.33105i 0.169904 + 0.985461i \(0.445654\pi\)
−0.938386 + 0.345589i \(0.887679\pi\)
\(462\) 0 0
\(463\) 2.00000 + 3.46410i 0.0929479 + 0.160990i 0.908750 0.417340i \(-0.137038\pi\)
−0.815802 + 0.578331i \(0.803704\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.00000 + 6.92820i −0.183533 + 0.317888i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.5000 + 18.1865i −0.479757 + 0.830964i −0.999730 0.0232187i \(-0.992609\pi\)
0.519973 + 0.854183i \(0.325942\pi\)
\(480\) 0 0
\(481\) −1.00000 1.73205i −0.0455961 0.0789747i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.00000 + 15.5885i −0.403705 + 0.699238i
\(498\) 0 0
\(499\) 20.0000 + 34.6410i 0.895323 + 1.55074i 0.833404 + 0.552664i \(0.186389\pi\)
0.0619186 + 0.998081i \(0.480278\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.0000 1.60516 0.802580 0.596544i \(-0.203460\pi\)
0.802580 + 0.596544i \(0.203460\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.50000 + 12.9904i 0.332432 + 0.575789i 0.982988 0.183669i \(-0.0587976\pi\)
−0.650556 + 0.759458i \(0.725464\pi\)
\(510\) 0 0
\(511\) 4.00000 6.92820i 0.176950 0.306486i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 16.5000 28.5788i 0.727077 1.25933i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.0000 1.05146 0.525730 0.850652i \(-0.323792\pi\)
0.525730 + 0.850652i \(0.323792\pi\)
\(522\) 0 0
\(523\) −25.0000 −1.09317 −0.546587 0.837402i \(-0.684073\pi\)
−0.546587 + 0.837402i \(0.684073\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.00000 + 5.19615i −0.129944 + 0.225070i
\(534\) 0 0
\(535\) −27.0000 46.7654i −1.16731 2.02184i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 44.0000 1.89171 0.945854 0.324593i \(-0.105227\pi\)
0.945854 + 0.324593i \(0.105227\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.00000 10.3923i −0.257012 0.445157i
\(546\) 0 0
\(547\) 8.00000 13.8564i 0.342055 0.592457i −0.642759 0.766068i \(-0.722210\pi\)
0.984814 + 0.173611i \(0.0555436\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.00000 + 10.3923i −0.255609 + 0.442727i
\(552\) 0 0
\(553\) −8.00000 13.8564i −0.340195 0.589234i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 5.00000 0.211477
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.0000 20.7846i −0.505740 0.875967i −0.999978 0.00664037i \(-0.997886\pi\)
0.494238 0.869326i \(-0.335447\pi\)
\(564\) 0 0
\(565\) −9.00000 + 15.5885i −0.378633 + 0.655811i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.0000 + 31.1769i −0.754599 + 1.30700i 0.190974 + 0.981595i \(0.438835\pi\)
−0.945573 + 0.325409i \(0.894498\pi\)
\(570\) 0 0
\(571\) −11.5000 19.9186i −0.481260 0.833567i 0.518509 0.855072i \(-0.326487\pi\)
−0.999769 + 0.0215055i \(0.993154\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.00000 15.5885i −0.373383 0.646718i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000 20.7846i 0.495293 0.857873i −0.504692 0.863299i \(-0.668394\pi\)
0.999985 + 0.00542667i \(0.00172737\pi\)
\(588\) 0 0
\(589\) −2.00000 3.46410i −0.0824086 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.0000 + 31.1769i 0.735460 + 1.27385i 0.954521 + 0.298143i \(0.0963673\pi\)
−0.219061 + 0.975711i \(0.570299\pi\)
\(600\) 0 0
\(601\) −8.50000 + 14.7224i −0.346722 + 0.600541i −0.985665 0.168714i \(-0.946039\pi\)
0.638943 + 0.769254i \(0.279372\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −16.5000 + 28.5788i −0.670820 + 1.16190i
\(606\) 0 0
\(607\) −16.0000 27.7128i −0.649420 1.12483i −0.983262 0.182199i \(-0.941678\pi\)
0.333842 0.942629i \(-0.391655\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.00000 0.121367
\(612\) 0 0
\(613\) −4.00000 −0.161558 −0.0807792 0.996732i \(-0.525741\pi\)
−0.0807792 + 0.996732i \(0.525741\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.50000 + 7.79423i 0.181163 + 0.313784i 0.942277 0.334835i \(-0.108680\pi\)
−0.761114 + 0.648618i \(0.775347\pi\)
\(618\) 0 0
\(619\) −16.0000 + 27.7128i −0.643094 + 1.11387i 0.341644 + 0.939829i \(0.389016\pi\)
−0.984738 + 0.174042i \(0.944317\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.00000 5.19615i 0.120192 0.208179i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 26.0000 1.03504 0.517522 0.855670i \(-0.326855\pi\)
0.517522 + 0.855670i \(0.326855\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.5000 33.7750i −0.773834 1.34032i
\(636\) 0 0
\(637\) 1.50000 2.59808i 0.0594322 0.102940i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.00000 + 5.19615i −0.118493 + 0.205236i −0.919171 0.393860i \(-0.871140\pi\)
0.800678 + 0.599095i \(0.204473\pi\)
\(642\) 0 0
\(643\) −16.0000 27.7128i −0.630978 1.09289i −0.987352 0.158543i \(-0.949320\pi\)
0.356374 0.934344i \(-0.384013\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 30.0000 1.17942 0.589711 0.807614i \(-0.299242\pi\)
0.589711 + 0.807614i \(0.299242\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.0000 20.7846i −0.469596 0.813365i 0.529799 0.848123i \(-0.322267\pi\)
−0.999396 + 0.0347583i \(0.988934\pi\)
\(654\) 0 0
\(655\) 18.0000 31.1769i 0.703318 1.21818i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.00000 + 5.19615i −0.116863 + 0.202413i −0.918523 0.395367i \(-0.870617\pi\)
0.801660 + 0.597781i \(0.203951\pi\)
\(660\) 0 0
\(661\) −10.0000 17.3205i −0.388955 0.673690i 0.603354 0.797473i \(-0.293830\pi\)
−0.992309 + 0.123784i \(0.960497\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) −36.0000 −1.39393
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 18.5000 32.0429i 0.713123 1.23516i −0.250557 0.968102i \(-0.580614\pi\)
0.963679 0.267063i \(-0.0860531\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 24.0000 41.5692i 0.922395 1.59763i 0.126697 0.991941i \(-0.459562\pi\)
0.795698 0.605693i \(-0.207104\pi\)
\(678\) 0 0
\(679\) −8.00000 13.8564i −0.307012 0.531760i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −27.0000 −1.03313 −0.516563 0.856249i \(-0.672789\pi\)
−0.516563 + 0.856249i \(0.672789\pi\)
\(684\) 0 0
\(685\) 54.0000 2.06323
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.00000 10.3923i −0.228582 0.395915i
\(690\) 0 0
\(691\) −7.00000 + 12.1244i −0.266293 + 0.461232i −0.967901 0.251330i \(-0.919132\pi\)
0.701609 + 0.712562i \(0.252465\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.5000 28.5788i 0.625881 1.08406i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) 4.00000 0.150863
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −13.0000 + 22.5167i −0.488225 + 0.845631i −0.999908 0.0135434i \(-0.995689\pi\)
0.511683 + 0.859174i \(0.329022\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.00000 10.3923i 0.224702 0.389195i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 48.0000 1.79010 0.895049 0.445968i \(-0.147140\pi\)
0.895049 + 0.445968i \(0.147140\pi\)
\(720\) 0 0
\(721\) 22.0000 0.819323
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 20.7846i −0.445669 0.771921i
\(726\) 0 0
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 26.0000 + 45.0333i 0.960332 + 1.66334i 0.721665 + 0.692242i \(0.243377\pi\)
0.238667 + 0.971102i \(0.423290\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 38.0000 1.39785 0.698926 0.715194i \(-0.253662\pi\)
0.698926 + 0.715194i \(0.253662\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.50000 7.79423i −0.165089 0.285943i 0.771598 0.636111i \(-0.219458\pi\)
−0.936687 + 0.350168i \(0.886124\pi\)
\(744\) 0 0
\(745\) 22.5000 38.9711i 0.824336 1.42779i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 18.0000 31.1769i 0.657706 1.13918i
\(750\) 0 0
\(751\) −16.0000 27.7128i −0.583848 1.01125i −0.995018 0.0996961i \(-0.968213\pi\)
0.411170 0.911559i \(-0.365120\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −24.0000 −0.873449
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.50000 2.59808i −0.0543750 0.0941802i 0.837557 0.546350i \(-0.183983\pi\)
−0.891932 + 0.452170i \(0.850650\pi\)
\(762\) 0 0
\(763\) 4.00000 6.92820i 0.144810 0.250818i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.50000 2.59808i 0.0541619 0.0938111i
\(768\) 0 0
\(769\) −7.00000 12.1244i −0.252426 0.437215i 0.711767 0.702416i \(-0.247895\pi\)
−0.964193 + 0.265200i \(0.914562\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −45.0000 −1.61854 −0.809269 0.587439i \(-0.800136\pi\)
−0.809269 + 0.587439i \(0.800136\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.00000 10.3923i −0.214972 0.372343i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −10.5000 + 18.1865i −0.374761 + 0.649105i
\(786\) 0 0
\(787\) 14.0000 + 24.2487i 0.499046 + 0.864373i 0.999999 0.00110111i \(-0.000350496\pi\)
−0.500953 + 0.865474i \(0.667017\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 11.0000 0.390621
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.00000 + 15.5885i 0.318796 + 0.552171i 0.980237 0.197826i \(-0.0633881\pi\)
−0.661441 + 0.749997i \(0.730055\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −18.0000 31.1769i −0.634417 1.09884i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −36.0000 −1.26569 −0.632846 0.774277i \(-0.718114\pi\)
−0.632846 + 0.774277i \(0.718114\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.00000 10.3923i −0.210171 0.364027i
\(816\) 0 0
\(817\) −5.00000 + 8.66025i −0.174928 + 0.302984i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.00000 5.19615i 0.104701 0.181347i −0.808915 0.587925i \(-0.799945\pi\)
0.913616 + 0.406578i \(0.133278\pi\)
\(822\) 0 0
\(823\) 6.50000 + 11.2583i 0.226576 + 0.392441i 0.956791 0.290776i \(-0.0939136\pi\)
−0.730215 + 0.683217i \(0.760580\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 11.0000 0.382046 0.191023 0.981586i \(-0.438820\pi\)
0.191023 + 0.981586i \(0.438820\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 13.5000 23.3827i 0.467187 0.809191i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.5000 18.1865i 0.362500 0.627869i −0.625871 0.779926i \(-0.715257\pi\)
0.988372 + 0.152057i \(0.0485899\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −22.0000 −0.755929
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 + 10.3923i 0.205677 + 0.356244i
\(852\) 0 0
\(853\) 11.0000 19.0526i 0.376633 0.652347i −0.613937 0.789355i \(-0.710415\pi\)
0.990570 + 0.137008i \(0.0437485\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.00000 15.5885i 0.307434 0.532492i −0.670366 0.742030i \(-0.733863\pi\)
0.977800 + 0.209539i \(0.0671963\pi\)
\(858\) 0 0
\(859\) 14.0000 + 24.2487i 0.477674 + 0.827355i 0.999672 0.0255910i \(-0.00814674\pi\)
−0.521999 + 0.852946i \(0.674813\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.00000 −0.306364 −0.153182 0.988198i \(-0.548952\pi\)
−0.153182 + 0.988198i \(0.548952\pi\)
\(864\) 0 0
\(865\) 72.0000 2.44807
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −4.00000 + 6.92820i −0.135535 + 0.234753i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.00000 + 5.19615i −0.101419 + 0.175662i
\(876\) 0 0
\(877\) −16.0000 27.7128i −0.540282 0.935795i −0.998888 0.0471555i \(-0.984984\pi\)
0.458606 0.888640i \(-0.348349\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.0000 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(882\) 0 0
\(883\) −52.0000 −1.74994 −0.874970 0.484178i \(-0.839119\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.00000 + 10.3923i 0.201460 + 0.348939i 0.948999 0.315279i \(-0.102098\pi\)
−0.747539 + 0.664218i \(0.768765\pi\)
\(888\) 0 0
\(889\) 13.0000 22.5167i 0.436006 0.755185i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.00000 + 5.19615i −0.100391 + 0.173883i
\(894\) 0 0
\(895\) −9.00000 15.5885i −0.300837 0.521065i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.5000 18.1865i −0.349032 0.604541i
\(906\) 0 0
\(907\) 9.50000 16.4545i 0.315442 0.546362i −0.664089 0.747653i \(-0.731180\pi\)
0.979531 + 0.201291i \(0.0645138\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.0000 31.1769i 0.596367 1.03294i −0.396986 0.917825i \(-0.629944\pi\)
0.993352 0.115113i \(-0.0367229\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.0000 0.792550
\(918\) 0 0
\(919\) 29.0000 0.956622 0.478311 0.878191i \(-0.341249\pi\)
0.478311 + 0.878191i \(0.341249\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.50000 7.79423i −0.148119 0.256550i
\(924\) 0 0
\(925\) −4.00000 + 6.92820i −0.131519 + 0.227798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.0000 25.9808i 0.492134 0.852401i −0.507825 0.861460i \(-0.669550\pi\)
0.999959 + 0.00905914i \(0.00288365\pi\)
\(930\) 0 0
\(931\) 3.00000 + 5.19615i 0.0983210 + 0.170297i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 47.0000 1.53542 0.767712 0.640796i \(-0.221395\pi\)
0.767712 + 0.640796i \(0.221395\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.00000 + 15.5885i 0.293392 + 0.508169i 0.974609 0.223912i \(-0.0718827\pi\)
−0.681218 + 0.732081i \(0.738549\pi\)
\(942\) 0 0
\(943\) 18.0000 31.1769i 0.586161 1.01526i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.50000 + 7.79423i −0.146230 + 0.253278i −0.929831 0.367986i \(-0.880047\pi\)
0.783601 + 0.621264i \(0.213381\pi\)
\(948\) 0 0
\(949\) 2.00000 + 3.46410i 0.0649227 + 0.112449i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 36.0000 1.16493
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 18.0000 + 31.1769i 0.581250 + 1.00676i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −24.0000 + 41.5692i −0.772587 + 1.33816i
\(966\) 0 0
\(967\) 2.00000 + 3.46410i 0.0643157 + 0.111398i 0.896390 0.443266i \(-0.146180\pi\)
−0.832075 + 0.554664i \(0.812847\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.0000 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(972\) 0 0
\(973\) 22.0000 0.705288
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.50000 + 2.59808i 0.0479893 + 0.0831198i 0.889022 0.457864i \(-0.151385\pi\)
−0.841033 + 0.540984i \(0.818052\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −12.0000 + 20.7846i −0.382741 + 0.662926i −0.991453 0.130465i \(-0.958353\pi\)
0.608712 + 0.793391i \(0.291686\pi\)
\(984\) 0 0
\(985\) 31.5000 + 54.5596i 1.00367 + 1.73841i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −37.5000 64.9519i −1.18883 2.05911i
\(996\) 0 0
\(997\) −17.5000 + 30.3109i −0.554231 + 0.959955i 0.443732 + 0.896159i \(0.353654\pi\)
−0.997963 + 0.0637961i \(0.979679\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.i.j.2809.1 2
3.2 odd 2 4212.2.i.c.2809.1 2
9.2 odd 6 1404.2.a.d.1.1 yes 1
9.4 even 3 inner 4212.2.i.j.1405.1 2
9.5 odd 6 4212.2.i.c.1405.1 2
9.7 even 3 1404.2.a.a.1.1 1
36.7 odd 6 5616.2.a.c.1.1 1
36.11 even 6 5616.2.a.be.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1404.2.a.a.1.1 1 9.7 even 3
1404.2.a.d.1.1 yes 1 9.2 odd 6
4212.2.i.c.1405.1 2 9.5 odd 6
4212.2.i.c.2809.1 2 3.2 odd 2
4212.2.i.j.1405.1 2 9.4 even 3 inner
4212.2.i.j.2809.1 2 1.1 even 1 trivial
5616.2.a.c.1.1 1 36.7 odd 6
5616.2.a.be.1.1 1 36.11 even 6