Properties

Label 4212.2.a.m.1.3
Level $4212$
Weight $2$
Character 4212.1
Self dual yes
Analytic conductor $33.633$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4212,2,Mod(1,4212)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4212, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4212.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4212 = 2^{2} \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4212.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,1,0,0,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.6329893314\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.35342001.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 12x^{3} + 15x^{2} - 15x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 468)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.07603\) of defining polynomial
Character \(\chi\) \(=\) 4212.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.697259 q^{5} +2.19680 q^{7} +4.09290 q^{11} -1.00000 q^{13} +1.99796 q^{17} +2.80943 q^{19} +2.93635 q^{23} -4.51383 q^{25} +0.760913 q^{29} +3.03128 q^{31} -1.53174 q^{35} +3.64391 q^{37} +7.46808 q^{41} -8.27547 q^{43} +5.55243 q^{47} -2.17407 q^{49} -8.15366 q^{53} -2.85381 q^{55} +4.33402 q^{59} -7.36764 q^{61} +0.697259 q^{65} -2.21914 q^{67} +3.60208 q^{71} +7.07867 q^{73} +8.99127 q^{77} +5.33597 q^{79} +17.8206 q^{83} -1.39310 q^{85} -1.14782 q^{89} -2.19680 q^{91} -1.95890 q^{95} -18.2277 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{5} - q^{11} - 6 q^{13} + 6 q^{17} + 3 q^{19} + 7 q^{23} + 3 q^{25} + 10 q^{29} - 12 q^{31} + 13 q^{35} - 9 q^{37} + 12 q^{41} + 3 q^{43} + 17 q^{47} + 12 q^{49} + 24 q^{53} + 3 q^{55} + q^{59}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.697259 −0.311824 −0.155912 0.987771i \(-0.549832\pi\)
−0.155912 + 0.987771i \(0.549832\pi\)
\(6\) 0 0
\(7\) 2.19680 0.830312 0.415156 0.909750i \(-0.363727\pi\)
0.415156 + 0.909750i \(0.363727\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.09290 1.23405 0.617027 0.786942i \(-0.288337\pi\)
0.617027 + 0.786942i \(0.288337\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.99796 0.484577 0.242289 0.970204i \(-0.422102\pi\)
0.242289 + 0.970204i \(0.422102\pi\)
\(18\) 0 0
\(19\) 2.80943 0.644527 0.322263 0.946650i \(-0.395556\pi\)
0.322263 + 0.946650i \(0.395556\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.93635 0.612270 0.306135 0.951988i \(-0.400964\pi\)
0.306135 + 0.951988i \(0.400964\pi\)
\(24\) 0 0
\(25\) −4.51383 −0.902766
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.760913 0.141298 0.0706490 0.997501i \(-0.477493\pi\)
0.0706490 + 0.997501i \(0.477493\pi\)
\(30\) 0 0
\(31\) 3.03128 0.544434 0.272217 0.962236i \(-0.412243\pi\)
0.272217 + 0.962236i \(0.412243\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.53174 −0.258911
\(36\) 0 0
\(37\) 3.64391 0.599054 0.299527 0.954088i \(-0.403171\pi\)
0.299527 + 0.954088i \(0.403171\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.46808 1.16632 0.583159 0.812358i \(-0.301816\pi\)
0.583159 + 0.812358i \(0.301816\pi\)
\(42\) 0 0
\(43\) −8.27547 −1.26200 −0.630999 0.775784i \(-0.717355\pi\)
−0.630999 + 0.775784i \(0.717355\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.55243 0.809905 0.404953 0.914338i \(-0.367288\pi\)
0.404953 + 0.914338i \(0.367288\pi\)
\(48\) 0 0
\(49\) −2.17407 −0.310582
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.15366 −1.11999 −0.559996 0.828496i \(-0.689197\pi\)
−0.559996 + 0.828496i \(0.689197\pi\)
\(54\) 0 0
\(55\) −2.85381 −0.384808
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.33402 0.564241 0.282121 0.959379i \(-0.408962\pi\)
0.282121 + 0.959379i \(0.408962\pi\)
\(60\) 0 0
\(61\) −7.36764 −0.943330 −0.471665 0.881778i \(-0.656347\pi\)
−0.471665 + 0.881778i \(0.656347\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.697259 0.0864844
\(66\) 0 0
\(67\) −2.21914 −0.271111 −0.135556 0.990770i \(-0.543282\pi\)
−0.135556 + 0.990770i \(0.543282\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.60208 0.427489 0.213744 0.976890i \(-0.431434\pi\)
0.213744 + 0.976890i \(0.431434\pi\)
\(72\) 0 0
\(73\) 7.07867 0.828496 0.414248 0.910164i \(-0.364045\pi\)
0.414248 + 0.910164i \(0.364045\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.99127 1.02465
\(78\) 0 0
\(79\) 5.33597 0.600344 0.300172 0.953885i \(-0.402956\pi\)
0.300172 + 0.953885i \(0.402956\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 17.8206 1.95606 0.978032 0.208457i \(-0.0668442\pi\)
0.978032 + 0.208457i \(0.0668442\pi\)
\(84\) 0 0
\(85\) −1.39310 −0.151103
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.14782 −0.121669 −0.0608345 0.998148i \(-0.519376\pi\)
−0.0608345 + 0.998148i \(0.519376\pi\)
\(90\) 0 0
\(91\) −2.19680 −0.230287
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.95890 −0.200979
\(96\) 0 0
\(97\) −18.2277 −1.85074 −0.925370 0.379065i \(-0.876246\pi\)
−0.925370 + 0.379065i \(0.876246\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14.7038 −1.46308 −0.731542 0.681797i \(-0.761199\pi\)
−0.731542 + 0.681797i \(0.761199\pi\)
\(102\) 0 0
\(103\) 17.0305 1.67806 0.839032 0.544082i \(-0.183122\pi\)
0.839032 + 0.544082i \(0.183122\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.28970 −0.511374 −0.255687 0.966760i \(-0.582302\pi\)
−0.255687 + 0.966760i \(0.582302\pi\)
\(108\) 0 0
\(109\) −10.1767 −0.974749 −0.487374 0.873193i \(-0.662045\pi\)
−0.487374 + 0.873193i \(0.662045\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.1912 1.24093 0.620463 0.784236i \(-0.286945\pi\)
0.620463 + 0.784236i \(0.286945\pi\)
\(114\) 0 0
\(115\) −2.04739 −0.190920
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.38912 0.402350
\(120\) 0 0
\(121\) 5.75180 0.522891
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.63361 0.593328
\(126\) 0 0
\(127\) −4.71403 −0.418302 −0.209151 0.977883i \(-0.567070\pi\)
−0.209151 + 0.977883i \(0.567070\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.3230 −0.989296 −0.494648 0.869093i \(-0.664703\pi\)
−0.494648 + 0.869093i \(0.664703\pi\)
\(132\) 0 0
\(133\) 6.17175 0.535158
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.57107 −0.219661 −0.109831 0.993950i \(-0.535031\pi\)
−0.109831 + 0.993950i \(0.535031\pi\)
\(138\) 0 0
\(139\) 1.92354 0.163153 0.0815764 0.996667i \(-0.474005\pi\)
0.0815764 + 0.996667i \(0.474005\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.09290 −0.342265
\(144\) 0 0
\(145\) −0.530554 −0.0440601
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.0303 1.80479 0.902395 0.430910i \(-0.141807\pi\)
0.902395 + 0.430910i \(0.141807\pi\)
\(150\) 0 0
\(151\) 14.7036 1.19656 0.598281 0.801286i \(-0.295850\pi\)
0.598281 + 0.801286i \(0.295850\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.11359 −0.169767
\(156\) 0 0
\(157\) 4.83108 0.385562 0.192781 0.981242i \(-0.438249\pi\)
0.192781 + 0.981242i \(0.438249\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.45056 0.508376
\(162\) 0 0
\(163\) 13.7385 1.07608 0.538042 0.842918i \(-0.319164\pi\)
0.538042 + 0.842918i \(0.319164\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.10366 0.162786 0.0813931 0.996682i \(-0.474063\pi\)
0.0813931 + 0.996682i \(0.474063\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.5601 1.63918 0.819591 0.572950i \(-0.194201\pi\)
0.819591 + 0.572950i \(0.194201\pi\)
\(174\) 0 0
\(175\) −9.91598 −0.749578
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.2922 0.769279 0.384639 0.923067i \(-0.374326\pi\)
0.384639 + 0.923067i \(0.374326\pi\)
\(180\) 0 0
\(181\) 21.0086 1.56156 0.780780 0.624806i \(-0.214822\pi\)
0.780780 + 0.624806i \(0.214822\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.54075 −0.186799
\(186\) 0 0
\(187\) 8.17745 0.597995
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.48117 −0.541318 −0.270659 0.962675i \(-0.587242\pi\)
−0.270659 + 0.962675i \(0.587242\pi\)
\(192\) 0 0
\(193\) −4.92072 −0.354201 −0.177100 0.984193i \(-0.556672\pi\)
−0.177100 + 0.984193i \(0.556672\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0.0996564 0.00710023 0.00355011 0.999994i \(-0.498870\pi\)
0.00355011 + 0.999994i \(0.498870\pi\)
\(198\) 0 0
\(199\) −22.9573 −1.62740 −0.813699 0.581287i \(-0.802550\pi\)
−0.813699 + 0.581287i \(0.802550\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.67157 0.117322
\(204\) 0 0
\(205\) −5.20719 −0.363686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.4987 0.795381
\(210\) 0 0
\(211\) −12.7040 −0.874579 −0.437290 0.899321i \(-0.644062\pi\)
−0.437290 + 0.899321i \(0.644062\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.77015 0.393521
\(216\) 0 0
\(217\) 6.65911 0.452050
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.99796 −0.134398
\(222\) 0 0
\(223\) 12.7102 0.851140 0.425570 0.904926i \(-0.360074\pi\)
0.425570 + 0.904926i \(0.360074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.9065 −1.05575 −0.527876 0.849321i \(-0.677012\pi\)
−0.527876 + 0.849321i \(0.677012\pi\)
\(228\) 0 0
\(229\) −17.8495 −1.17953 −0.589765 0.807575i \(-0.700780\pi\)
−0.589765 + 0.807575i \(0.700780\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.9134 1.17355 0.586773 0.809752i \(-0.300398\pi\)
0.586773 + 0.809752i \(0.300398\pi\)
\(234\) 0 0
\(235\) −3.87148 −0.252548
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.9511 −1.41990 −0.709950 0.704252i \(-0.751282\pi\)
−0.709950 + 0.704252i \(0.751282\pi\)
\(240\) 0 0
\(241\) 12.1329 0.781549 0.390774 0.920486i \(-0.372207\pi\)
0.390774 + 0.920486i \(0.372207\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.51589 0.0968467
\(246\) 0 0
\(247\) −2.80943 −0.178759
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 28.4061 1.79298 0.896489 0.443067i \(-0.146110\pi\)
0.896489 + 0.443067i \(0.146110\pi\)
\(252\) 0 0
\(253\) 12.0182 0.755575
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.5592 −0.721044 −0.360522 0.932751i \(-0.617401\pi\)
−0.360522 + 0.932751i \(0.617401\pi\)
\(258\) 0 0
\(259\) 8.00493 0.497402
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 20.1537 1.24273 0.621364 0.783522i \(-0.286579\pi\)
0.621364 + 0.783522i \(0.286579\pi\)
\(264\) 0 0
\(265\) 5.68521 0.349240
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.2166 0.988745 0.494373 0.869250i \(-0.335398\pi\)
0.494373 + 0.869250i \(0.335398\pi\)
\(270\) 0 0
\(271\) 3.72713 0.226407 0.113204 0.993572i \(-0.463889\pi\)
0.113204 + 0.993572i \(0.463889\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −18.4746 −1.11406
\(276\) 0 0
\(277\) 24.5407 1.47451 0.737254 0.675616i \(-0.236122\pi\)
0.737254 + 0.675616i \(0.236122\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.9525 0.713025 0.356512 0.934291i \(-0.383966\pi\)
0.356512 + 0.934291i \(0.383966\pi\)
\(282\) 0 0
\(283\) 21.2645 1.26404 0.632021 0.774951i \(-0.282226\pi\)
0.632021 + 0.774951i \(0.282226\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.4059 0.968409
\(288\) 0 0
\(289\) −13.0081 −0.765185
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.18807 0.419932 0.209966 0.977709i \(-0.432665\pi\)
0.209966 + 0.977709i \(0.432665\pi\)
\(294\) 0 0
\(295\) −3.02194 −0.175944
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.93635 −0.169813
\(300\) 0 0
\(301\) −18.1796 −1.04785
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.13715 0.294153
\(306\) 0 0
\(307\) −27.3920 −1.56335 −0.781673 0.623688i \(-0.785633\pi\)
−0.781673 + 0.623688i \(0.785633\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.82049 0.273345 0.136673 0.990616i \(-0.456359\pi\)
0.136673 + 0.990616i \(0.456359\pi\)
\(312\) 0 0
\(313\) −13.8976 −0.785536 −0.392768 0.919638i \(-0.628483\pi\)
−0.392768 + 0.919638i \(0.628483\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.9004 −0.724559 −0.362280 0.932069i \(-0.618001\pi\)
−0.362280 + 0.932069i \(0.618001\pi\)
\(318\) 0 0
\(319\) 3.11434 0.174370
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.61313 0.312323
\(324\) 0 0
\(325\) 4.51383 0.250382
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.1976 0.672474
\(330\) 0 0
\(331\) −20.5521 −1.12964 −0.564822 0.825213i \(-0.691055\pi\)
−0.564822 + 0.825213i \(0.691055\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.54732 0.0845389
\(336\) 0 0
\(337\) 3.60690 0.196480 0.0982402 0.995163i \(-0.468679\pi\)
0.0982402 + 0.995163i \(0.468679\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.4067 0.671861
\(342\) 0 0
\(343\) −20.1536 −1.08819
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 11.7383 0.630144 0.315072 0.949068i \(-0.397971\pi\)
0.315072 + 0.949068i \(0.397971\pi\)
\(348\) 0 0
\(349\) 32.9542 1.76400 0.881998 0.471253i \(-0.156198\pi\)
0.881998 + 0.471253i \(0.156198\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.4321 1.72619 0.863095 0.505042i \(-0.168523\pi\)
0.863095 + 0.505042i \(0.168523\pi\)
\(354\) 0 0
\(355\) −2.51159 −0.133301
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.1523 −0.588595 −0.294297 0.955714i \(-0.595086\pi\)
−0.294297 + 0.955714i \(0.595086\pi\)
\(360\) 0 0
\(361\) −11.1071 −0.584586
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.93567 −0.258345
\(366\) 0 0
\(367\) 4.74909 0.247901 0.123950 0.992288i \(-0.460444\pi\)
0.123950 + 0.992288i \(0.460444\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −17.9120 −0.929943
\(372\) 0 0
\(373\) −18.8898 −0.978075 −0.489038 0.872263i \(-0.662652\pi\)
−0.489038 + 0.872263i \(0.662652\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.760913 −0.0391890
\(378\) 0 0
\(379\) −0.532771 −0.0273666 −0.0136833 0.999906i \(-0.504356\pi\)
−0.0136833 + 0.999906i \(0.504356\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.0635 1.07630 0.538148 0.842851i \(-0.319124\pi\)
0.538148 + 0.842851i \(0.319124\pi\)
\(384\) 0 0
\(385\) −6.26925 −0.319510
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.528246 0.0267831 0.0133916 0.999910i \(-0.495737\pi\)
0.0133916 + 0.999910i \(0.495737\pi\)
\(390\) 0 0
\(391\) 5.86671 0.296692
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −3.72056 −0.187201
\(396\) 0 0
\(397\) 5.91694 0.296963 0.148481 0.988915i \(-0.452562\pi\)
0.148481 + 0.988915i \(0.452562\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 39.1394 1.95453 0.977263 0.212030i \(-0.0680075\pi\)
0.977263 + 0.212030i \(0.0680075\pi\)
\(402\) 0 0
\(403\) −3.03128 −0.150999
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 14.9141 0.739266
\(408\) 0 0
\(409\) −13.2087 −0.653131 −0.326565 0.945175i \(-0.605891\pi\)
−0.326565 + 0.945175i \(0.605891\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.52097 0.468497
\(414\) 0 0
\(415\) −12.4256 −0.609947
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.7373 −0.915379 −0.457689 0.889112i \(-0.651323\pi\)
−0.457689 + 0.889112i \(0.651323\pi\)
\(420\) 0 0
\(421\) 7.53862 0.367410 0.183705 0.982981i \(-0.441191\pi\)
0.183705 + 0.982981i \(0.441191\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −9.01846 −0.437460
\(426\) 0 0
\(427\) −16.1852 −0.783258
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.05377 0.0507584 0.0253792 0.999678i \(-0.491921\pi\)
0.0253792 + 0.999678i \(0.491921\pi\)
\(432\) 0 0
\(433\) −23.2509 −1.11737 −0.558685 0.829380i \(-0.688694\pi\)
−0.558685 + 0.829380i \(0.688694\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.24945 0.394625
\(438\) 0 0
\(439\) −25.6365 −1.22356 −0.611781 0.791027i \(-0.709546\pi\)
−0.611781 + 0.791027i \(0.709546\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −37.4847 −1.78095 −0.890476 0.455031i \(-0.849628\pi\)
−0.890476 + 0.455031i \(0.849628\pi\)
\(444\) 0 0
\(445\) 0.800330 0.0379393
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.9727 −0.848182 −0.424091 0.905620i \(-0.639406\pi\)
−0.424091 + 0.905620i \(0.639406\pi\)
\(450\) 0 0
\(451\) 30.5661 1.43930
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.53174 0.0718090
\(456\) 0 0
\(457\) 6.66781 0.311907 0.155953 0.987764i \(-0.450155\pi\)
0.155953 + 0.987764i \(0.450155\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.5928 −1.70430 −0.852148 0.523300i \(-0.824701\pi\)
−0.852148 + 0.523300i \(0.824701\pi\)
\(462\) 0 0
\(463\) 23.6324 1.09829 0.549146 0.835726i \(-0.314953\pi\)
0.549146 + 0.835726i \(0.314953\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.0351 −0.510643 −0.255322 0.966856i \(-0.582181\pi\)
−0.255322 + 0.966856i \(0.582181\pi\)
\(468\) 0 0
\(469\) −4.87501 −0.225107
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −33.8707 −1.55737
\(474\) 0 0
\(475\) −12.6813 −0.581857
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.93162 0.225332 0.112666 0.993633i \(-0.464061\pi\)
0.112666 + 0.993633i \(0.464061\pi\)
\(480\) 0 0
\(481\) −3.64391 −0.166148
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.7094 0.577105
\(486\) 0 0
\(487\) 15.3352 0.694904 0.347452 0.937698i \(-0.387047\pi\)
0.347452 + 0.937698i \(0.387047\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −34.7657 −1.56895 −0.784477 0.620158i \(-0.787068\pi\)
−0.784477 + 0.620158i \(0.787068\pi\)
\(492\) 0 0
\(493\) 1.52028 0.0684698
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.91305 0.354949
\(498\) 0 0
\(499\) 30.4715 1.36409 0.682046 0.731309i \(-0.261090\pi\)
0.682046 + 0.731309i \(0.261090\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −26.2790 −1.17172 −0.585862 0.810411i \(-0.699244\pi\)
−0.585862 + 0.810411i \(0.699244\pi\)
\(504\) 0 0
\(505\) 10.2524 0.456224
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.631599 0.0279952 0.0139976 0.999902i \(-0.495544\pi\)
0.0139976 + 0.999902i \(0.495544\pi\)
\(510\) 0 0
\(511\) 15.5504 0.687910
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −11.8747 −0.523260
\(516\) 0 0
\(517\) 22.7255 0.999467
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.0092 −0.832809 −0.416405 0.909179i \(-0.636710\pi\)
−0.416405 + 0.909179i \(0.636710\pi\)
\(522\) 0 0
\(523\) −22.3923 −0.979146 −0.489573 0.871962i \(-0.662847\pi\)
−0.489573 + 0.871962i \(0.662847\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.05638 0.263820
\(528\) 0 0
\(529\) −14.3779 −0.625125
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.46808 −0.323479
\(534\) 0 0
\(535\) 3.68829 0.159459
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.89825 −0.383275
\(540\) 0 0
\(541\) 36.4172 1.56570 0.782850 0.622211i \(-0.213765\pi\)
0.782850 + 0.622211i \(0.213765\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.09578 0.303950
\(546\) 0 0
\(547\) 18.1753 0.777121 0.388561 0.921423i \(-0.372972\pi\)
0.388561 + 0.921423i \(0.372972\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.13773 0.0910703
\(552\) 0 0
\(553\) 11.7221 0.498473
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.6307 −0.619922 −0.309961 0.950749i \(-0.600316\pi\)
−0.309961 + 0.950749i \(0.600316\pi\)
\(558\) 0 0
\(559\) 8.27547 0.350015
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −24.4851 −1.03192 −0.515962 0.856611i \(-0.672565\pi\)
−0.515962 + 0.856611i \(0.672565\pi\)
\(564\) 0 0
\(565\) −9.19771 −0.386950
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.7225 0.910655 0.455328 0.890324i \(-0.349522\pi\)
0.455328 + 0.890324i \(0.349522\pi\)
\(570\) 0 0
\(571\) −28.4620 −1.19110 −0.595549 0.803319i \(-0.703065\pi\)
−0.595549 + 0.803319i \(0.703065\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13.2542 −0.552737
\(576\) 0 0
\(577\) −33.7463 −1.40488 −0.702439 0.711744i \(-0.747906\pi\)
−0.702439 + 0.711744i \(0.747906\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 39.1482 1.62414
\(582\) 0 0
\(583\) −33.3721 −1.38213
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.95846 0.287206 0.143603 0.989635i \(-0.454131\pi\)
0.143603 + 0.989635i \(0.454131\pi\)
\(588\) 0 0
\(589\) 8.51615 0.350902
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.939651 0.0385869 0.0192934 0.999814i \(-0.493858\pi\)
0.0192934 + 0.999814i \(0.493858\pi\)
\(594\) 0 0
\(595\) −3.06036 −0.125462
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.8754 −0.893804 −0.446902 0.894583i \(-0.647473\pi\)
−0.446902 + 0.894583i \(0.647473\pi\)
\(600\) 0 0
\(601\) −15.2309 −0.621280 −0.310640 0.950528i \(-0.600543\pi\)
−0.310640 + 0.950528i \(0.600543\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.01049 −0.163050
\(606\) 0 0
\(607\) −17.5919 −0.714033 −0.357016 0.934098i \(-0.616206\pi\)
−0.357016 + 0.934098i \(0.616206\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.55243 −0.224627
\(612\) 0 0
\(613\) −0.225209 −0.00909610 −0.00454805 0.999990i \(-0.501448\pi\)
−0.00454805 + 0.999990i \(0.501448\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.2993 0.535410 0.267705 0.963501i \(-0.413735\pi\)
0.267705 + 0.963501i \(0.413735\pi\)
\(618\) 0 0
\(619\) 6.13123 0.246435 0.123217 0.992380i \(-0.460679\pi\)
0.123217 + 0.992380i \(0.460679\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.52154 −0.101023
\(624\) 0 0
\(625\) 17.9438 0.717752
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.28039 0.290288
\(630\) 0 0
\(631\) 23.6772 0.942573 0.471287 0.881980i \(-0.343790\pi\)
0.471287 + 0.881980i \(0.343790\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.28690 0.130437
\(636\) 0 0
\(637\) 2.17407 0.0861398
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 44.6477 1.76348 0.881738 0.471739i \(-0.156374\pi\)
0.881738 + 0.471739i \(0.156374\pi\)
\(642\) 0 0
\(643\) 17.6700 0.696835 0.348418 0.937339i \(-0.386719\pi\)
0.348418 + 0.937339i \(0.386719\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −30.0945 −1.18314 −0.591568 0.806255i \(-0.701491\pi\)
−0.591568 + 0.806255i \(0.701491\pi\)
\(648\) 0 0
\(649\) 17.7387 0.696305
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.25555 −0.244799 −0.122399 0.992481i \(-0.539059\pi\)
−0.122399 + 0.992481i \(0.539059\pi\)
\(654\) 0 0
\(655\) 7.89507 0.308486
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.7387 −1.54800 −0.774000 0.633185i \(-0.781747\pi\)
−0.774000 + 0.633185i \(0.781747\pi\)
\(660\) 0 0
\(661\) −1.36977 −0.0532779 −0.0266389 0.999645i \(-0.508480\pi\)
−0.0266389 + 0.999645i \(0.508480\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.30331 −0.166875
\(666\) 0 0
\(667\) 2.23430 0.0865126
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −30.1550 −1.16412
\(672\) 0 0
\(673\) 34.1483 1.31632 0.658161 0.752878i \(-0.271335\pi\)
0.658161 + 0.752878i \(0.271335\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.5143 0.557829 0.278915 0.960316i \(-0.410025\pi\)
0.278915 + 0.960316i \(0.410025\pi\)
\(678\) 0 0
\(679\) −40.0425 −1.53669
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −41.5040 −1.58810 −0.794052 0.607849i \(-0.792032\pi\)
−0.794052 + 0.607849i \(0.792032\pi\)
\(684\) 0 0
\(685\) 1.79270 0.0684956
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.15366 0.310630
\(690\) 0 0
\(691\) −0.959263 −0.0364921 −0.0182460 0.999834i \(-0.505808\pi\)
−0.0182460 + 0.999834i \(0.505808\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.34121 −0.0508749
\(696\) 0 0
\(697\) 14.9210 0.565171
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 35.3399 1.33477 0.667385 0.744713i \(-0.267414\pi\)
0.667385 + 0.744713i \(0.267414\pi\)
\(702\) 0 0
\(703\) 10.2373 0.386106
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −32.3013 −1.21482
\(708\) 0 0
\(709\) −49.5501 −1.86089 −0.930446 0.366428i \(-0.880581\pi\)
−0.930446 + 0.366428i \(0.880581\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.90088 0.333341
\(714\) 0 0
\(715\) 2.85381 0.106726
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.76966 −0.140585 −0.0702924 0.997526i \(-0.522393\pi\)
−0.0702924 + 0.997526i \(0.522393\pi\)
\(720\) 0 0
\(721\) 37.4126 1.39332
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.43463 −0.127559
\(726\) 0 0
\(727\) −8.28166 −0.307150 −0.153575 0.988137i \(-0.549079\pi\)
−0.153575 + 0.988137i \(0.549079\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.5341 −0.611535
\(732\) 0 0
\(733\) −26.3425 −0.972983 −0.486491 0.873685i \(-0.661724\pi\)
−0.486491 + 0.873685i \(0.661724\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.08271 −0.334566
\(738\) 0 0
\(739\) 33.3366 1.22631 0.613154 0.789964i \(-0.289901\pi\)
0.613154 + 0.789964i \(0.289901\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.1726 1.54716 0.773581 0.633698i \(-0.218464\pi\)
0.773581 + 0.633698i \(0.218464\pi\)
\(744\) 0 0
\(745\) −15.3608 −0.562776
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.6204 −0.424600
\(750\) 0 0
\(751\) 5.97976 0.218205 0.109102 0.994031i \(-0.465202\pi\)
0.109102 + 0.994031i \(0.465202\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.2522 −0.373117
\(756\) 0 0
\(757\) 26.0167 0.945593 0.472796 0.881172i \(-0.343245\pi\)
0.472796 + 0.881172i \(0.343245\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −21.4536 −0.777693 −0.388847 0.921302i \(-0.627126\pi\)
−0.388847 + 0.921302i \(0.627126\pi\)
\(762\) 0 0
\(763\) −22.3561 −0.809346
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.33402 −0.156492
\(768\) 0 0
\(769\) 28.9538 1.04410 0.522051 0.852915i \(-0.325167\pi\)
0.522051 + 0.852915i \(0.325167\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −31.4888 −1.13257 −0.566287 0.824208i \(-0.691621\pi\)
−0.566287 + 0.824208i \(0.691621\pi\)
\(774\) 0 0
\(775\) −13.6827 −0.491496
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.9810 0.751723
\(780\) 0 0
\(781\) 14.7429 0.527544
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3.36852 −0.120227
\(786\) 0 0
\(787\) −40.6417 −1.44872 −0.724361 0.689421i \(-0.757865\pi\)
−0.724361 + 0.689421i \(0.757865\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 28.9785 1.03036
\(792\) 0 0
\(793\) 7.36764 0.261633
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −47.3529 −1.67733 −0.838663 0.544651i \(-0.816662\pi\)
−0.838663 + 0.544651i \(0.816662\pi\)
\(798\) 0 0
\(799\) 11.0935 0.392462
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.9723 1.02241
\(804\) 0 0
\(805\) −4.49771 −0.158524
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −12.5477 −0.441155 −0.220577 0.975369i \(-0.570794\pi\)
−0.220577 + 0.975369i \(0.570794\pi\)
\(810\) 0 0
\(811\) −16.5528 −0.581246 −0.290623 0.956838i \(-0.593863\pi\)
−0.290623 + 0.956838i \(0.593863\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.57930 −0.335548
\(816\) 0 0
\(817\) −23.2493 −0.813391
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −44.7485 −1.56173 −0.780867 0.624697i \(-0.785223\pi\)
−0.780867 + 0.624697i \(0.785223\pi\)
\(822\) 0 0
\(823\) 52.2195 1.82026 0.910129 0.414326i \(-0.135983\pi\)
0.910129 + 0.414326i \(0.135983\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −52.5104 −1.82597 −0.912983 0.407997i \(-0.866227\pi\)
−0.912983 + 0.407997i \(0.866227\pi\)
\(828\) 0 0
\(829\) −41.3146 −1.43492 −0.717458 0.696601i \(-0.754695\pi\)
−0.717458 + 0.696601i \(0.754695\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.34371 −0.150501
\(834\) 0 0
\(835\) −1.46680 −0.0507606
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −25.3840 −0.876352 −0.438176 0.898889i \(-0.644375\pi\)
−0.438176 + 0.898889i \(0.644375\pi\)
\(840\) 0 0
\(841\) −28.4210 −0.980035
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.697259 −0.0239864
\(846\) 0 0
\(847\) 12.6355 0.434163
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 10.6998 0.366783
\(852\) 0 0
\(853\) −26.8535 −0.919448 −0.459724 0.888062i \(-0.652052\pi\)
−0.459724 + 0.888062i \(0.652052\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.4735 0.801841 0.400921 0.916113i \(-0.368690\pi\)
0.400921 + 0.916113i \(0.368690\pi\)
\(858\) 0 0
\(859\) −23.9387 −0.816778 −0.408389 0.912808i \(-0.633909\pi\)
−0.408389 + 0.912808i \(0.633909\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −20.8970 −0.711343 −0.355671 0.934611i \(-0.615748\pi\)
−0.355671 + 0.934611i \(0.615748\pi\)
\(864\) 0 0
\(865\) −15.0330 −0.511136
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 21.8396 0.740857
\(870\) 0 0
\(871\) 2.21914 0.0751927
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 14.5727 0.492647
\(876\) 0 0
\(877\) −14.6208 −0.493709 −0.246855 0.969053i \(-0.579397\pi\)
−0.246855 + 0.969053i \(0.579397\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.4625 0.419874 0.209937 0.977715i \(-0.432674\pi\)
0.209937 + 0.977715i \(0.432674\pi\)
\(882\) 0 0
\(883\) −8.07304 −0.271679 −0.135840 0.990731i \(-0.543373\pi\)
−0.135840 + 0.990731i \(0.543373\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 52.8526 1.77462 0.887309 0.461176i \(-0.152572\pi\)
0.887309 + 0.461176i \(0.152572\pi\)
\(888\) 0 0
\(889\) −10.3558 −0.347322
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.5991 0.522005
\(894\) 0 0
\(895\) −7.17636 −0.239879
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.30654 0.0769274
\(900\) 0 0
\(901\) −16.2907 −0.542722
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.6485 −0.486932
\(906\) 0 0
\(907\) 23.4654 0.779154 0.389577 0.920994i \(-0.372621\pi\)
0.389577 + 0.920994i \(0.372621\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −42.7566 −1.41659 −0.708294 0.705917i \(-0.750535\pi\)
−0.708294 + 0.705917i \(0.750535\pi\)
\(912\) 0 0
\(913\) 72.9378 2.41389
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −24.8744 −0.821425
\(918\) 0 0
\(919\) 53.1680 1.75385 0.876925 0.480627i \(-0.159591\pi\)
0.876925 + 0.480627i \(0.159591\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.60208 −0.118564
\(924\) 0 0
\(925\) −16.4480 −0.540806
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.1903 0.399951 0.199975 0.979801i \(-0.435914\pi\)
0.199975 + 0.979801i \(0.435914\pi\)
\(930\) 0 0
\(931\) −6.10789 −0.200178
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.70180 −0.186469
\(936\) 0 0
\(937\) −55.1572 −1.80191 −0.900953 0.433917i \(-0.857131\pi\)
−0.900953 + 0.433917i \(0.857131\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −53.2529 −1.73599 −0.867997 0.496569i \(-0.834593\pi\)
−0.867997 + 0.496569i \(0.834593\pi\)
\(942\) 0 0
\(943\) 21.9289 0.714103
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −49.9061 −1.62173 −0.810865 0.585234i \(-0.801003\pi\)
−0.810865 + 0.585234i \(0.801003\pi\)
\(948\) 0 0
\(949\) −7.07867 −0.229783
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22.8217 0.739267 0.369633 0.929178i \(-0.379483\pi\)
0.369633 + 0.929178i \(0.379483\pi\)
\(954\) 0 0
\(955\) 5.21631 0.168796
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.64812 −0.182387
\(960\) 0 0
\(961\) −21.8113 −0.703592
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.43102 0.110448
\(966\) 0 0
\(967\) 42.5788 1.36924 0.684622 0.728899i \(-0.259967\pi\)
0.684622 + 0.728899i \(0.259967\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −32.7844 −1.05210 −0.526051 0.850453i \(-0.676328\pi\)
−0.526051 + 0.850453i \(0.676328\pi\)
\(972\) 0 0
\(973\) 4.22564 0.135468
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 39.8627 1.27532 0.637660 0.770318i \(-0.279902\pi\)
0.637660 + 0.770318i \(0.279902\pi\)
\(978\) 0 0
\(979\) −4.69792 −0.150146
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0.770487 0.0245747 0.0122874 0.999925i \(-0.496089\pi\)
0.0122874 + 0.999925i \(0.496089\pi\)
\(984\) 0 0
\(985\) −0.0694864 −0.00221402
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.2997 −0.772684
\(990\) 0 0
\(991\) 5.38396 0.171027 0.0855135 0.996337i \(-0.472747\pi\)
0.0855135 + 0.996337i \(0.472747\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.0072 0.507461
\(996\) 0 0
\(997\) 38.7889 1.22846 0.614229 0.789128i \(-0.289467\pi\)
0.614229 + 0.789128i \(0.289467\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4212.2.a.m.1.3 6
3.2 odd 2 4212.2.a.k.1.4 6
9.2 odd 6 1404.2.i.c.469.3 12
9.4 even 3 468.2.i.c.313.6 yes 12
9.5 odd 6 1404.2.i.c.937.3 12
9.7 even 3 468.2.i.c.157.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.i.c.157.6 12 9.7 even 3
468.2.i.c.313.6 yes 12 9.4 even 3
1404.2.i.c.469.3 12 9.2 odd 6
1404.2.i.c.937.3 12 9.5 odd 6
4212.2.a.k.1.4 6 3.2 odd 2
4212.2.a.m.1.3 6 1.1 even 1 trivial